
Order this document
by AN1843/D

Motorola Semiconductor Application Note

AN1843
Vacuum Cleaner Reference Platform
By Ken Berringer

East Kilbride, Scotland

Introduction

The modern vacuum cleaner is an indispensable household appliance.
The upright and the canister are the two basic types. The upright is the
most common in the United States and the United Kingdom, while the
canister vacuum is more common on the European continent. Other
kinds of vacuum cleaners — such as small, hand-held vacuums, large,
central vacuums, and industrial, floor care appliances — are not
addressed in this application note.

A vacuum cleaner uses a universal motor meaning that the motor can
operate from either an ac or dc supply. It has brushes like a dc
permanent magnet motor. However, it has a wound stator that is
connected in series with the rotor windings. In dc applications, it is often
called a series wound dc motor. A universal motor is used in vacuum
cleaners because it can operate at very high speeds. Vacuum cleaner
motors operate at speeds up to 30,000 RPMs. The high-speed operation
is necessary to generate a strong suction using a small fan. An induction
motor is limited to speeds below 3600 RPMs.

Many vacuum cleaners have just a simple on-off switch for the motor
control. The penetration of electronic controls in vacuum cleaners is
higher in Europe and Asia. Most European canister vacuums have a
variable suction power knob or slider. The motor speed is controlled
© Motorola, Inc., 2000 AN1843

Application Note
using a triac with a simple firing control circuit. The firing control circuit
consists of a few discrete components, such as a diac, resistor,
capacitor, and potentiometer.

Today, a few of the more expensive high-end vacuum cleaner models
use microcontrollers (MCU). Microcontrollers are used to provide added
features for these sophisticated models, such as infrared or wired
remote control, status LEDs (light-emitting diode), and automatic suction
control.

In the near future, all vacuum cleaners might include a microcontroller,
since MCUs provide several benefits for the low-end models.

One of the most important benefits is soft-start. A microcontroller can
provide a soft-start function using a very simple software algorithm that
will minimize the startup current of the vacuum cleaner. The startup
current of a conventional vacuum might be as high as 60 amperes peak.
If the vacuum draws excessive current during startup, this might cause
the line voltage to dip momentarily. This is readily apparent in common
incandescent lighting and is called voltage flicker. With increased
European community regulations, vacuum cleaner manufacturers must
clean up their power quality. Using an MCU with some simple software
will help manufacturers meet the requirements of EN61000-2-3 and
EN61000-3-3. These standards define limits for line harmonics and
voltage flicker.

System Design

A simple vacuum cleaner reference design is shown in Figure 2, and a
brief description of the circuit operation follows.

The HC908KX8 is used to generate the triac drive waveform and control
the speed of the motor. A potentiometer is used to vary the speed of the
motor. The MCU reads the potentiometer using one of the analog-to-
digital converter (ADC) port pins. A single port pin is used with a timer
input capture function to measure the ac line frequency and sync to the
ac line. The current injection into the MCU is limited, using a large value
resistor. Four port pins provide sufficient sink current to drive the triac
AN1843

2 MOTOROLA

Application Note
System Design
directly. A charge pump power supply is used to provide power for the
MCU and drive current for the triac. This type of power supply is useful
only up to about 20 mA. The supply current is limited by the size of the
ac line capacitor. A high-voltage non-polar capacitor is needed to
generate the ac current. A low-cost charge pump power supply does not
have sufficient current capability to drive status LEDs. A sensitive gate
triac can be used to minimize triac drive current. However, sensitive gate
triacs have a lower rate of voltage rise equal dv/dt rating and require a
more expensive snubber circuit.

Figure 1. Vacuum Cleaner Reference Design

While this circuit is simple and cost effective, it is difficult to develop and
debug software in this configuration. A circuit has been developed for the
express purpose of developing vacuum cleaner software for the
HC908KX8. This circuit is shown in Figure 2.

A separate isolated supply provides power to the MCU and triac drive.
This provides safe isolation when working with a Motorola modular
development system (MMDS). This allows a safe direct connection from
MMDS to the MCU socket using a flexible cable. The software may be
safely debugged without connecting the triac to the ac mains. An

MC68HC908KX8

VSS

PTA1

PTA0

IRQ

PTB0/AD0

PTB1/AD1

PTB2/AD2

PTB3/AD3

1

2

3

4

6

7
8

5

VSS
VDD

VDD

PTA4

PTA3/TCH1

PTA2/TCH0

PTB4/RxD

PTB5/TxD

PTB6/OSC1

PTB7/OSC2

16

12

11

10

15

14

9

13

VDD

VSS

+

VDD

VDD

VSS
AN1843

MOTOROLA 3

Application Note
external oscillator is used when programming or communicating via
monitor mode.

Figure 2. Vacuum Cleaner Software Development System

While it is possible to drive the triac directly, an NPN drive circuit has
several advantages. The NPN drive circuit consists of Q3, R3, R10, and
R22 in Figure 2. The NPN drive circuit uses only one port pin. Using the
output compare pin of the timer provides accurate hardware-generated
timing. Multiple pins can be manipulated only by using software and they
have a resulting interrupt latency. The NPN transistor drive also has
better EMC (electromagnetic compliance) robustness than a direct drive

J4

HC908KX8

VSS

PTA1

PTA0

IRQ

PTB0/AD0

PTB1/AD1

PTB2/AD2

PTB3/AD3

1

2

3

4

7
8

5

VSS

VDD

VDD

PTA4

PTA3/TCH1

PTA2/TCH0

PTB4/RxD

PTB5/TxD

PTB6/OSC1

PTB7/OSC2

16

12

11

10

15

14

9

13

VSS

R1
10 kΩ

6

VDD

C3

100 nF

U1

D1
MBR160

+
C14
100 µF

U7
MC78L05

VDD

C8
1.0 µF

R10

1.0 kΩ

VSS

R22
 10 kΩ

VDD

Q1
MAC12M

Q3

R3

110 Ω

J3

X1

VSS

VDD

 R24
 10 kΩ

VSS

C6
100 nF

VDD

S1 S2

VSS

R7
470 Ω
D3

Q5

VDD

C5
100 nF

VDD

R16
220 kΩ

R17
220 kΩ

 R26

R18
10 kΩ

VSS

10 kΩ

VSS

VSS
AN1843

4 MOTOROLA

Application Note
Phase Angle Control Basics
solution. The MCU is not exposed to current injection due to the triac
gate drive voltage. The cost of a small NPN is less than the cost of a
good Schottky diode or zener diode that are commonly used for EMC
protection.

An additional NPN transistor (Q5) is used to provide an accurate zero
voltage crossing detection circuit. The zero voltage crossing circuit
outputs a square wave to the MCU input capture. The NPN provides a
square wave output over a wide range of input voltages. Two or more
resistors in series may be required due to the limited voltage rating of
metal film or chip resistors. A jumper is also included, providing a
convenient connection to a pulse generator for debugging purposes.

One of the port pins is used to drive an LED. This is used to indicate the
software has synchronized with the ac line to aid with debugging.

Phase Angle Control Basics

The concept of phase angle control is to apply only a portion of the ac
waveform to the load. This is illustrated in Figure 3. Once fired, the triac
will conduct until the next zero crossing. The average voltage is
proportional to the shaded area under the curve. The phase angle is
measured from the trigger point to the next zero crossing. This is also
referred to as the conduction angle or firing angle.

The phase angle is varied continuously and results in a variety of voltage
waveforms. This is illustrated in Figure 4. The phase angle control
software should be able to smoothly vary the phase angle to control the
average voltage applied to the load. Rotating the potentiometer should
increase the phase angle and use a larger portion of the sine wave.
AN1843

MOTOROLA 5

Application Note
Figure 3. Phase Angle Control

Figure 4. Continuously Variable Phase Angle

Θ

AN1843

6 MOTOROLA

Application Note
Triac Drive Waveform
This simple control method is sufficient for most universal motors and
other loads. More complex forms of phase angle control compensate for
the inductive load or provide sensorless speed control of a universal
motor. Closed loop speed control might use a PID (proportional integral
derivative) loop or fuzzy logic algorithm. A vacuum cleaner normally
does not require this level of complexity.

Triac Drive Waveform

The key task of the phase angle control software is to provide the trigger
pulse for the triac. The software must synchronize to the ac line voltage
and fire the triac at the desired angle. The design of the triac firing pulse
requires some basic knowledge of the operation of triacs.

Triacs are a latching bilateral switching device. When the triac is off, it
will block voltage in both directions. Once a triac has been fired, it will
latch in the on state and continue to conduct until the current decreases
to zero. The current for an ac load naturally crosses zero every half
cycle. Zero current turn off is in fact desirable and minimizes any
inductive kickback voltage. The triac will not latch on until after the
voltage has increased to above its rated latching voltage and the current
has increased to greater than its rated latching current. Once latched,
the triac will stay on until the current has decreased to below the rated
holding current. For these triac specifications, contact ON
Semiconductor at http://www.onsemi.com. The document order number
is MAC12SM/D.

Because the current passes through zero, the triac must be refired every
half cycle. The triac is fired by applying a trigger pulse to the gate
terminal. A negative gate current is desired for most triacs because the
trigger current is much higher using a positive trigger, in particular when
the load voltage is negative. The duration of the trigger pulse must be
long enough for the load current to reach the triac’s rated latching
current. Once the triac has latched, there is no need to continue to
supply trigger current.

The ac line voltage zero crossing is easily measured using a simple
circuit as shown in Figure 2. The load current is not so easily measured.
AN1843

MOTOROLA 7

Application Note
The MCU’s ADC requires a 0- to 5-V analog signal. Accurately
measuring the load current would require a very small value resistor and
an operational amplifier with a low input-offset voltage. Fortunately, the
load current is not really needed for most applications. Assume that the
load current will lag the voltage for most inductive loads. Vacuum
cleaner universal motors are highly inductive.

When driving an inductive load, the current will lag the voltage. The triac
does not turn off at zero-voltage crossing. It will continue to conduct for
some degrees until the current passes through zero. As the phase angle
is increased, at some point, the current will become continuous. The
triac will be fired just after zero current crossing. As the phase angle is
increased further, approaching 180°, the triac will be fired before current
zero crossing. If a short pulse is used at these angles, the triac will not
conduct over the rest of the cycle, as shown in Figure 5. The end result
would be that the motor suddenly slows when the speed is turned all the
way up.

Figure 5. Undesirable Turn Off Using Short Pulse

TRIAC
FIRED
EARLY

TRIAC
TURNS
OFF

SHORT
PULSE

VOLTAGE

CURRENT
AN1843

8 MOTOROLA

Application Note
Triac Drive Waveform
This potential problem can be remedied by extending the triac pulse as
the phase angle approaches 180°. Extending the triac pulse out to about
135° will accommodate inductive loads with a current phase angle up to
45°. This is suitable for most applications.

Extending the triac pulse is illustrated in Figure 6.

Figure 6. Triac Pulse at Different Phase Angles

Zero degrees and 180° also require special attention. At zero speed, the
desired output is zero voltage and the triac should not be fired. Firing the
triac at zero degrees would give full speed operation. If the desired
phase angle is too small, the triac should also not be fired. If the triac
pulse were to overlap the next voltage zero crossing, the voltage would
jump from 0 to 100 percent, resulting in an undesirable plugging of the
motor.

0°

10°

20°

30°

40°

50°

60°

70°

80°

90°

100°

110°

120°

130°

140°

150°

160°

170°

180°
AN1843

MOTOROLA 9

Application Note
However, small phase angles are needed in some applications. A
vacuum cleaner universal motor has a very low impedance when the
rotor is not moving. If the initial voltage is too high, a high current surge
will result. Experiments have shown that a minimum phase angle of
about 5° is low enough to provide smooth starting. This is essential to
minimize the startup surge current.

Because the current is lagging the voltage, full speed will occur before
180°. The last few degrees do not provide any variation in the motor
speed. It is not crucial to go all the way to the zero crossing. Some delay
between the zero crossing and triac firing is generally acceptable for
inductive loads.

The desired triac firing pattern is summarized in the Table 1.

Vacuum Software

Software has been developed for basic vacuum cleaner universal motor
control. This software was developed for the HC908KX8. The software
will run on any HC08 MCU that has at least a 2-channel timer and an
ADC. The HC908KX8 also features an internal oscillator and a small
16-pin package. The software is compatible with the internal oscillator or
other low-cost RC oscillators.

The 2-channel timer provides all the necessary timing control for the
software. One channel is used for an input capture to measure the ac
line zero crossing. The second channel is configured as an output
compare and is used to control the timing of the triac pulse.

Table 1. Triac Pulse Generation

Phase Angle Action

0° < φ< 5° None

5° < φ< 135° Short pulse at φ

135° φ< 175° Turn on at φ; turn off at 135°

φ > 135° Turn on ASAP; turn off at 135°
AN1843

10 MOTOROLA

Application Note
Vacuum Software
The software is written in C language. There are numerous advantages
to programming in C, even for small microcontrollers. For instance, the
HC08 has stack manipulation instructions that permit the C compiler to
effectively use local variables and minimize the RAM requirements. The
HC08 also provides very good code efficiency due to the short
instruction length. The HC908KX8 has eight Kbytes of FLASH memory,
more than enough for a small program. The phase angle control
software takes only about 1.2 Kbytes of program memory. Even a small
1.5-k part might be programmed in C if no complex math or library
functions are included. For this project, the HIWARE C compiler was
used to produce compact code comparable in code size to a hand-coded
assembler in many instances.

The software can be organized in several different ways. For example,
the code could be written as a straightforward procedure using polling.
When using polling, the software would test or poll the zero crossing pin
and wait for a zero crossing. This is the preferred method when using a
small HC05 MCU with limited peripherals. Using an HC08 with a
2-channel timer, the software can be written using interrupts. This
provides more time for the CPU to perform other functions.

Once the MCU has been initialized, all processing could be done in
interrupt service routines. This is a common method of organizing
software. The main procedure would end with a while(1) statement and
all processing is handled by the ISRs (interrupt service routine).

The zero crossing and triac pulses are time critical events and are best
handled by the hardware timers and serviced using interrupts. Other
functions are not time critical and could be performed anywhere in the
ac cycle.

The control loop functions such as reading the ADC, scaling, integrating,
and saturation are not time critical. These functions can be placed in the
main loop. The interrupt service routines will interrupt the calculations as
needed. A mechanism is then needed to synchronize these functions to
the ac line. A sync flag is used for this purpose. The main loop will wait
for the sync flag before updating the phase. The input capture routine will
set the sync flag, enabling the main loop functions. The main loop will
then update the phase information and clear the sync flag.
AN1843

MOTOROLA 11

Application Note
The resulting flowchart is shown in Figure 7. This is a combined
flowchart and state diagram.

Once the MCU is initialized, the main loop may be interrupted by the
input capture and the output compare interrupt service routines.

Figure 7. Software Flow Diagram

Input Capture

The input capture interrupt service routine is executed every time the
input capture timer channel detects an edge on the zero crossing input.
The input capture time is read from the timer channel. The average
period is calculated over two cycles. This value is used as criteria for

START

INITIALIZE

IS SYNC = 1?
NO

YES

SET SYNC = 0

INTERRUPT

INTERRUPT
InputCapture

SCHEDULES
TRIAC PULSE
SET SYNC = 1

OutputCompare

GENERATES
TRIAC
PULSE

ControlLoop
AN1843

12 MOTOROLA

Application Note
Output Compare
locking on the input line frequency. The minimum and maximum periods
are set up to lock from 30 Hz to 90 Hz. This will accommodate both 50-
and 60-Hz possibilities and up to 50 percent error in the clock frequency.
An LED is used for debugging to indicate when the software has locked
onto the line frequency.

The triac pulses are scheduled by the input capture interrupt service
routine.

• If the phase is less than 5°, the triac is not pulsed.

• If the phase is less than 135°, a short pulse is used.

• If the phase is greater than 135°, a long pulse is used.

The pulse function calculates the desired rising and falling edges for
each case. The long pulse function also checks the current time. If the
desired time has already expired, the rising edge will be scheduled as
soon as possible (ASAP). The input capture function sets up the output
compare to generate the rising edge. The time for the falling edge is
calculated and saved for use by the output compare function.

Output Compare

The output compare interrupt service routine is called for both rising and
falling edges of the triac pulse. The output compare fires the triac and
also turns off the gate pulse at the pre-determined time. If the output
compare was called as a result of the output compare being set high, the
low edge will be scheduled using the saved off time. Otherwise, the
output compare will be disabled.

This method of using the output compare to schedule subsequent output
compares is extremely powerful. Using software, the output compare
can be used to generate practically any desired series of pulses. Once
initiated, the output compare can generate these pulses autonomously.
AN1843

MOTOROLA 13

Application Note
Control Loop

The control loop function provides the basic motor control features.

First, the potentiometer is read using the ADC. This takes some time and
program execution will wait until the conversion complete flag has been
set. The analog-to-digital reading is from 0 to 255. The ADC also has
some uncertainty. The bottom and top range of the potentiometer setting
should provide zero and full-speed operation. Saturation is provided to
compensate for this requirement.

The ADC value is scaled to obtain the desired 0° to 180° range. The
ADC reading is multiplied by 180, then divided by 255. The HC08 is
capable of performing an 8 by 8 multiply and a 16 by 8 divide efficiently.
Inline assembler functions are used to access the HC08 math functions
directly, resulting in fast and efficient code. Most ANSI C compilers
(American Standard Code for Information Exchange) will promote both
operands to 16-bit integers before performing a multiply or divide. This
results in inefficient code when using 8-bit unsigned char variables.

An integral controller is used to provide soft-starting and a smooth ramp
in the motor speed. Slowly, the controller will increment the output phase
until it reaches the desired speed setting. This will limit the motor current
during starting. When the desired speed is modified by changing the
potentiometer setting, the speed will smoothly ramp to the new setting.

The integrate function provides a simple integral controller. The
integrator output is stored in a static variable called PhaseI. This variable
is incremented or decremented depending on the input variable. The
integrator update rate determines how fast the integrator will ramp the
output.

The saturate function compensates for the characteristics of the
potentiometer and the desired output phase. If the input is less than 5°,
the output will be rounded down to 0°. If the input is greater than 175°, it
will be rounded up to 180°. The saturation is placed after the integrator
to provide saturation to the output phase.
AN1843

14 MOTOROLA

Application Note
Interrupt Timing
Interrupt Timing

The input capture always occurs at the zero crossing. Normally, the
MCU should be idle at this time. The timing of the output compare
interrupt service routine is variable and depends on the phase angle and
the width of the triac pulse. If the phase angle is small, a short pulse is
used, and the output compare function is called twice in rapid
succession. The triac pulse must be large enough to account for the
interrupt latency of the output compare function.

If the phase angle is larger than 135°, the output compare will be called
first at the phase angle and then a second time at 135°. There is an idle
period between the output compare interrupts.

The control loop function is normally executed after the input capture
function. However, when the triac phase angle aproaches its maximum
of 180°, the output compare interrupt service routine will pre-empt the
control loop. The time of the interrupt service routines is shown in
Figure 8.

The MCU is idle for most of the ac cycle. The time critical operations
occur immediately after zero crossing. The execution time of the input
capture routine will determine the maximum phase angle. A maximum
phase angle of 175° is perfectly acceptable for an inductive load like the
vacuum cleaner motor.
AN1843

MOTOROLA 15

Application Note
Figure 8. CPU Process Timing

Results

The software was first tested using a modular microcontroller
development system (MMDS), bus state analyzer, pulse generator, and
digital oscilloscope. The pulse generator was used to simulate the ac
line and test the lock range of the software. The digital storage scope
was used to examine the triac pulse waveform in relation to the pulse
generator. The first few pulses are critical to the startup operation. It is
important that there be no errant pulses. The pulses also should change
smoothly without any glitches.

Once fully satisfied with the operation of the software, a FLASH device
was programmed and inserted in the socket. The test board was
connected to a vacuum cleaner motor and an ac variac and safety
isolation transformer. Bringing the ac line up slowly will minimize the

120°

150°

165°

175°

135°

inputCapture

controlLoop

outputCompare

idle
AN1843

16 MOTOROLA

Application Note
Results
chance of catastrophic failures due to wiring or software errors. Later,
the system was tested for hard-starts using an on-off switch directly off
a stiff ac source.

After debugging, the software provided good results. A startup delay was
added to prevent errant pulses during startup. The integrator rate was
adjusted to provide a ramp time of about three seconds from zero to full
speed. This provided a smooth soft-start and a good feel to the speed
control.

The startup current of the vacuum cleaner motor was measured using a
simple on-off switch shown in Figure 9. The peak current was about
40 amps. The startup current was measured using the same motor with
the electronic soft-start shown in Figure 10. The peak current was less
than 20 amps. The performance is better than the numbers indicate. In
fact, the MCU controlled motor did not exhibit a startup surge at all. The
peak current occurs when the motor reaches maximum speed.

Figure 9. Hard Start Using an On-Off Switch
AN1843

MOTOROLA 17

Application Note
Figure 10. Soft Start Using MCU with Software

The soft-start feature effectively eliminates any startup surge. The
software provides robust control of a universal motor over a wide range
of conditions. The software is compact, efficient, and suitable for any
HC08 microcontroller.
AN1843

18 MOTOROLA

Application Note
Conclusions
 Conclusions

A cost-effective microprocessor-based system has been developed to
provide phase angle control for vacuum cleaners. Software has been
developed to provide phase angle control with a soft-start feature. This
solution has proven to dramatically reduce the startup current. The
reduction in startup current is essential to meet increasingly stringent
power quality requirements in Europe.

The basic requirements on phase angle control and triac drive have
been discussed. The software provides optimum pulse generation for
driving inductive loads. The pulse width is lengthened for large phase
angles.

The 8-bit microcontroller chosen, the Motorola HC908KX8, provides all
of the required features in a small 16-pin package. This internal oscillator
eliminates the need for an external crystal or RC oscillator. This device
is well suited for vacuum cleaners and other small appliances.

The basic software coded in C, when compiled, only uses about
1200 bytes of program memory. This leaves about 7000 bytes of
program memory available for additional functions. The C code listing is
included in this application note and follows the main text. The interrupt-
driven software uses less than 10 percent of the total available CPU
(central processor unit) load running at 4 MHz. This frees the CPU for
other tasks. Additional functions can be implemented in the foreground
with good performance virtually unimpeded by interrupt processing. The
software is flexible and reusable for a variety of phase angle control
applications.
AN1843

MOTOROLA 19

Application Note
Vacuum Cleaner Reference Design Code

/***
 Copyright (c) Motorola 1999
File Name : vacuum.c

Engineer : Ken Berringer

Location : EKB

Date Created : 1 Dec 1999

Current Revision : 1.0

Notes:

 This is the code for the vacuum cleaner reference design. The code
 includes detailed comments before each function. The code is
 organized in a single C file. There are two included header files,
 one for the standard HC08KX8 register definitions "hc08kx6.h" and
 a second application specific header file for the vacuum code
 "vacuum.h". All of the function prototypes and constants are in
 the vacuum.h header file.

 Most of the code is in high level C code. Hardware driver
 functions are in low level C or inline assembler.

***/

#include "hc08kx6.h"
#include "vacuum.h"

/**

global variables

 The following variables are defined as global. These are used and
 modified by both the main loop and the interrupt service routines.
 There are manually initialized and don't depend on the startup
 code.

**/

unsigned char Phase;
unsigned int Degrees;
unsigned char Sync;
unsigned int OffTime;
AN1843

20 MOTOROLA

Application Note
Vacuum Cleaner Reference Design Code
/**

Global Variables (could be static)

 The following variables are defined as global. They are only used
 in specific functions and could also be declared as static. Global
 variables are more useful for debugging. The contents of global
 variables are listed in the debugger, static variables are not
 listed until the function is entered. These variables are also
 initialized manually by the init function.

**/

unsigned char Update;
unsigned char PhaseI;
unsigned int Period[2];
unsigned char Cycle;
unsigned int Told;
signed char ModError;

/**

function : main()

parameters : void

returns : void

type : main

Description:
 The main code is very simple. It initializes everything, then
 calls a startup delay. The endless while(1) loop will wait until
 after the input capture sets the sync flag. Then it update the
 phase angle and reset the flag.

***/
void main (void)
{
 init();
 startupDelay(8);
 while(1)
 {
 while(!Sync);
 Phase = controlLoop();
 Sync=0;
 }
}

/**

function : init()

parameters : void

returns : void

type : normal
AN1843

MOTOROLA 21

Application Note
Description:
 The init function clears all global variables explicitly. This
 allows one to eliminate the startup code. It then initializes the
 timer, enables the input capture, and enables interrupts.

***/

void init (void)
{
 initMCU();
 unsigned char Phase=0;
 Phase=0;
 Degrees=0;
 Told=0;
 Period[0]=0;
 Period[1]=0;
 Cycle=0;
 Update=0;
 ModError = 0;
 Sync=0;
 OffTime=0;
 initTimer();
 enableIC();
 ENABLE_INTERUPTS;
}

/**

function : startupDelay()

parameters : unsigned char i - delay count, zero crossings

returns : void

type : normal re-entrant

Description:
 The startupDelay() function is provided to ensure that the
 everything is stable before starting the motor. This prevents
 errant pulses which might result in a high surge currents. The
 Phase angle will remain at zero until the startupDelay is
 completed.

***/
void startupDelay(unsigned char i)
{
 unsigned char j;

 for (j=0;j<i;j++)
 {
 while(!Sync);
 Sync=0;
 }
}

/**

function : controlLoop()

parameters : void
AN1843

22 MOTOROLA

Application Note
Vacuum Cleaner Reference Design Code
returns : void

type : normal re-entrant

Description:
 The controlLoop function is executed after each zero crossing.
 This function reads the pot updates the phase angle. Scaling
 integration and saturation are implemented in this function.
 A more complex PID loop or fuzzy logic block could also be
 implemented here. The function is executed with interrupts
 enabled and might be interrupted by the output compare function.

***/

unsigned char controlLoop(void)
{
 unsigned char x;
 x = readPot();
 x = scale (x);
 x = integrate(x);
 x = saturate(x);
 return x;
}

/**

function : scale()

parameters : unsigned char x - input from the A/D

returns : unsigned char x - scaled output

type : normal re-entrant

Description:

 The scale function will scale the A/D measurement (0-255) to
 degrees (0-180). The number is first multiplied by 180, then
 divided by 255. The mul() and div() functions are optimized for
 HC08 8-bit math.

***/
unsigned char scale(unsigned char x)
{
 unsigned int y;

 y = mul(180,x);
 x = div(y,255);
 return x;
}

/**

function : integrate()

parameters : unsigned char x - input
AN1843

MOTOROLA 23

Application Note
returns : unsigned char x - output

type : normal re-entrant

Description:

 The integrate function provides a simple integral controller to
 provide a smooth ramp to the phase output. The UPDATE_RATE sets
 the rate at which the integrator output is incremented. Update and
 PhaseI could be global or static.

***/

unsigned char integrate(unsigned char x)
{

 Update++;

 if(Update==UPDATE_RATE)
 {
 Update = 0;
 if (x > PhaseI)
 {
 PhaseI++;
 }
 else if (x < PhaseI)
 {
 PhaseI--;
 }
 }

 return PhaseI;
}

/**

function : saturate()

parameters : unsigned char x - input

returns : unsigned char x - output

type : normal re-entrant

Description:

 This function provides saturation for the output phase. If the
 phase is greater than 175 or less than 5, it is rounded up or down
 respectively.

***/

unsigned char saturate(unsigned char x)
{
 if (x < 5)
 {
 x = 0;
 }
 else if (x > 175)
AN1843

24 MOTOROLA

Application Note
Vacuum Cleaner Reference Design Code
 {
 x = 180;
 }
 return x;
}

/**

function : inputCapture()

parameters : void

returns : void

type : interrupt service routine

Description:

 This function is called every time a zero crossing occurs. It
 reads the input capture register and calculates the average
 period. It the average period is within acceptable range, it will
 pulse the triac. The Sync flag is then set to allow the phase to
 be updated and the input capture is reset. If the average period
 is not within the acceptable value the input capture will be
 ignored.

***/
void debugIC(void);

#pragma TRAP_PROC
void inputCapture(void)
{
 unsigned int t, pAvg;
 t = readIC();
 pAvg=calcpAvg(t);
 if (pAvg > MIN_PER && pAvg < MAX_PER)
 {
 updateDegrees();
 pulseTriac(t);
 Sync=1;
 LED=LIT;
 }
 else
 {
 LED=DIM;
 }
 resetIC();
}

/**

function : calcpAvg()

parameters : unsigned int t - input capture time

returns : unsigned int pAvg - average period

type : normal (called by ISR)
AN1843

MOTOROLA 25

Application Note
Description:

 This function calculates the average period over two cycles.
 The period is saved for the last two periods in an array.
 The array index Cycle is flipped after storing the current period.
 It will take two good input captures before the average period
 can be accurately calculated.

***/

unsigned int calcpAvg(unsigned int t)
{
 unsigned int avg;
 Period[Cycle] = t - Told;
 Told = t;
 Cycle = (Cycle + 1) & 0x01;
 avg = (Period[0] + Period[1])>>1;
 return avg;
}

/**

function : updateDegrees()

parameters : void

returns : void

type : normal (called by ISR)

Description:

 This function updates the base unit Degrees. The function
 is called after flipping the Cycle index. Thus, the value
 for degrees will be calculated using the previous period.
 This compensates for any waveform asymmetry. It uses a hardware
 divide function div() to avoid the slow ANSI c implementation.

***/

void updateDegrees(void)
{
 Degrees = div(Period[Cycle],180);
}

/**

function : pulseTriac()

parameters : unsigned int t - input capture time

returns : void

type : normal (called by ISR)
AN1843

26 MOTOROLA

Application Note
Vacuum Cleaner Reference Design Code
Description:

 This function will schedule the triac output pulses.
 There are four different cases. The output compares
 are scheduled differently depending on the output
 Phase.

***/

void pulseTriac(unsigned int t)
{
 if (Phase <5)
 {
 noPulse();
 }
 else if (Phase <135)
 {
 shortPulse(t);
 }
 else
 {
 longPulse(t);
 }
}

/**

function : noPulse()

parameters : void

returns : void

type : normal (called by ISR)

Description:

 This function does not pulse the output triac.

***/

void noPulse (void)
{
}

/**

function : shortPulse()

parameters : unsigned int t - input capture time

returns : void

type : normal (called by ISR)
AN1843

MOTOROLA 27

Application Note
Description:

 This function generates a short pulse at the desired
 phase angle. the onTime and OffTime are calculated.
 The output compare is initializes to set the pin high
 on the next match. The OffTime is a global variable.
 The outputCompare will use the OffTime to set
 up the next edge.

***/

void shortPulse (unsigned int t)
{
 unsigned int onTime;
 onTime = t + mul((180-Phase),Degrees);
 OffTime = onTime + mul(2,Degrees);
 scheduleHigh(onTime);
}

/**

function : longPulse()

parameters : unsigned int t - input capture time

returns : void

type : normal (called by ISR)

Description:

 This function generates a long pulse at the desired phase angle.
 The OffTime is extended out to 45 degrees. This will ensure the
 triac will not turn off prematurely, even if the current is lagging
 by up to 45 degrees.

***/

void longPulse (unsigned int t)
{
 unsigned int onTime, asap;
 onTime = t + mul((180-Phase),Degrees);
 OffTime = t + mul(47,Degrees);
 asap = readTCNT() + LATENCY;
 if (onTime>asap)
 {
 scheduleHigh(onTime);
 }
 else
 {
 scheduleHigh(asap);
 }
}

/**

function : outputCompare()
AN1843

28 MOTOROLA

Application Note
Vacuum Cleaner Reference Design Code
parameters : void

returns : void

type : Interupt Service Routine

Description:

 This function is called on an output compare. If the output compare
 was set to last set the OC high then the falling edge is scheduled
 using OffTime. Otherwise the output compare function is disabled.

***/
#pragma TRAP_PROC
void outputCompare (void)
{
 if (OC_WAS_SET_HIGH)
 {
 scheduleLow(OffTime);
 }
 else
 {
 disableOC();
 }
}

/**

function : initMCU()

parameters : void

returns : void

type : low level c

description:

 This function initializes the MCU config registers, clock, ports,
 and ADC.

***/

void initMCU(void)

{
 unsigned char i,j;

 CONFIG2=0x08; /*External Clock on pin 6, Pin 7 GP I/O, rev0.7*/
CONFIG1=0x31; /*LVI reset disabled, LVI power disabled, COP disabled*/

 ICGMR = 0x15; /*init ICGMR to default setting*/

 for(i=255;i!=0;i--) /*try 256 times*/
 {
 ICGCR = 0x13; /*switch to ext clock*/
 for(j=255;j!=0;j--); /*wait*/
 if(ICGCR==0x13)break; /*test*/
 }

 ADCLK=0x60; /*xclk / 8 for 8 MHz xtal*/
AN1843

MOTOROLA 29

Application Note
 PTA3=0; /*triac is off*/
 DDRA = 0x08; /*PTA2/TCH0 is IC, PTA3/TACH1 is output */
 PTA3=0; /*triac is off*/

 PTB4=1; /* LED off (high) */
 DDRB = 0x10; /* PTB4 LED output */
 PTB4=1; /* LED off (high) */
}

/**

function : initTimer()

parameters : void

returns : void

type : low level c

description:

 This function initializes the timer

***/

void initTimer(void)
{
 TSC = 0x01; /*TIM CLK = bus clock/2 (2.4576 MHz/2)*/
 TMODH = 0xff; /*set modulus register*/
 TMODL = 0xff; /*set modulus register*/
 TSC1= PRESET_LOW;

}

/**

function : readPot()

parameters : void

returns : unsigned char ADR

type : low level c

description:

 This function reads the ADC ch3 and returns the value. It uses polling
 and will wait until a conversion is complete.

***/
unsigned char readPot(void)
{
 ADSCR=0x03; /* select channel 3 */
 while((ADSCR & 0x80)==0x00); /* wait for COCO bit */
 return (ADR);
}

/**
AN1843

30 MOTOROLA

Application Note
Vacuum Cleaner Reference Design Code
function : scheduleHigh()

parameters : unsigned int i - set high time

returns : void

type : inline assembler

description:

 This function initializes the output compare to set the pin high
 at the specified time. It uses inline assembler to ensure the
 timer control register is accessed properly.

***/

void scheduleHigh(unsigned int i)
{
 asm
 {
 lda TSC1_;
 ora #0x4c; /*set CH1IE, ELSxA, ELSxB*/
 and #0x7f; /*clear CH1F*/
 sta TSC1_;
 lda i:0;
 sta TCH1H_;
 lda i:1;
 sta TCH1L_;
 }
}

/**
function : scheduleLow()

parameters : unsigned int i - set low time

returns : void

type : inline assembler

description:

 This function initialize the output compare to set the pin low
 at the specified time. It uses inline assembler to ensure the
 timer control register is accessed properly.

***/

void scheduleLow(unsigned int i)
{
 asm
 {
 lda TSC1_;
 ora #0x48; /* set CH1IE, set ELSxB*/
 and #0x7b; /* clear CH1F, clear ELSxA, */
 sta TSC1_;
 lda i:0;
 sta TCH1H_;
 lda i:1;
 sta TCH1L_;
 }
AN1843

MOTOROLA 31

Application Note
}

/**

function : disableOC()

parameters : void

returns : void

type : inline assembler

description:

 This function will disable the timer output compare function. It will
 disable further interupts and disable output compares by reading
 the high byte only.

***/

void disableOC(void)
{
 asm
 {
 lda TSC1_;
 and #0xb3; /clear CHIE, ELSA, ELSB*/
 sta TSC1_;
 lda TCH1H_;
 }
}

/**

function : enableIC()

parameters : void

returns : void

type : low level c

description:

 This function will enable the timer input capture function. It uses a three
 step process to set up the timer status and control register.

***/

void enableIC(void)
{
 TSC0 = 0x04; /* input capture mode, rising edges */
 TSC0 &= ~BIT7; /*clear flag*/
 TSC0 |= BIT6; /*enable ints*/
}

/**

function : resetIC()
AN1843

32 MOTOROLA

Application Note
Vacuum Cleaner Reference Design Code
parameters : void

returns : void

type : low level c and assembler

description:

 This function will reset the timer input capture function. It will
 access the TSCO, complement the edge trigger bits, and clear the flag.

***/
void resetIC()
{
 asm lda TSC0_; /*access TSC0*/
 TSC0 ^= 0x0c; /*flip edge*/
 TSC0 &= ~BIT7; /*clear flag*/
}

/**

function : readIC()

parameters : void

returns : unsigned int time (in X:A)

type : inline assembler, no entry or exit

description:

 This function read the input capture time from the timer channel.
 The entire function is in assembler. It is necessary to read the
 timer channels in the specified order. The function returns the
 sixteen bit value.

 This function depends on the compiler returning the value in the
 X:A register. It will generate return value expected warning
 because the return value is not specified in C syntax.

 This function could also be coded as below. This version will not
 generate a warning and might work on other compilers. However, it
 will triple the code size of this function.

 unsigned int readIC(void)
 {
 unsigned int m;
 asm {
 ldx TCH0H_;
 sta m:1;
 lda TCH0L_;
 sta m:0;
 }
 return m;
 }

***/
#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME
AN1843

MOTOROLA 33

Application Note
unsigned int readIC(void)
{
 asm {
 ldx TCH0H_;
 lda TCH0L_;
 rts;
 }
}

/**

function : readTCNT()

parameters : void

returns : unsigned int time (in X:A)

type : inline assembler, no entry or exit

description:

 This function read the time from the timer counter.
 The entire function is in assembler. It is necessary to read the
 timer channels in the specified order. The function returns the
 sixteen bit value.

 This function depends on the compiler returning the value in the
 X:A register. It will generate return value expected warning
 because the return value is not specified in C syntax.

***/
#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME
unsigned int readTCNT(void)
{
 asm {
 ldx TCNTH_;
 lda TCNTL_;
 rts;
 }
}

/**

function : mul()

parameters : unsigned char x,y (in X and A)

returns : unsigned int z (in X:A)

type : inline assembler, no entry or exit

description:
 This function will multiply two 8 bit numbers together and return
 a sixteen bit value. It is coded entirely in assembler and is very
 efficient (two bytes!).
AN1843

34 MOTOROLA

Application Note
Vacuum Cleaner Reference Design Code
 This function is used to provide an efficient 8 x 8 multiply. An
 ANSI standard C compiler would normally promote two unsigned char
 to unsigned ints before multiplication, resulting in inefficient
 code.

***/
#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME
unsigned int mul(unsigned char x, unsigned char y)
{
 asm {
 mul;
 rts;
 }
}
/**

function : div()

parameters : unsigned int dvnd, unsigned char dvsr

returns : unsigned char dvsr (used for quotient)

type : inline assembler, no entry or exit

description:
 This function provides a hardware 16x8 divide function.
 Standard ANSI c will promote everything to a int before
 dividing. This is much faster.

***/
unsigned char div(unsigned int dvnd, unsigned char dvsr)
{
 asm {
 lda dvnd:0;
 psha;
 pulh;
 lda dvnd:1;
 ldx dvsr;
 div;
 sta dvsr;
 }
 return dvsr;
}
/**

function : shift8()

parameters : unsigned int x (in X:A)

returns : unsigned int z (in X:A)

type : inline assembler, no entry or exit

description:
 This function will divide a 16 bit number by 256 and return an 8
 bit number. It is coded entirely in assembler and is very efficient
 (3 bytes!).
AN1843

MOTOROLA 35

Application Note
 This function is used to provide an efficient byte shift. The
 Hiware compiler will perform a sixteen bit shift 8 times.

***/
#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME
unsigned char shift8(unsigned int x)
{
 asm {
 txa;
 clrx;
 rts;
 }
}

/**

function : unusedVector()

parameters : void

returns : void

type : interrupt service routine

description:
 This function provides a mechanism for unusedVectors for the HC08.

***/

#pragma TRAP_PROC
void unusedVector(void)
{
}

 /**
 Copyright (c) Motorola 1999
File Name : vacuum.h

Engineer : Ken Berringer

Location : EKB

Date Created : 1 Dec 1999

Current Revision : 1.0

Notes :

 This header file contains constant definitions, macro definitions,
 and function prototypes for the vacuum software.

constant definitions

***/
AN1843

36 MOTOROLA

Application Note
Vacuum Cleaner Reference Design Code
#define ON 1
#define OFF 0
#define LED PTB4
#define LIT 0
#define DIM 1
#define MAX_PER (unsigned int)(300000/30)
#define MIN_PER (unsigned int)(300000/90)
#define UPDATE_RATE 2
#define LATENCY 48
#define UPPER_LIMIT 105
#define LOWER_LIMIT 75
#define NOTCH (UPPER_LIMIT - LOWER_LIMIT)
/**

macro definitions

***/

#define OC_WAS_SET_HIGH (TSC1 & 0x0c)==0x0c
#define PRESET_LOW 0x10
#define PRESET_HIGH 0x00
#define SET_ON_OC 0x1c
#define CLEAR_ON_OC 0x18
#define SET_CHIE asm BSET 6,TSC1_
#define CLR_CHIE asm BCLR 6,TSC1_
#define ENABLE_INTERUPTS asm cli

/**

KX8 register defs

 These definitions are used for the inline assembler functions.

***/

#define TCNTH_ 0x21
#define TCNTL_ 0x22
#define TSC0_ 0x25
#define TCH0H_ 0x26
#define TCH0L_ 0x27
#define TSC1_ 0x28
#define TCH1H_ 0x29
#define TCH1L_ 0x2A

/**

function prototypes

***/
void main(void);
void init(void);
void startupDelay(unsigned char);
unsigned char controlLoop(void);
unsigned char scale(unsigned char);
unsigned char integrate(unsigned char);
unsigned char modulate(unsigned char);
unsigned char saturate(unsigned char);
void inputCapture(void);
void updateDegrees(void);
unsigned int calcpAvg(unsigned int);
AN1843

MOTOROLA 37

Application Note
void pulseTriac(unsigned int);
void noPulse(void);
void shortPulse(unsigned int);
void longPulse(unsigned int);
void maxPulse(unsigned int);
void outputCompare(void);
void initMCU(void);
void initTimer(void);
unsigned char readPot(void);
void enableIC(void);
unsigned int readIC(void);
void resetIC(void);
void scheduleHigh(unsigned int i);
void scheduleLow(unsigned int i);
void disableOC(void);
unsigned int readTCNT(void);
unsigned int mul(unsigned char, unsigned char);
unsigned char shift8(unsigned int);
unsigned char div(unsigned int, unsigned char);

/**/
AN1843

38 MOTOROLA

Application Note
Vacuum Cleaner Reference Design Code
AN1843

MOTOROLA 39

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
852-26668334

Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors/
AN1843/D

© Motorola, Inc., 2000

	Introduction
	System Design
	Phase Angle Control Basics
	Triac Drive Waveform
	Vacuum Software
	Input Capture
	Output Compare
	Control Loop
	Interrupt Timing
	Results
	Conclusions
	Vacuum Cleaner Reference Design Code

