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Preface 

Solid-state electronics has been a familiar technology now for about a quarter century. 
Yet some circuit ideas, like the transresistance method of finding amplifier gain or 
identifying resonances above an amplifier's bandwidth, are so simple and intuitively 
appealing that I have been puzzled as to why they are not generally better known in 
the industry. Fortunately, I began encountering them in my earlier days at Tektronix, 
but could not find them in engineering textbooks. In writing this book, very few 
original circuit ideas are presented. Somewhere in the literature, they can be found in 
some form. My motivation has been to present them from a perspective from which 
they can be remembered and applied — even quantitatively — with little effort. 

The behavior of most circuits is determined most easily by computer simulation. 
What circuit simulators do not provide is knowledge of what to compute. The creative 
aspect of circuit design and analysis must be performed by the circuit designer, and 
this aspect of design is emphasized here. Two kinds of reasoning in electronics seem 
to be most closely related to creative circuits intuition: 

1. Geometric reasoning — a kind of visual or graphic reasoning that applies to 
the topology (component interconnection) of circuit diagrams and to graphs (such as 
reactance charts) 

2. Causal reasoning — the kind of reasoning that most appeals to our sense of 
understanding of mechanisms; when we can trace a sequence of causes for circuit 
behavior, we feel we understand how the circuit works 

These two kinds of reasoning combine when we try to understand a circuit by 
causally thinking our way through the circuit diagram. Answers obtained by inspec
tion lie at the root of the quest. 
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It is possible to write down accurate design equations (based on the given circuit 
representations) by inspection of the circuit topology. Usually a circuit can be ana
lyzed several ways, but most approaches will not provide a simple insight into how 
the circuit works or give a perspective that can be applied generally to circuits of its 
class. Here, I attempt to make explicit these simple but powerful ways of envisioning 
analog circuits. 

Analog circuit design is a very broad discipline. This book recapitulates some of 
my experience as an instrument design engineer and research engineer. It emphasizes 
instrumentation and control circuits. It focuses less on narrow-band, communications, 
opto-electronic, power, and, of course, purely digital circuits. Although some special-
function circuits are investigated, the objective is to provide a foundation in general 
techniques and a familiarity with some particular circuits. 

To this end, the book divides conceptually into three parts. The first part, Chap
ters 1-4, focuses on the transresistance method and feedback concepts. Topological 
analysis is emphasized by restriction to low-frequency ac (quasistatic) circuits. Dy
namic response is then emphasized in Chapters 5-8, covering frequency compensa
tion and frequency-dependent design. Building upon the previous two sections, 
Chapters 9-12 investigate precision and high-performance amplifier techniques fol
lowed by a wide variety of mainly nonlinear, commonly used signal generating and 
processing circuits. Finally, there are sampled-data circuits — namely, D/A, A/D, 
S/H, and switched-capacitor circuits. 

This book is somewhat unusual in the following ways. Many equations may be 
seen while thumbing through it. Engineers, scientists, and technicians who actually 
practice circuit design are not always proficient mathematicians. Consequently, I have 
put in more intermediate steps and more circuit-oriented interpretation of mathemat
ical results than is typically found in circuits literature. The emphasis is on intuitively 
appealing ideas, quantified by mathematical development. 

Secondly, electronics terminology contains many synonyms or associated expres
sions, and I have parenthetically added them here and there so that the reader who is 
familiar with one term can associate it with the term I use instead. Sometimes 
synonyms are exchanged frequently, as they are outside of books. 

Finally, the level of sophistication of concepts varies. For example, the first four 
chapters are appropriate for an undergraduate circuits course. But I have encountered 
enough engineers in industry who do not know these concepts that it is worth their 
inclusion. After twenty years of electronics, I do not put myself beyond discovery of 
those new elemental insights into circuits that delighted me in my teenage years. And 
it is my hope that something in this book will also fascinate you. 

Dennis L. Feucht 
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C H A P T E R î 

Introduction 

1.1 The Organization of Electronics 

This book is about the design of analog circuits and systems. Electronic systems 
can be described by means of a multilevel hierarchy of concepts. At the most 
concrete level are the physical circuits themselves, usually represented by a 
schematic diagram or netlist; these are structural descriptions of the circuit. 
From these, various electrical (and thermal or mechanical) behaviors are 
deduced through a causal theory of circuits; when applied to a circuit, a causal 
description of the circuit results. At the next (more abstract) level of description, 
these causes are explained in terms of a functional (or teleological) theory 
that leads to a functional description. So we have three levels of description 
in electronics: 

• A structural description of a circuit describes what it is. 
• A causal description of a circuit describes what it does. 
• A functional description of a circuit describes what it is for. 

Each of these descriptions may be complex enough to require hierarchical 
organization. For example, a structural description of a system consisting of 
hundreds of parts is too unwieldy to deal with directly. Systems are often 
organized into subsystems, usually described by a block diagram. These subsys
tems consist of circuits, which in turn are composed of components. It is common 
for electronic systems to be structurally described by this kind of four-level 
hierarchy. 

Structural descriptions are often presented in a way that makes the causal 
and functional descriptions explicit. Block diagrams not only show which parts 
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are grouped together but also represent various subsystem functions that help 
to show the overall function of the system. 

1.2 An Analysis of Circuit Analyses 

Circuit analyses can be categorized (Fig. 1.1) as static (or dc) and dynamic 
(or ac). Static analysis involves constant or parametric circuit quantities around 
which variations occur. These fixed quantities define the circuit operating point 
or bias. If no variations are present, the state of the circuit is quiescent. 

Dynamic analysis reveals circuit behavior in terms of changing (dynamic) 
quantities. Behavioral descriptions are given in either the time domain or the 
frequency domain. Circuits that are not frequency-dependent can be analyzed 
entirely using real numbers; this is called low-frequency or (from thermody
namics usage) quasistatic analysis. Complex analysis includes the effects of 
reactive components (inductors and capacitors) and characterizes circuit 
behavior in terms of a complex frequency s. In the complex-frequency domain, 
both time and frequency responses are characterized. 

These kinds of analyses can be done on linearized functions (around an 
operating point), which is called incremental or small-signal analysis. More 

Circuit 
analysis 

Low-frequency 
(quasistatic) 

(real) 

Complex 

Frequency-domain 

Large-signal 
(nonlinear) 

Small-signal 
(incremental) 

Total-variable 

FIG. 1.1 Categories of circuit analysis. Synonyms are in parentheses with dominant expression 
first. Total-variable analysis combines a dc operating point with a linearized incremental analysis. 

2 / 1. Introduction 



1.3 The Nature of Design / 3 

generally, analysis of nonlinear circuits involves total-variable or large-signal 
analysis. 

This book uses common terminology and symbols found elsewhere in 
circuits literature: 

• Static (dc) quantities are in uppercase with (optional) uppercase sub
scripts (such as Vs). 

• Dynamic (small-signal ac) quantities are in lowercase with (optional) 
lowercase subscripts (such as vhe). 

• Total-variable (dc + small-signal ac) quantities are in lowercase with 
(optional) uppercase subscripts (such as vBE). 

• Complex (frequency-domain) quantities are in uppercase with lowercase 
subscripts, if any (such as Vs). 

Occasionally, there are exceptions for well-established usage (such as ß0 for 
static transistor current gain). 

1.3 The Nature of Design 

Design is a kind of creative activity that begins with a definition of the problem 
to be solved or specification of the device to be built. Solving the problem or 
specifying the device in enough detail to build it is the goal of the designer. 
Usually, more than one alternative solution or design is possible. Sometimes 
these alternatives are already known, and the problem consists mainly of 
adapting a known general solution to a particular application. This is "standard 
engineering" practice. Other problems have no known solution and require a 
search or novel adaptation of existing solutions to similar problems. This is 
"state of the art" engineering and is sometimes called "research and develop
ment" or R&D. 

When a solution is found, it is then refined and specified for use. If the 
problem must be solved many times, the device that solves the problem is 
manufactured. The process of creating devices and specifying them for 
manufacture is often called new product introduction in the electronics industry. 
Typically it consists of the following steps or phases: 

1. Concept phase: Clarify the idea for a new product with a one-page 
description of it and a quickly built functional prototype device (or model) 
that demonstrates the product idea. This phase is completed after product or 
project approval. 

2. Design phase: Specify the performance parameters of the new product 
and design the product more carefully to meet the specifications. Build a few 
models of this design, characterize their performance by testing, and refine 
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the design to meet specifications where performance is inadequate. This phase 
is completed upon design completion. 

3. Evaluation phase: Evaluate the design more extensively by building 
several units of the product with the materials and processes that will be used 
in manufacturing, and then testing these units rigorously in the laboratory for 
performance under all anticipated operating conditions. Design refinement 
proceeds until the design meets the specification or until the models cannot 
be modified further and continue to embody the design. This phase is completed 
at prototype release. 

4. Verification phase: Verify that the design meets performance and 
reliability specifications under the conditions of its intended (end) use. (This 
is called field testing.) Build a statistically significant number of units and 
subject them to extensive use. Refinements to the design in this phase should 
be minimal and testing maximal. This phase is completed when all documenta
tion that specifies the design for manufacture is acceptable at engineering 
release (or, to manufacturing personnel, manufacturing acceptance). 

After this, the manufacture of a batch of product units using the design 
documentation (a pilot or preproduction run) is carried out by manufacturing 
personnel to test the documented design for production flaws. Engineers may 
be required to correct these flaws. 

Analog circuit design consists mostly of analysis. The performance con
straints of circuits are uncovered by their analysis, and design is largely a 
matter of achieving a desired function within given constraints. Therefore, a 
significant aspect of design skill is the ability to understand how circuit 
constraints affect desired function. Some analytic techniques, especially those 
best executed by computer, give the designer little insight into the relationship 
between circuit structure and function. The techniques developed here are 
intended to provide the kind of insight into circuit function that readily leads 
to construction of mathematical descriptions of its constraints. 

Besides mastering analytic methods, a designer must become familiar with 
a large number of circuits. 

Finally, a designer must understand something of the activity of design 
itself. Software engineering is more explicit about this than electronics 
engineering. Electronic designs are performed top-down, using the four-level 
hierarchy in Section 1.1. In R&D projects, not enough is known about the 
detailed levels to proceed purely top-down, so experimentation with details 
is necessary. When the details are adequately understood, the systems-level 
design can then be clarified. Complexity is handled in electronics (as in software 
design) by use of modular functions or subsystems. (In electronics, a module 
is a physical, not only functional, distinct subsystem.) An entire subsystem 
can be defined purely in terms of its interactions with other subsystems. Instead 
of passing objects, parameters, or pointers to data structures, one must make 
electrical connections between input and output ports. Just as parameter 
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passing must be done according to a protocol, electrical connections between 
modules must take into account impedance matching, dynamic range, and 
loading effects. 

Reference 

Johan de Kleer, "How Circuits Work," in Qualitative Reasoning about Physical Systems, 
Daniel Bobrow, ed., Bradford Books, MIT Press, 1985, pp. 205-280. 
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Basic Amplifier Circuits 

2.1 Active Device Models 

Solid-state devices are nonlinear. Because of this it is not easy to analyze them 
without developing linear approximations to their behavioral models. With a 
linear model, the powerful techniques of linear analysis can be applied to 
circuits. 

Nonlinear device models are linearized by selecting an operating point for 
the device. This is a point on a curve of the model at which a linear approxima
tion to the curve is constructed. This approximation is valid as long as the 
excursions from the operating point are small; it is an incremental or small-
signal model In contrast, the large-signal (total-variable) model is the exact 
(nonlinear) model since operation anywhere along its curve is valid. 

To illustrate this, consider the voltage-current (v-i) relationship for a 
diode, 

i = Is(ev/vr-l) (2.1) 

plotted in Fig. 2.1. VT is the thermal voltage, defined as 

VT = - (2.2) 
q 

where k is Boltzmann's constant, q the electron charge, and T the absolute 
temperature (in degrees Kelvin). VT = 26 mV at a temperature of 298 K (25°C). 
For a fixed operating point, Q = (V9I), the static or dc resistance of the 
diode is 

, V^V T ln( î / / s ) 
Rkv,n = J- : > l > > h (2.3) 

6 
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FIG. 2.1 The v-i characteristic of a diode, showing the difference between static large-signal 
resistance R and dynamic small-signal resistance r. 

This is shown as 1/slope of the line from the origin to Q in Fig. 2.1. For a 
typical diode operating at 1 mA, Q = (0.6 V, 1 mA) and 

0.6 V 
R= - = 600 il 

1mA 

For small excursions around Q, R varies slightly. A linear approximation to 
i(v) at Q is a line tangent to the curve. Its 1/slope is 

l (v, /r 
dv 
li 

VT. 

Δ7 i » /s (2.4) 
( V , / ) 

This is the dynamic or incremental ac resistance of the diode at Q. A small 
change in v results in a small change in i of about Δ V/ r. For 1 mA operation, 
r = 26 mV/1 mA = 26 Ω and is considerably less than the static resistance. For 
a linear device such as a resistor, small- and large-signal behavior is identical 
for both small and large variations in variables. 

For a bipolar junction transistor (BJT), the dynamic resistance of the 
base-emitter junction under forward bias is 

dvu 
rP = -

dU L 

BJT transconductance gm can be expressed as a transresistance, 

1 dvB 

gm dlc 

(2.5) 

(2.6) 
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For the BJT, static current gain is defined as 

βο = γ (2-7) 

and dynamic current gain as ß = ic/ib. Then, combining equations (2.5) and 
(2.7) with ie= ic+*'b, we obtain 

and 

' e 
^be Vhe 

I'e 08 + Oib 

^be Vbe 

(2.8) 

(2.9) 

Substituting (2.9) into (2.8) as rm gives 

r' = \ß + \)rm = a'rm ( 2 1 0 ) 

where 

*e /3 + 1 

Since /3 and re are incremental BJT parameters, they can be used to construct 
a simple incremental model, the T model (Fig. 2.2a). A more complete incre
mental model can be derived from the Ebers-Moll or Gummel-Poon large-
signal models, the hybrid-7r model (Fig. 2.2b). We will make use of this model 
when studying frequency response. For FETs, the simple incremental model 
of Fig. 2.2c will also be of use. 

The T-model dynamic emitter resistance re is related to the hybrid- π model 
dynamic base resistance r̂ . It is one of the more interesting transistor relation
ships. Since both re and r^ are across the same nodes—base and emitter—it 
would seem at first that they must be the same resistance. They differ, however, 
in the connection of the collector current source; in the hybrid-7r model, it is 
connected to the emitter whereas in the T model, it is connected to the base. 
Consequently, both base and collector current flow through re, and only base 
current flows through rw. By definition, 

r,=^ (2.12) 

Since ie = (/3 + l)ib, vbe causes (jS + 1) times as much current to flow through 
re as r„. Since (β +1) times as much current flows in the emitter as in the base 
for the same applied voltage, the resistance in the base side of the base-emitter 
loop can be transformed into an equivalent emitter resistance by the β 
transform: 

r E =(A) ai3a) 
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c 
Q 

'b 
bo I 

q> 

(a) 

oc 

Q 

^ C g d 

S O -
+ 

VgS 

Φ 
^=Cgs 

^mVgs = 
Am 

Ô 
s 

(c) 

FIG. 2.2 Transistor models: (a) low-frequency, small-signal T model; (b) small-signal, hybrid-7r 
model; and (c) small-signal FET model. 

Similarly, emitter resistance can be transformed to an equivalent base 
resistance: 

rB=03 + l)tfE (2.13b) 

This transform is extremely useful in transistor circuit analysis. It lets us place 
all resistances on either the base or emitter side of a circuit loop containing 
the base-emitter junction. This results in elimination from the analysis of one 
of the variables ib or ie. 
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2.2 Basic Amplifier Configurations 

A single transistor can be configured as an amplifier in three ways. When 
viewed as a two-port network, an amplifier has an input port and an output 
port, or four terminals in all. Since a transistor is a three-terminal device, one 
of the terminals must be common to both input and output circuits, resulting 
in the three basic amplifier configurations for a single BJT: 

Common emitter (CE) 
Common base (CB) 
Common collector (or emitter-follower) (CC) 

Equivalently, for FETs: 

Common source (CS) 
Common gate (CG) 
Common drain (or source-follower) (CD) 

In Fig. 2.3, typical amplifier configurations are shown along with their 
incremental models. Since these models involve only incremental changes, the 
total variables for input and output voltages, 

Vl= VBB+l>i, V0= V c c + ^ o 

are replaced by incremental variables vx and v0, respectively. A complete circuit 
analysis involves both large- and small-signal analyses: 

large-signal (dc) analysis => operating point (or bias) 

small-signal (ac) analysis => dynamic resistances, gain 

Although the emphasis here is on small-signal analysis, large-signal analysis 
must be examined first because dynamic quantities such as re depend on it. 
For example, re depends on iE in (2.5); re is approximately constant when 
i'e« h and, like (2.4), is 

VT 
'e = 777 (2.14) 

I'EI 

Of major interest in the dc analysis, based on dc circuit quantities, is not 
only the operating point but also its stability. With significant operating point 
change, incremental parameters can vary too widely, resulting in unacceptable 
performance. This is caused by temperature drift and changing values of aging 
components. The sensitivity of the operating point to component value vari
ations is important in this analysis. 

FIG. 2.3 Three basic BJT configurations and equivalent circuit models: (a) common emitter 
(CE), (b) common base (CB), and (c) common collector or emitter-follower (CC). 



:*L 

*B. b 

φΛ 

(a) 

ŒK 

(b) 

\ ^ 

(c) 



1 2 / 2 . Basic Amplifier Circuits 

2.3 Basic Amplifier Analysis Procedure 

The quantities of common interest about an amplifier are its amplification (or 
gain) and its input and output resistances. For single-input, single-output 
circuits, several kinds of incremental gain are of interest: 

A *OUt ^ θ ' θ ir\ Λ Γ\ 

power gain = Ap = — = — r (2.15) 
^in Vil-, 

V 
voltage gain = Av = — (2.16) 

Vi 

current gain = A{ = -7 (2.17) 
' i 

transconductance = Gm = — (2.18) 
Vi 

V 

transresistance = Rm = — (2.19) 
The three transistor configurations can be analyzed using a common 

procedure. More complex circuits can also be analyzed by the same procedure 
by decomposing them into the three basic configurations. 

The procedure is based on recognition of two circuit loops or nodes, one 
relating to the input and the other to the output. In Fig. 2.3a, the input loop 
consists of vi9 RB, re, and RE. The currents that flow in this loop, ib and ie, 
are caused by the input voltage source υ·λ. Similarly, the output loop consists 
of RL, the ßib current source, re, and RE. The associated currents are ic and 
ie. Since this is a CE circuit, ie is common to both input and output loops and 
is the key to relating input to output. 

The procedure—the transresistance method—is as follows: 

1. Refer all input circuit quantities to a common terminal by use of the 
ß transform. Calculate a variable common to both input and output circuits. 

2. Calculate the output in terms of the common variable and output circuit 
quantities. 

The effect of using this procedure is to work forward mathematically from the 
input source to the output. Consider again the CE amplifier of Fig. 2.3a. By 
referring RB to the emitter side of the circuit using the ß transform, we calculate 
«e as 

Vi 

h~RB/(ß + l) + re + RE 

The output quantity v0 is 
ü 0 = - Ä L - / c = - Ä L - a - / e (2.21) 
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Substituting the variable common to both input and output, ie, into (2.21), we 
obtain 

CE Av = -=-a———^ — (2.22) 
Vi RB/(ß + l) + re+RE 

This can be interpreted as the ratio of two resistances through which the 
common current ie (adjusted by a) flows. The numerator is the resistance 
across which the common current develops the output voltage, and the 
denominator is the transresistance, the resistance across which the input source 
voltage develops the common current. For a more accurate result, the ie-to-/c 

factor a must be included and the sign of the gain deduced from the circuit 
topology. The essence of the method is to develop the following relationships 
in the order: 

%i ~r •"'common ~~^ ^o \Z.ZO) 

For the CE, this amounts to: vx =Φ ie =Φ ic =Φ ν0. 
An alternative derivation based on the same approach is to refer the 

resistances re and RE on the emitter side to the base and calculate ib as the 
common variable. Then the form of Av is 

A = Ê*L· (2 24) 
A v RB + (ß + l)(re + RE) K1'M) 

If ()ß 4-1) is factored from the denominator (thus transforming this resistance 
to an emitter-referred transresistance), the result is the same as (2.22), after 
(2.11) is used; the common variable is ib instead. 

2.4 Common-Base and Common-Collector 
Amplifier Analyses 

The CB amplifier of Fig. 2.3b can be analyzed by first using the ß transform 
to refer RB to the emitter circuit. Then the emitter current generated by v{ and 
the transresistance is 

Vi (2.25) e ÄB/(j8 + l) + r e +Ä E 

The collector current is ic = aie9 and output voltage 

v0 = -ic- RL (2.26) 

Combining these equations gives the voltage gain: 

CB Av = a—— ^ — (2.27) 
RB/(ß + l) + re+RE 

file:///Z.ZO


1 4 / 2 . Basic Amplifier Circuits 

For the CC amplifier of Fig. 2.3c, the order of variables is 

V{ => ie => v0 (2.28) 

The transresistance is 

rM = ^ + r e + Ä E (2.29) 

Since ie = v-JrM and v0= ie · RE, the voltage gain is 

CC Av= n l/n * — (2.30) 
RJ{ß + \) + rQ+RE 

For both the CB and CC, Av is a ratio of resistances (adjusted by a and 
polarity). For the CC, (2.30) has an intuitive interpretation as a voltage divider 
with input V\ and output v0. The top resistance of the divider is Rß/(ß +1) + re, 
and the bottom resistor is RE. 

2.5 Dynamic Input and Output 
Resistances 

Besides voltage gain, the dynamic input and output resistances, rin and rout, 
can be found using the ß transform. For the CE, rin is a resistance referred 
to the base side of the input loop and is 

rin(CE)=^ = ^=RB + (ß + l)(re+RE) (2.31) 

The base-side resistances are equivalently emitter-side resistances (ß +1) times 
larger. This results in a relatively high input resistance when RE is large. 

For the CB and CC circuits, using similar analysis we obtain 

rin(CB)=l· = l·=RE+re + - ^ ( 2 3 2 ) 

r i n (CC)=^ = ^ = Ä B + (i8 + l ) ( r c+ÄE) (2.33) 
h «b 

Both CE and CC have the same rin whereas rin(CB) is l/(jß + l) times less 
than that of the CE and CC. 

The output resistance of the CE and CB configurations are 

rout(CE) = rout(CB) = ÄL (2.34) 
For the CC, 

rouACC) = RE\\(rc + J ^ (2.35) 

where || means "in parallel with" and indicates parallel resistances. Because 
the rightmost resistance is relatively small, rout(CC) is small. 
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Example 2.1 CE Amplifier 

Assume the BJT of Fig. E2.1 has the following parameters: 

jß + l = 100 

JS=10~6A 

The saturation current / s determines the v-i relationship of the base-
emitter junction. For 2.7 mA, 

Άτ)- / E » / S (El) 

and VBE = 0.80 V. This gives us a place to start for the static analysis. 
First, the emitter circuit can be simplified by Thévenin's theorem. 

The result is a 688 il resistance and -3.75 V source. Next, we need to 
find IE to determine re. The maximum JE is the current that flows with 
a collector-emitter short, or 

_ 12 V - ( - 3 . 7 5 V ) ^ 
max I E = — — = 9 m A E 1.0kft + 688n 

We can estimate IE by assuming VBE = 0.8 V. Then, 

r 3.75V-0.8V _ A 
*E = ZTT: = 4.3 mA 

688 Ω 
Then (using El) VBE = 0.81 V. IE can be recalculated using this more 
refined value for VBE- After only two iterations, the numbers converge to 

VBE = 0.81V, /E = 4.27A 

Because VBE is logarithmically related to JE, it is relatively insensitive 
to JE variation. (This is why convergence was rapid.) 

Now, solving for re gives 
26 mV 

re = — — - = 6.1il 
4.3 mA 

The transresistance method can now be applied (2.22): 

«^. (o^ia jE« L43 
vi ; 6 Ω + 688Π 

Input resistance is 

r.n = (β -+-l)[reH-,RE] - (100)[6 Π + 688 Ω] = 69.4 kn 

and output resistance is ro u t= 1.0 kSl. 
These results agree with those of the SPICE circuit simulation to the 

two significant digits of the manual calculations. The simulation uses the 
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AAV-
1.0 kfl 

-É 

E2.1 CE Amplifier 
.OPT NOMOD OPTS NOPAGE 
.DC VI -0.25 0.25 0.05 
.TF V(30) VI 
VI 10 0 DC OV 
VCC 80 0 DC 12 
VEE 90 0 DC -12 
REI 40 90 2.2K 
RE2 40 0 l.OK 
RL 80 30 l.OK 
Ql 30 10 40 BJT1 
.MODEL BJT1 NPN (BF=99) 
.END 
NODE VOLTAGE 
(30) 7.7686 (40) .8115 
VOLTAGE SOURCE CURRENTS 
NAME CURRENT 
VI 
VCC 
VEE 

-4.274E-05 
-4.231E-03 
5.086E-03 

TOTAL POWER DISSIPATION 1.12E-01 WATTS 
V(30)/VI = -1.427E+00 
INPUT RESISTANCE AT VI 6.936E+04 
OUTPUT RESISTANCE AT V(30) = 1.000E+03 

E2.1A CE Amplifier with 2N3904 model 
.OPT NOMOD OPTS NOPAGE 
.DC VI -0.25 0.25 0.05 
.TF V(30) VI 
VI 10 0 DC OV 
VCC 80 0 DC 12 
VEE 90 0 DC -12 
REI 40 90 2.2K 
RE2 40 0 l.OK 
RE 80 30 l.OK 
Ql 30 10 40 BJT1 
.MODEL BJT1 NPN (BF=150 IS=1E-16 

VA=110 RB=15 RE=2) 
.END 
SMALL SIGNAL BIAS SOLUTION 
TEMPERATURE = 27.000 DEG C 
NODE VOLTAGE 
(30) 7.7627 (40) .8187 
VOLTAGE SOURCE CURRENTS 
NAME CURRENT 
VI 
VCC 
VEE 

-2.639E-05 
-4.237E-03 
5.082E-03 

TOTAL POWER DISSIPATION 1.12E-01 WATTS 
V(30)/VI = -1.427E+00 
INPUT RESISTANCE AT VI = 1.060E+05 
OUTPUT RESISTANCE AT V(30) = 9.995E+02 

FIG. E2.1 
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same idealized T model of the analysis in this example. How do the 
results compare for a more realistic BJT model? The parameters of a 
2N3904 were used and the simulation rerun. The results show good 
agreement except for rin. A typical 2N3904 ß of 150 is about 50% larger 
than the value of 99 used, and the discrepancy between the rin values is 
also 50%. Therefore, the simple T model can produce accurate (typically 
<1% error) results. 

Example 2.2 CC Amplifier 

The emitter-follower of Fig. E2.2 has a voltage divider at its output. 
Assuming the same BJT parameters and using a dc analysis as in Example 

E2.2 CC Amplifier 
.OPT N0M0D OPTS N0PAGE 
.DC VI -0.25 0.25 0.05 
.TF V(50) VI 
VI 10 0 DC 0V 
VCC 80 0 DC 12 
VEE 90 0 DC -12 
RB 10 20 10K 
REI 40 50 160 
RE2 50 90 2.0K 
RC 80 30 1.2K 
Ql 30 20 40 BJT1 
.MODEL BJT1 NPN (BF=99) 

1.2 kn 

2N3904 

160 Ω 

.END 

SMALL 

NODE 
(20) -

SIGNAL BIAS 

VOLTAGE 
-.4949 (30) 
"•e CAI π3Γ·ρ ητ π 

SOLUTION 

6.1206 
3DCTVTTC" 

(40) 

TEMPERATURE = 

-1 .3102 (50) 

27.000 DEG 

-2 .1020 

C 

DO Ψ 

^ 2 . 0 k Q 

90 

-12 V VOLTAGE SOURCE CURRENTS 
NAME CURRENT 
VI 
VCC 
VEE 

-4.949E-05 
-4.899E-03 
4.949E-03 

TOTAL POWER DISSIPATION 1.18E-01 WATTS 
V(50)/VI = 8.829E-01 
INPUT RESISTANCE AT VI = 2.265E+05 
OUTPUT RESISTANCE AT V(50) = 2.342E+02 

FIG. E2.2 
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2.1, we get VBE = 0.82 V and IE = 4.95 m A. Consequently, Vc = 6.1 V, but 
this does not affect the small-signal amplifier parameters (using the T 
model). Next, re = 5.2 Ω, and the ac parameters of interest are 

2.0 kü 
- = 0.883 

Vi 2.0kiì-t-160ft + 5 a + 10kfl/100 

rin = 10kn + (100)(5ft+160n + 2.0kn) = 227kn 

10 kn^ 
rolU = 2.0kil ί 160Ω + 5Ω-

100 
= 234 i l 

These compare to three digits with the SPICE results. Except for arith
metic round-off, there is no difference between these results. A more 
accurate calculation of the operating point is necessary to produce a 
more accurate value of re, however. 

The input and output resistances of the three configurations can be sum
marized: 

configuration input resistance output resistance 

CE 
CB 
CC 

large 
small 
large 

medium 
medium 

small 

(a ) Vj 

(b) i 

FIG. 2.4 Amplifier input and output loading for (a) voltage and (b) current amplifiers. 
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The large input resistances of the CE and CC cause them to appear as open 
circuits to the voltage sources driving them. In Fig. 2.3, the internal (Thévenin 
equivalent) resistances of the sources are omitted, but actual circuits have a 
nonzero resistance. This source resistance forms a voltage divider with the 
input resistance of the amplifier circuit causing attenuation of υ·λ (Fig. 2.4a). 
If the voltage source resistance rs is variable or unknown, the attenuation of 
the divider and the overall voltage gain will be too. To avoid this, the ideal 
amplifier input resistance is infinite, so vin= v-x independent of rs. 

Similarly, for the voltage divider at the output, formed by the nonzero 
amplifier output resistance and the load resistance, Av · vin = vout and is 
independent of RL when rout = 0. The ideal voltage amplifier therefore has 
infinite rin and zero rout. In actual amplifier circuits, the input and output 
dividers must be taken into account when calculating the voltage gain. 

For a current amplifier, current dividers at input and output similarly 
affect the current gain unless rin = 0 and rout->oo, the conditions for an ideal 
current amplifier. Considering the four basic amplifier types, the ideal terminal 
resistances are as tabulated: 

ideal amplifier type 

voltage 
transconductance 
current 
transresistance 

input resistance 

infinite 
infinite 

zero 
zero 

output resistance 

zero 
infinite 
infinite 

zero 

When these ideal properties are compared with the three configurations, the 
following optimal matches can be made: 

ideal amplifier type 

voltage 
transconductance 
current 
transresistance 

optima] I configuration(s) 

CC, CE 
CE 
CB, CE 
CB 

This table shows that none of the configurations is ideal. Although the CC 
resistances approach the ideal, it has a maximum voltage gain of only one. 
Similarly, the CB has a good resistance match but also has a maximum current 
gain of one. In these cases, the CE is the best choice because it provides useful 
voltage and current gain. It also is optimal for transconductance amplification 
because its resistances match best. The CB is best for transresistance amplifiers 
for the same reason. Overall, the CE is the most versatile configuration and 
is used the most in practice. Later, we will see that when these basic configura
tions are combined in pairs, the resulting two-transistor configurations exceed 
the basic configurations in approaching the ideal. 
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2.6 Bipolar-Junction Transistor Output 
Resistance 

The simple BJT T model used in the preceding sections will now be extended 
by considering the output resistance r0 (Fig. 2.5). In the Ebers-Moll three 
(EM3) model (of which the T model is a simplification), rQ is defined as 

rn = -vA+|vB 

|/cl 
(2.36) 

Ube = 0 

where VA is the Early voltage. This relationship is represented graphically by 
the collector family of curves as displayed by a curve tracer and shown 
idealized, in Fig. 2.5b. Since vbe is zero, re can be neglected and r'h considered 
part of RB. Then, from Fig. 2.5a, 

^ = K E ( i c + / b ) + r0(ic-j3/b) 

-ibRB = RE(ic+ib) 

Solving (2.37) for rc results in 

s = ! = Ä E | | Ä B + r o ( l + 0 . ^ ) 

(2.37a) 

(2.37b) 

(2.38) 

Î 
fraction of ic into RB 

This expression for rc can be understood in terms of the circuit of Fig. 2.5. As 
indicated in (2.38), the current divider formed by RE and RB determines the 

(a) 

FIG. 2.5 BJT collector output resistance can be determined by circuit model (a); (b) the Early 
voltage VA of the BJT is independent of / c , and VCE and can be used to calculate r0(Ic, VCE). 
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fraction of ic that flows into RB. When RB is much larger than RE (or the base 
terminal approaches an open circuit), then 

rcUB^oo=ÄE+r0 (2.39) 

and for a shorted base, 

rc\RB=o = (ß + l)r0 (2.40) 

Thus, rc increases as RB decreases or RE increases. Summarizing, 

RB^oo =φ rc=r0+RE (2.41a) 

^ B = 0 =Φ rc = (0 + l)ro (2.41b) 

RE^oo => rc=tfB + (/3 + l)r0 (2.41c) 

flE = 0 => r c = r 0 (2.41d) 

To envision rc, begin at the b-e node where # B and RE are in parallel. 
This is accounted for in (2.38) by the first term. This parallel resistance is in 
series with rQ and the current source ßih, accounted for by the second term 
of (2.38). If ßih has no effect, then r0 is in series with RE || RB, and the second 
term is only rQ. In this case, ßih = 0 when ib = 0. This occurs when RB is infinite 
(2.41a). 

When all of the current through rQ flows in the base (RB = 0), then both 
ßib and the current through r0, /0, flow in the collector, so 

ic = ßib+io (2.42) 

With the base shorted to ground, no current flows in RE and 

î c = - î b (2.43) 

Current flowing out of the base is opposite in polarity to the indicated direction 
for the ßib current source and causes ßih to flow toward the collector terminal. 
Consequently, ßib contributes to i0 and adds to iC9 flowing down through r0 

and out the base terminal. The effect is that most of i0 comes from ßih instead 
of being supplied as ic. Because vc causes a current of vjr0= iQ, most of this 
current is supplied internal to the transistor as ßih. Substituting ib of (2.43) 
into (2.42) and solving for ic gives 

ß + \ ß + \ (ß + \)r0 

The collector resistance vc/ic is (ß + l)r0, as (2.41b) indicates. The main insight 
here is 

Current through r0 that flows in the base causes rQ to appear (ß +1) 
times larger from the collector 

This is what (2.38) suggests: The fraction of ic that becomes base current 
causes r0 to be multiplied by ß. The influence of r0 on amplifier performance 
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can be significant because the collector node can affect collector current. The 
collector current is no longer isolated from the input circuit that causes it. 

2.7 The Effect of a Base-Emitter Shunt 
Resistance 

An analysis similar to that for output resistance can be applied to a base-emitter 
shunt resistance (Fig. 2.6). The equivalent resistance for both emitter (a, b) 
and base (c, d) can be derived from the equivalent small-signal circuits. 

+ Vr cc 

< 

*BE 

Φ·. 
-"EE 

(a) 

$ - - & ' 
Φ ß'b 

T 
m 
(b) 

(c) (d) 

FIG. 2.6 The effect of shunt base-emitter resistance RBE on resistance: (a) at emitter, modeled 
in (b), and (c) at base, modeled in (d). 
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Beginning with the emitter side first, we find the nodal equations for base and 
emitter to be 

^ + ^ Z ^ + ^ L Z ^ = 0 base node (2.45) 
RB RBE (jB + l)re 

Î 

— 1 = i0 emitter node (2.46) 
^ B E re 

Solving for emitter resistance from (2.46) gives 

ve ve ve 

Substituting for vh in (2.47) and solving yields 

^-R II r + 
lo ß 

(2.47) 
( — + (vb-ve) — + -
\ ^ΒΕ Γβ / L^BE reJ 

Solving for ub in (2.45) gives 

4i + ^ + ö^rd = ί ; = [ά + (^τκ] (2-48a) 

*=r-*.+ jJlÌVl)r. (2-48b) 

W_^\ + / j / î £ _ \ ( 2 4 9 ) 

î î 
fraction of fraction of 
i0 through ί0 through 
re causing RBE that 

RB to be also flows 
Ä B E / 0 8 + I ) through KB 

at e 

This result for emitter resistance with a shunt # B E can be understood in terms 
of the ß transform. The first term is the parallel resistance of RBE and re on 
the emitter side of the base-emitter loop. The drive current i0 divides between 
the emitter current and the shunt R. The fraction of i0 that is emitter current 
results in base current that flows through RB and causes RB to appear l/(ß + 1) 
times smaller from the emitter. This fraction is determined by the current-
divider factor in the second term of (2.49). The third term accounts for the 
fraction of iQ that flows through R. Since the ß transform does not apply to 
it, this current flows through RB without being scaled down. This result is 
intuitively appealing since it can be constructed by use of the ß transform and 
inspection of the circuit. 
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The current gain of this circuit, also derived from the basic circuit 
equations, is 

A ic ßib ( ABE \ , _ _ m 
Ai = ~ = — = < * ( - — — I (2.50) 

Without RBE, the current gain would be a, but a fraction of i0 is lost to RBE. 
The remaining fraction that is emitter current is expressed by the current 
divider factor in (2.50). 

The circuit of Fig. 2.6 can also be analyzed from the base side (Figs. 
2.6c,d). Writing the nodal equations at base and emitter and solving for ve 

results in 

^ E C2 51Ì 
^ Ε + ^ Β Ε || re 

Substituting this into the emitter nodal equation gives 

h \RBE + (ß + l)rJ \jRBE + (/3 + l)re/ 
î Î (2.52) 

due to ib due to i 
through RBE 

This result is similar to (2.49) in form, as might be expected. The first term is 
the parallel combination of RBE and re from the base side. The second term 
is due to the ß transform effect of the base current according to the fraction 
of input current ix that flows in the base. The shunt-current fraction of i-x that 
flows through R contributes the third term, where RE appears unsealed by ß + 1. 

For the circuit of Fig. 2.6d, the transconductance is 

/ _ R B E _ \ / 1 \ ( 2 5 3 ) 

\ # B E + r e / \ K E + f l B E | | r e / 
*c _ ßib 
vb vb \KBE-tre/ \κΕ-

î î 
fraction of vb times 
current in this is the 

RE that current 
is ie in RE 

Equations (2.49, 2.50) and (2.50, 2.51) can be better understood by con
sidering the extremes of RBE. For RBE = 0, no current flows through re and 
no ß +1 scaling occurs. In this case, a passive resistor network results, and 
the second term in (2.49) and (2.52) is zero. When i?BE^oo, the analysis using 
the ß transform applies completely, and the third terms of (2.49) and (2.52) 
are eliminated. 

The circuit of Fig. 2.6c has the useful property that the input resistance 
is higher than if RBE were returned to ground instead of the emitter. RBE is 
bootstrapped since its bottom terminal voltage follows the top terminal. This 
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causes vR across it to be less than the vb that would be across a grounded 
RBE, and RBE appears to be much larger than its actual value. To show this, 
consider first that RBE || (ß + l)re (not RBE alone) is the bootstrapped resistance. 
The equivalence factor for this resistance can be found by expressing (2.52) as 

BJT rin = [ÄBE||Ü8 + l )re] . . * ] + * 1 + α · — + Ä E (2.54) 

The interpretation of this expression is that RBE || (/3 + l)re has an equivalent 
value (l + a/?E/re) larger than its actual value. 

This result or that of (2.52) can be modified for a FET from that of a BJT 
by allowing ß->oo (or a = 1) since FET ig = 0 would be equivalent to setting 
ib to zero. From (2.52), 

^ = Ä B E + * S · — + * s (2.55) 

Here it is apparent that for infinite ß, re-> rm and RE replaces Rs. This result 
can be given physical meaning by factoring RBE from the first two terms on 
the right. Then the equivalent RBE due to bootstrapping is 

FET #equiv - #BE ' H 
L r m . 

(2.56) 

The equivalence factor is the reciprocal of the divider formed by rm and Rs 

and is identical in form to the second factor of (2.54) for BJTs. The difference 
is that for a FET, only RBE is bootstrapped (since (ß + l)re-»oo). For a FET 
with RBE = 100 kil, rm = 100 il , and Rs = 1 kil; then Requiv = 1 Mi). 

2.8 The Cascade Amplifier 

Now that we have examined several aspects of single-transistor amplifier 
circuits, we will investigate two- and three-transistor combinations. The three 
basic configurations can be combined in various ways to produce circuits with 
useful properties. These properties are not found in either of the combined 
configurations alone, just as molecules have properties that their constituent 
atoms do not exhibit. Consequently, these circuits can be considered basic 
building blocks in themselves. 

The most common combination of multiple-transistor amplifiers is the 
cascade amplifier, which consists of two CE amplifiers, the output of one 
driving the input of the other (Fig. 2.7). Each of these CE amplifiers is called 
a stage of amplification; any unit of a sequence of consecutive amplifiers is 
a stage. This amplifier can be analyzed by the transresistance method. The 
only additional complication results from the interconnection of the two stages. 
If the base of the second stage is disconnected from the collector of the first 



26 / 2. Basic Amplifier Circuits 

(a) 

(b) 

FIG. 2.7 The cascade amplifier (a) and its small-signal model (b). 

stage, the gain of the first stage is 

Λν1 = - α 1 — R* 
/ W 0 8 i + l) + rel + ÄE1 

(2.57) 

The output of the first stage can be represented as a Thévenin equivalent circuit 
and connected to the input of the second stage. The voltage source is Avl · υ·χ 
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with a Thévenin resistance of RLl. The calculation of the second stage gain 
is similar to that of the first stage, resulting in a total gain of 

__ _ ^ L J ^ L 2 , - ^ox 
a i KBl /03 , + D + >*e, + KE, ' a 2 tfLl/(/32+l)+re2+KE2 

An alternative view of the interaction of the stages is to consider the collector 
of the first stage to be loaded by the input resistance of the second stage so 
that the collector load resistance is 

K o = ÄLillG82+l)(re2 + ÄE2) (2·59) 
Then the gain formula for the second stage does not include base resistance 
since it is already taken into account in the first-stage collector resistance. With 
RCi in the first-stage gain formula, the output is at the base terminal of the 
second stage, not at the Thévenin equivalent voltage source as in the first 
approach. The second approach is explicit in the gain formula when it is 
expressed as 

Κ Μ | 1 ( / 3 2 + 1 ) ( ^ 2 + * Ε 2 ) RL2 „ , m 

Av = - a , - a s (2.60) 

Equations (2.58) and (2.60) are equivalent but have different algebraic forms. 
Two alternative views of stage interaction result. Often, the most difficult step 
in gaining insight into a new circuit is in expressing equations resulting from 
standard circuit analysis in a form that makes clear an equivalent circuit 
topology that leads to a simple explanation of the circuit. 

The cascade amplifier stage interaction phenomenon occurs often and can 
be dealt with in general form by analyzing the cascade attenuator shown in 
Fig. 2.8. The Thévenin equivalent circuit and loaded-divider approaches, as 
used above, achieve the same result. For the Thévenin circuit approach, 

^ = U i + Ä 2 / U i | | Ä 2 + Ä 3 + Ä 4 / ( 2 ' 6 1 ) 

and for the loaded-divider approach, 

^ = * * Ι Κ * 3 + * 4 ) ( _ * 3 _ ) ( 2 . 6 2 ) 

As in the case of the cascade amplifier, (2.61) and (2.62) are equivalent. 

2.9 The Cascode Amplifier 

A cascode amplifier is a CE stage followed by a CB stage (Fig. 2.9). Because 
the output is CB, rout is high, and rin is also high due to a CE input stage. 
This results in a good transconductance amplifier with higher output resistance 
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I—WV 
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rJfc. 
Rl+R2 •o 

R\ 
I—WV 

o 

R3 

■ΛΛΑτ 

(a) 

R3 

-o—VW-

(b) 

- + 

(C) 

FIG. 2.8 The loaded divider (a) can be solved by (b) use of Thévenin's theorem or (c) the loaded 
divider method. 

than a CE amplifier alone. When the cascode amplifier is analyzed as we have 
done with previous circuits, the voltage gain is 

Av=Gm · RL=-al · a2 
RL 

Κ Β / ( / 3 + 1 ) + Γ61 + Κ Ε 
(2.63) 

The οίχα2 factor is due to loss of base current in both transistors; otherwise, 
the analysis holds no surprises. When the CB transistor rQ is taken into account, 
the numerator of (2.63) is modified so that 

Av = —α,α7 
flL||[(/32+lK2] 

ÄB/ÜSl + l H ' e l + ÄE 
(2.64) 

Because of the CB output stage, not only is the output resistance higher but 
so is the voltage gain. The input resistance is that of a CE amplifier. 
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Oc 

(Π/ΜΜ 

(a) (b) 

FIG. 2.9 The cascode amplifier (a) and its small-signal model (b). 

Example 2.3 Cascode Amplifier 

A typical cascode amplifier is shown in Fig. E2.3. Let us use a conservative 
β of 99. The dc calculation of <?} emitter current yields 600 μ A. The 
emitter current of Q2 is the collector current of Qx, or 594 μ A. Then the 
dynamic emitter resistances are 

re l=43.3 0 , re2 = 43.8il 

Applying (2.63), we obtain a voltage gain of Av = -0.26. This gain 
compares well with the SPICE results. The output resistance (assuming 
infinite ro2) is JR L = 1.0 kO. The input resistance is 

rm=RB + (ßx + l)(rei + RE) = 3743kU 
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E2.3 Cascode Amplifier 
.OPT N0M0D OPTS N0PAGE 
.DC VI -0.25 0.25 0.05 
.OP 
.TF V(60) VI 
VI 10 0 DC OV 
VCC 80 0 DC 12 
VEE 90 0 DC -3 
RI 10 20 10K 
RE 30 90 3.6K 
RB1 80 50 l.OK 
RB2 50 0 3.3K 
RL 80 60 l.OK 
Ql 40 20 30 BJT1 
Q2 60 50 40 BJT1 
.MODEL BJT1 NPN (BF=99) 
.END 
SMALL SIGNAL BIAS SOLUTION 

5—wv 

TEMPERATURE = 27.000 DEG C 
NODE 
(20) -. 
(60) 11 
BIPOLAR 
NAME 
MODEL 
IB 
IC 
VBE 
VBC 
VCE 
BETADC 
GM 

VOLTAGE 
0605 
.4070 

(30) -.8215 (40) 8.< 

JUNCTION TRANSISTORS 
Ql 
BJT1 
6.05E-06 
5.99E-04 
7.61E-01 
-8.50E+00 
9.27E+00 
9.90E+01 
2.32E-02 

Q2 
BJT1 
5.99E-06 
5.93E-04 
7.61E-01 
-2.20E+00 
2.96E+00 
9.90E+01 
2.29E-02 

V(60)/VI = -2.619E-01 
INPUT RESISTANCE AT VI = 3.743E+05 
OUTPUT RESISTANCE AT V(60) = 1.000E+03 

FIG. E2.3 

The SPICE output agrees. This particular example of a cascode amplifier 
does not have a useful gain (> 1) but can function as a dc voltage shifter. 
If we reduce RE9 the gain (magnitude) is increased, but the dc emitter 
current also increases and input resistance decreases. The difficulty here 
is partly due to the values of the available power supplies. For a smaller 
RE, - V E E must also be made smaller for the same bias current. But a 
decreasing VEE makes the bias current more sensitive to VBEi · To achieve 
both a stable operating point and higher gain, use a large VEE for stable 
bias current and construct a Thévenin equivalent source by placing 
another resistor from the emitter to ground. The two emitter resistors 
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give the freedom needed to choose both a Thévenîn equivalent supply 
voltage and an emitter resistance. 

Example 24 Complementary Cascode Amplifier 

A variation on the cascode amplifier of Fig. E2.3 is the complementary 
cascode shown in Fig. E2.4. The output transistor Q2 is of opposite polarity 

É2.4 Complementary Cascode Amplifier 
.OPT NOMOD OPTS NOPAGE 
.DC VI -0.25 0.25 0.05 
.OP 
.TF V(50) VI 
VI 10 0 DC 0V 
VCC 80 0 DC 12 
VEE 90 0 DC -12 
REI 20 90 3.74K 
RBI 80 40 LOOK 
RB2 40 0 LOOK 
RO 30 80 866 
RL 50 90 4.02K 
Ql 30 10 20 BJT1 
Q2 50 40 30 BJT2 
.MODEL BJT1 NPN (BF=99) 
.MODEL BJT2 PNP (BF=99) 
.END 

+12 V 

1.00 kQ 

1.00 kQ 

-12 V 

SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C 
NODE VOLTAGE 
(20) -.8023 (30) 6.8176 (40) 6.0151 (50) .0196 
BIPOLAR JUNCTION TRANSISTORS 
NAME 
MODEL 
IB 
IC 
VBE 
VBC 
VCE 
BETADC 
GM 

Ql 
BJT1 
2.99E-05 
2.96E-03 
8.02E-01 
-6.82E+00 
7.62E+00 
9.90E+01 
1.15E-01 

Q2 
BJT2 
-3.02E-05 
-2.99E-03 
-8.03E-01 
6.00E+00 
-6.80E+00 
9.90E+01 
1.16E-01 

V(50)/VI = -1.035E+00 
INPUT RESISTANCE AT VI = 3.749E+05 
OUTPUT RESISTANCE AT V(50) = 4.020E+03 

FIG. E2.4 
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to Q,. The gain formula of (2.59) does not exactly apply since some 
current is lost in the 866 il biasing resistor that shunts the emitter of Q2. 
A dc solution for IEl is 3.0mA. Then, rel = 8.7il. For Q2, node 40 is 
driven by a Thévenin equivalent circuit of 6 V and 500 il. Solving for 
the dc solution of the base-emitter circuit of Q2 is simplified by referring 
the 500 il equivalent base resistance to the emitter (as 5 il) and offsetting 
the 12 V supply by (866 Ω)(/Γ ι ) = 2.60 V. Then the familiar diode-resist
ance circuit can be iteratively solved. This produces 7,Z2 = 3.05 mA and 
ro2 = 8.5il. Knowing the dynamic emitter resistances, we can find the 
voltage gain. For Ql9 the transresistance is 3.75 kil. While we are at it, 

fin = (ß + iX'ei + RE) = 374.9 kil 

The collector current of Q, is α,(^/3.75 kil). For β= 99, a =0.99. Next, 
the 866 il resistor forms a current divider with the emitter circuit of Q2, 
and 

. / 866 a \ 0.99 0.975 

'e2 " \866 il + rc2 + 500 Ω/(β2 + 1)/ 3.75 kil " Vi ~ 3.75 kil ' Όχ 

Then - i c 2 · JRL= v0. Combining this with a2 = 0.99 and ie2 gives the gain: 

Av = -1.03 
and this agrees with the SPICE gain. The dc output voltage is, according 
to SPICE, about 20 mV, or about zero volts, the same as the input. This 
amplifier is an inverting, nonoffsetting x ( - l ) buffer. Its output resistance 
of RL is high for a voltage output amplifier. The addition of a CC stage 
and dc modification (to correct for VBF of the CC) would result in a 
more acceptable inverting buffer amplifier. 

2.10 The Darlington (or Compound) 
Amplifier 

Another two-transistor amplifier with useful properties is the Darlington or 
compound amplifier (sometimes called the Darlington configuration), shown 
in Fig. 2.10. It consists of a CE stage emitter driving a CE stage, except that 
the collectors are connected. This is a three-terminal amplifier that resembles 
a single transistor with improved properties. 

This circuit presents a challenge in using the transresistance method. Notice 
that it has a single-input loop containing the transresistance but generates two 
output currents in parallel (from the two collectors). This results in a two-term 
expression for the voltage gain, one term per transistor. For the input transistor, 
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2*b2 

(b) 

FIG. 2.10 The Darlington configuration (a) and small-signal model (b). 

the voltage gain is 

A,i = - « i 
Ri 

(j82+l)(rc2+ÄE) + rel + ÄB/(i8i + l) 
(2.65) 

The first term of the denominator is the external emitter resistance of the input 
transistor and is the input resistance of the driven BJT. The second term in 
the voltage gain is due to the driven transistor: 

Av7 = -a7 
K, 

KE+re2+re l /(j32+l) + /V(j32+l)(/3i + l) 
(2.66) 

For the driven BJT, the emitter resistance of the input transistor is its base 
resistance and is divided by (>32-hi). The sum of Avl and Av2 is the Darlington 
voltage gain: 

A v ^ -
fl, ß » 1 (2.67) 

ÄE+r e 2 +r e l / ( i8 2 +l ) + ÄB/(i8i + l)(i82+l) 

This gain is slightly less that that of a CE amplifier. Its advantage is its input 
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resistance 

rin = ÄB + (i81 + l)[rel + (i82+l)(re2 + ÄE)] 

^(ß + l)2[re2 + REl ß, = ß2 = ß (2.68) 

which is larger than that of the CE by a factor of (ß + 1). A Darlington amplifier 
makes a good input stage for voltage and transconductance amplifiers because 
of its high input resistance. When transistor rQ is taken into account, output 
resistance involves two parallel collector resistances with relatively low rc, 
especially for the driven transistor. 

Example 2.5 Darlington Amplifier 

Figure E2.5 shows a Darlington amplifier with a shunt emitter resistor 
on Q2 terminating at a common bootstrapping resistor of 10 kil at node 
50. The dc analysis follows a development similar to the ac analysis. 
Therefore, the dc solution will be taken from the SPICE model and only 
the ac solution worked out. The emitter resistances of the BJTs are 

rel = 156il, Γβ2 = 31.9Ω 

Because the input of Q2 is bootstrapped, the input resistance to Q2 (from 
the base of Q2, including the 10 kü resistor between nodes 20 and 50) 
can be found by using (2.52). Substituting values gives 

rin2 = 10 kü || (100X31.9 ß + 1 . 0 kil) 

10 kil 
4-(100)(10 kil) 

+ 10 kil 

10 kf> +(100X31.9 Ω +1.0 kil). 

(ioo)(3i.9n + i.oka) 
LIO kÜ +(100X31.9 il +1.0 kil)„ 

= 9116.53 il + 88347 Ω + 9116.43 il = 106580 il 

Now (2.65) is used to solve for the gain due to Q^. 

Avl = - a , — = -0.0473 

The gain of Q2 is found as follows: 

Av2 = (-RL) = — I — ♦ (~RL) 
vt vb2 \rei + rin2/ vb2 

t 
(2.53) 

Again, we use another bootstrapping equation, (2.53), to find the trans-
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E2.5 Darlington Amplifier 
.OPT NOMOD OPTS NOPAGE 
.DC VI -0.25 0.25 0.05 
.OP 
.TF V(30) VI 
VI 10 0 DC OV 
VCC 80 0 DC 12 
VEE 90 0 DC -12 
REI 20 50 10K 
RE2 40 50 l.OK 
RE3 50 90 10K 
RL 80 30 5.IK 
Ql 30 10 20 BJT1 
Q2 30 20 40 BJT1 
.MODEL BJT1 NPN (BF=99) 
.END 
SMALL SIGNAL BIAS SOLUTION 
NODE VOLTAGE 
(20) -.7275 (30) 7.0652 

+12 V 

TEMPERATURE = 27.000 DEG C 

(40) -1.4961 (50) -2.3073 
BIPOLAR JUNCTION TRANSISTORS 
NAME 
MODEL 
IB 
IC 
VBE 
VBC 
VCE 
BETADC 
GM 

Ql 
BJT1 
1.66E-06 
1.64E-04 
7.28E-01 
-7.07E+00 
7.79E+00 
9.90E+01 
6.35E-03 

Q2 
BJT1 
8.11E-06 
8.03E-04 
7.69E-01 
-7.79E+00 
8.56E+00 
9.90E+01 
3.11E-02 

V(30)/VI = -4.652E-01 
INPUT RESISTANCE AT VI = 1.067E+07 
OUTPUT RESISTANCE AT V(30) = 5.100E+03 

-12 V 

FIG. E2.5 

conductance of the Q2 stage. Substituting values into this equation, we get 
Av2 = -(0.09985X0.4185) = -0.4179 

Thus the total gain is 

Αν = Αν1 + Αν2 =-0.4652 
The SPICE result agrees. Finally, the input resistance is 

rin = (ß{ + l)(rel + rm2) = (100)(156 Ω + 106580 Ω) = 10.67 Mil 

With a gain of less than one, this amplifier is not very useful. The gain 
can be easily increased (see Example 2.3). The input resistance, however, 
is very useful for a voltage-input amplifier. 
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2.11 The Differential (Emitter-Coupled) 
Amplifier 

The previously considered amplifiers were single-ended: The input and output 
share a common (ground) node. Amplifiers with port voltages for which neither 
terminal is grounded are differential amplifiers. Usually, an amplifier with 
differential input (and differential or single-ended output) is called a differential 
amplifier (or diff-amp for short) and has an output of 

ι>ο = Α , · ( ϋ ϊ 2 - υ π ) (2.69) 

for a voltage amplifier. Some amplifiers have single-ended inputs and differen
tial outputs. A differential output voltage is 

differential v0 = vo2 - voi 

A differential amplifier can be built from two CE amplifiers that share R0 

(Fig. 2.11). Because their emitters are coupled, they are sometimes called 
emitter-coupled amplifiers. To achieve true differential amplification, the circuit 
must be symmetric so that the gains of each input to the output are the same. 
The output voltage for a general two-input voltage amplifier is 

«o = ^ v 2 « i 2 - ^ v l « i l (2.70) 

The condition for a differential amplifier is that Av2 = Avl. The voltage gain 
of the diff-amp of Fig. 2.11 can be found by the transresistance method and 
superposition. Because of its symmetric topology, we need only find Avl and 
rewrite it for Av2 since it will have the same form: 

Avi — Avl+— Avi_ = (2.71) 
«il «il 

Beginning with Av l , we have 

A =-a — (2 72) 
1 ÄBI/G8I + 1 ) + reì + RE] + R0 II [ ^ + ^ + ( ^ 2 / ^ 2 + 1 ) ] 

Avl+ is somewhat more complicated in that it involves the input transistor, 
operating as a CC, driving the output transistor as a CB with a cascaded 
attenuator in the emitter circuit. With the loaded-divider approach, the gain 
can be factored into two gains, using center node with voltage ve as a splitting 
point: 

vo2 «e vo2 Α ν λ + = — = — · — (2.73) 
«il «il «e 

Defining 

^ i = ^ T T + r e l + ÄE1 (2.74) 
P i "·" A 

R2 = -z-fr+re2 + RE2 (2.75) 
p2"r 1 
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(a) 

(b) 

FIG. 2.11 The differential or emitter-coupled amplifier, modeled in (a). If we replace R0 with a 
CB current source, implemented in (b), the gain from either input to both outputs is equal. 
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then, 

R0\\R2 ( RL2\ 
A ^ = R0\\R2 + R\a2·^) ( 2 · 7 6 ) 

The first factor of (2.76) is the loaded divider; multiplied by viu it produces 
ve. The remaining factor is the voltage gain of the output transistor. Because 
calculation of ve took R2 into account, it is the input voltage to R2 when 
calculating gain. 

The Thevenin circuit approach breaks RE2 at R0 and solves for the gain 
from i?u to ve. Because the loading of R2 is neglected, a Thevenin equivalent 
circuit must then drive JR2. The alternative expression for Avl+ is 

The Thevenin resistance appears in the transresistance in the second factor as 
Rx || R0. Equations (2.76) and (2.77) are equivalent. The total gain Av l, 
according to (2.71), is 

A — -RQ 11 ^2 / ^L2\ ^Ll 
A^-a2R0\\R2+R\R2) +a'R^R0\\R2 

= «2 ^ ( - ^ - ) + «i i f ^ (2-78) 
R^IR. + RARO+RI) R0\\R2 + Rl 

So far, we have calculated the gain for a single-input diff-amp in that vi2 

is shorted (by superposition). Before we complete the derivation of the total 
differential gain, notice that with vi2 — 0, this is a single-ended input, differential 
output amplifier. This circuit is common and useful; vertical input amplifiers 
of oscilloscopes use this as an input stage from the probe. To produce a 
balanced differential output (i?0l = -vo2), the magnitudes of the gains to both 
outputs must be equal. The conditions required (that the terms of (2.78) be 
equal) are 

ax = a2 (2.79a) 

*L1 = * L2 (2.79b) 

■=1 (2.79c) 
R„ + R 

Condition (2.79a) requires matched transistors. For high-/3 transistors, this 
condition is not critical and is easily met. Condition (2.79c) can be satisfied 
either by letting R2 = 0 or R0->oo. Since the first alternative is not physically 
realizable (because re2 > 0), a finite R0 causes an imbalance. R0 is often replaced 
by a current source, satisfying the condition. In practice, this can be the 
collector of another transistor generating the current I0 (Fig. 2.11b). 

Returning to the full diff-amp gain derivation, by symmetry of the circuit 
topology, the gains to both outputs due to vi2 (with vix shorted) have the same 
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form but with corresponding components from the other side of the circuit: 

Av2=ai ^ ( _ ί ? 2 _ Λ + _ * y (2.80) 
R0\\Rt + R2\R0+Rj R0\\Rt + R2

 K ' 

The total gain is 

A ^ = MZv^ = Ay2vì2-Avìvlì 

Vi ν-α-ν^ vi2-v{i 

The condition for differential amplification is that 

Av2 = Avl (2.82) 

This condition can be met in two ways: 

Avl+ = -A v 2 _ , Av2+ = -A v l _ (antisymmetric) (2.83) 

Av l + = Av2+, Avl_ = Av2_ (symmetric) (2.84) 

The first approach leads to the circuit component conditions: 

RX = R2 = R (2.85a) 

R0^oo (2.85b) 

and the second to the conditions 

ax = a2 = a (2.86a) 

RLi = RL2 = RL (2.86b) 

RX = R2 = R (2.86c) 

The symmetric conditions (2.84) require that the gains from the two inputs be 
the same to their corresponding inverting and noninverting outputs, as shown 
graphically in Fig. 2.12a. The antisymmetric conditions (2.83) are illustrated 
in Fig. 2.12b). Here, the gains from the two inputs to a given output must be 
equal. Neither approach to differential amplification necessarily satisfies the 
conditions for balance (2.79). 

Either way, the differential gain is 

Av = 2Av l=2Av 2 (2.87) 

When the circuit is differential and balanced, components on corresponding 
sides are equal, and the gain reduces to 

Av = 2 a ^ (2.88) 

With symmetric circuit topology and vil = —vi29 ve = 0 because the two super
imposed inputs at ve are equal and opposite. In this case, the ve node is a 
virtual ground, and the gains of each side of the amplifier can be calculated 
under this assumption. Consequently, the transresistance is R on each side, 
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(a) 

(b) 

FIG. 2.12 Diff-amp symmetry can be achieved under (a) symmetric or (b) antisymmetric 
conditions. 

and the gain for each side (vol/vn and vo2/vi2) is aRJR in magnitude. For 
differential outputs, according to (2.87), the gain is twice that of a single side. 

The common-mode rejection ratio (CMRR) is the measure of how differen
tial an amplifier is. It is the change in output when both inputs are changed 
the same amount and is defined as 

CMRR = üo / (ü i2 -U»l ) 

t>o/(l>i2+l>il) 
(2.89) 

The numerator is the differential-mode gain of the amplifier; the denominator 
is the common-mode gain. Two arbitrary inputs, vxX and vi2, can be combined 
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into differential-mode vd and common-mode vc voltages: 

vd =—-— (2.90a) 

vc = — - — (2.90b) 

A purely differential input occurs when vi2 = -vii. Then vd = vi2 and uc = 0. 
When vi2 = vn, the input is purely common mode and vc= vi2 whereas vd = 0. 
An infinite CMRR is ideal because there the amplifier only amplifies the 
differential-mode voltage. CMRR is a measure of how well the conditions of 
(2.83) or (2.84) are met. 

Example 2.6 Differential Amplifier with CC Output 

Figure E2.6 is a differential-amplifier stage buffered by an emitter-
follower. Since both bases of the diff-amp are at the same dc voltage 
(0 V), and their emitter resistors are the same value, it is reasonable 
to assume that their currents are equal. Assume they both conduct 
(12 V-0 .8 V)/(220 Ω + 1.8 kO x 2) = 3 m A. Then 

7 , 12V-(0.8V+(3mA)(220i l ) ) . _ Λ 
/ E I = /E2 = 2200 + 2(1.8 kO) = 2 ' 7 6 m A 

Using this current, we find that VBE agrees with the assumed value of 
0.80 V and that the bias point has converged. Then rel = re2 = 9.6 Ü s 10 Ω. 
Continuing the dc analysis at the output collector, we have 

VC2 = 12 V( 4 7 0 k i l ) - (2.7 mA)(2.0 kü \\ 470 kO) = 6.6 V 
C2 \470kO + 2 .0kn / A " 

and 

6.6 V+12 V-0 .8 V Λ θ Α '"*—Ττω  =38mA 
Then re3 = 6.8 il . Solving for the usual amplifier parameters gives 

v0 I L8kfl \ 
üi""\1 .8kn + 220n-f 10Ω/ 

:((0. 
2.0 kü 

99) 

= ( « 

10Ω + 220Ω + 1.81ίΩ||(220Ω+10Ω)> 

4.7 ΙίΩ 
1ίΩ + 7Ω + 21ίΩ/100/ί 

■■ (0.887)(4.56)(0.994) = 4.02 
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E2.6 Differential Amplifier with CC Output +12V 
.OPT NOMOD OPTS NOPAGE 
.DC VI -0.25 0.25 0.05 
.OP 
.TF V(70) VI 

VI 10 0 DC OV 
VCC 80 0 DC 12 
VEE 90 0 DC -12 
REI 30 40 220 
RE2 50 40 220 
RO 40 90 1.8K 
RL 80 60 2.OK 
RE3 70 90 4.7K 
Ql 80 10 30 BJT1 
Q2 60 0 50 BJT1 
Q3 80 60 70 BJT1 
.MODEL BJT1 NPN (BF=99) 
.END 
SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C 
NODE VOLTAGE 
(30) -.8018 (40) -1.4467 (50) -.8018 
(60) 6.1220 (70) 5.3143 
BIPOLAR JUNCTION TRANSISTORS 
NAME 
MODEL 
IB 
IC 
VBE 
VBC 
VCE 
BETADC 
GM 
V(70)/VI 

Ql 
BJT1 
2.93E-05 
2.90E-03 
8.02E-01 
-1.20E+01 
1.28E+01 
9.90E+01 
1.12E-01 

= 4.045E+00 
INPUT RESISTANCE AT VI 

Q2 
BJT1 
2.93E-05 
2.90E-03 
8.02E-01 
-6.12E+00 
6.92E+00 
9.90E+01 
1.12E-01 

= 4.318E+04 

Q3 
BJT1 
3.68E-05 
3.65E-03 
8.08E-01 
-5.88E+00 
6.69E+00 
9.90E+01 
1.41E-01 

OUTPUT RESISTANCE AT V(70) = 2.686E+01 

FIG. E2.6 

rjn - ( 100)[ 10 a + 220 Ω +1.8 kii || (220 Ω +10 Ω)] = 43 kü, 

rout = 4.7 kü || (7 Ω + 21<Ω/100) = 27 Ω 

Again, compared with the simulation, these results are right on. 

2.12 Current Mirrors 

A circuit that supplies a current of the same polarity and magnitude as its 
input current is a current mirror. A Widlar current mirror (after Bob Widlar) 
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(a) (b) (c) 

FIG. 2.13 Active current sources: (a) Widlar, (b) Wilson, and (c) common IC source with CC. 

is shown in Fig. 2.13a. Input current Ιλ flows through the diode, creating a 
voltage that is also VBE of the transistor. If the diode and b-e junctions are 
matched (that is, have the same v-i function), then the resulting emitter current 
equals Ιλ. Consequently, the output current I0 is equal to a/,. For a typical 
a = 1, I0 is a replication of /, . This circuit is useful, for example, in supplying 
I0 to a diff-amp. If the emitter and anode are connected to - VEE, the current 
can be set by a resistor from the input to ground. If the voltage across the 
resistor is much larger than the diode voltage, /, is largely determined by the 
resistor value. 

The basic current mirror of Fig. 2.13a can be improved by adding another 
transistor to compensate for base current lost to the transistor. If we take into 
account IB, then 

I0 = a(Il-IB 

Solving for the current gain gives 

- (V 5 ) 
IQ_ β 
/, β + 2 β»1 

(2.91) 

(2.92) 

Three improvements have been made in Fig. 2.13b. First, the diode has been 
made out of a similar transistor, Qx, by connecting the base and collector. 
This kind of diode is often used in integrated circuits to achieve the best match 
of two pn junctions. Second, the transistor Q3 has been added to compensate 
for a loss, now occurring in Q2. Third, to further reduce current-gain error, 
emitter resistors have been added. 

The effect of Q3 is to divert IB amount of current from Ix. Q3 emitter 
current is then (β + 1)/Β· From this current, IB is diverted into the base of Q2. 
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This loss of base current to Q2 was compensated by the diversion of Q3 base 
current. Though it is better than the simple current mirror of Fig. 2.13a, the 
compensation is not perfect, even with matched junctions. If we assume that 
the b-e junctions are matched and Rx = R2, since the bases of Q, and Q2 are 
connected, the same voltage occurs across identical branches. Thus 7E1 = IE2 

and 

/Ε3 = ( 0 3 + Ό / Β 3 = / Β 2 + / Ε Ι (2.93) 
Solving for 7E3 gives 

JE3 = — — + hi = IE2 I 1 + I (2.94) 

0 2 + l E 2 \ 0 2 + l / V ' 

Also, 
/I = <*2/E2+/B2 (2.95) 

Since Io = βιΐγα, the current gain can be found from (2.94) and (2.95) and is 

Io βχβ2 + 2β3 

/, βφ2 + 2β2 + 2 (2.96) 

For ßx = ß2 = ß3 = ß , 

Io ß2 + 2ß 
/ Γ β2 + 2/3 +2 ( 2 · 9 7 ) 

This current gain is a closer approximation to unity than that of Fig. 2.13a; it 
is tabulated here for various values of β: 

ß Io/'/, ß/(ß + 2) 

1 
2 

10 
50 

100 

0.60 
0.80 
0.98 
0.999 
0.9998 

0.33 
0.50 
0.83 
0.96 
0.98 

For ß = 100, JQ/JI is 100 times better than 0 / ( 0 + 2) and 40 times better at 
0 = 50. 

This analysis assumes perfect matching of Q, and Q2. In practice, the 
effect of mismatch tends to be minimized by # , and R2 if the voltage dropped 
across them is much greater than the b-e junction voltages of the transistors. 
Since resistors can be matched much better than transistors and can be made 
very stable, the current mirror emitter currents can be determined dominantly 
by the emitter resistors. In integrated current mirrors, transistor matching can 
be very good, and the additional voltage drop of the emitter resistors can be 
minimized, giving the circuitry connected to the mirror a wider voltage range. 
This current mirror is called the Wilson current mirror after its inventor, George 
Wilson. 
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Another three-BJT mirror, well-suited for integrated circuit (IC) layout, 
is shown in Fig. 2.13c. For matched junctions, 7E1 = IE2 and 

, [ W ( j 8 2 + l ) + J0/j8,] 
I\~ = OL2IE2 (2.98) 

j33+l 

where the numerator of the second term on the left is IE3. Using the substitution 
I0/a = IE2 yields the current gain: 

/ Q _ ßxßißi + ßxßi + ßxßi + ßx (299) 

h ßxßißi + ßxßi + ßißi + ßx + lßi + l 

For ßl = ß2 = ß3 = ß, then 

!°=JÊ!±JL· (2.100) 
/, jß2 + jß + 2 

The terms in the numerator and denominator differ only at the constant term, 
resulting in accurate current mirroring. The current gain versus ß for several 
values is given in the following table, along with the gain values for the Wilson 
mirror (Fig. 2.13b): 

ß (/o//|)b / o / / | 

1 
2 
10 
50 
100 

0.60 
0.80 
0.98 
0.99923 
0.99980 

0.50 
0.78 
0.98 
0.99922 
0.99980 

For / 3 » 1 , the mirrors of Figs. 2.13b,c have almost identical current gains. 
Although Q3 of Figs. 2.13b,c recirculate their base currents, taken from /,, 
back to Q2, only Q3 of Fig. 2.13c provides base current for Qx and Q2 and 
carries no output current. 

Sometimes a minimum component current mirror is preferred to minimize 
silicon or circuit-board area. The mirror of Fig. 2.14 uses a compensating base 
resistor for Q,. RB compensates for loss of IB2 from /, and for a2. For 
/3-matched transistors and base-emitter junction areas of Qx and Q2, ratioed 
so that VBEI = ^BE2, then the desired gain is I0/1{ = REl/RE2 = A^ From the 
circuit, /E1 = Ιλ — Ι0/β\ and from the area-ratio constraint, 

IEXREX + ImRB=IE2RE2 (2.101) 

Furthermore, I0/a = IE2. Solving these equations for RB, we finally obtain 

(Λ, + 1)ΚΕΙ 

a{\-AJß) * Β = Γ , Ϊ ' V7n\ = (i8 + 1 ) ^ E i ( ^ 3 ^ ) (2.102) 

This result gives the compensating value of RB and is more easily derivable 
in the following way. The loss in voltage across RE\ due to the loss of IB2 is 
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' B 2 

E1 β+ι· (0+1)ΛΕ2 

(a) (b) 

Sii 

(c) 

is. 
ΛΕ1 

FIG. 2.14 An «„-compensated current source (a), equivalent resistance of Q, (b), and the 
sensitivity of the current gain to β with the ratio of RB to ΛΕ1 (c). 

^E\Io/ß and is compensated by the drop across RB. Then, 

ß El ß \β + ι) 

Rearranging gives 

Because A, = I0/ / , , 

*(*.♦£)-«(&) 

A,REl 
ßRB AlRB_(ß-Al)RB 

~ß+\ ß+\ ß + l 

(2.103) 

(2.103a) 

(2.104) 

Solving for RB, we obtain the approximate expression of (2.104). This simpler 
derivation does not take into account the a2 loss, only the loss due to IB2. 

This analysis was based on Kirchhofes laws and led to much algebraic 
manipulation in deriving RB. By using the ß transform, we can simplify the 



2.12 Current Mirrors / 47 

analysis by using the equivalent input circuit shown in Fig. 2.14b. Since 
I0 = ßIB2, loi h can be expressed largely as a current divider, where 

A =^=ß * E I + * B / Q 3 + D ( . 
1 j , p κΕ1 + κΒ/(/3 + ΐ) + (/3 + ΐ )κ Ε 2

 l * ; 

Under the constraint that 

A, = ̂  (2.106) 
*<E2 

the numerator and denominator of (2.105) can be divided by REi and A, can 
be substituted for the resistor ratio of (2.106). Solving the resulting equation 
for RB results in the exact expression of (2.102). 

RB was chosen according to the constraint of (2.106). This constraint 
simplifies the selection of emitter resistor values. The current gain is neverthe
less sensitive to β variation, and RB can instead be chosen for minimum β 
sensitivity, or for 

. d 
mm — 

aß G) 
For ß » 1, Io/ li can be rewritten as 

To ßREl + RB a = ß.f{ß) ( 2 1 0 7 ) 

7, P ßREl + RB + ß2RE2
 P a + ß2RE2

 P n P ' K ' 

Then 

dß\ij 
— ß-f(ß)=f+ß-— (2.108) 
dßH H dß 

df _-a(REi + 2ßRE2) REÌ 

dß (a + ß2RE2)2 (a + ß2RE2) 

Substituting (2.109) into (2.108) yields 

dß 
(Io\ = a2 + aß2RE2-ßaREi-2aß2RE2+aßREl+ßiRElRE2 

\h) (a + ßRE2)2 

To obtain RE at minimum sensitivity to ß, (2.110) is set to zero and the 
numerator solved for RB. The result is 

RB=-ß(REi-yRE?)±^ßRE2(ßRE2-4REI) (2.111) 

Under the previous constraint of (2.106), the sensitivity of Αλ with respect to 
β is 

ß dß/ß \AJ dß 

where A, is (2.105) with RE2 expressed in terms of REi and A{. With RB given 
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by (2.102) and substituting into (2.112), we get 

S£ = k2 

{k-\)ß2+[(k+\){k-\)-\}ß-(k+\y 
k=-

RP 

1 
ß/k+V 

ß,k»l (2.113) 

The approximation to S is asymptotic with unity (Fig. 2.14c). For k>ß, A, 
varies directly with ß. This result suggests that k be kept less than ß to reduce 
gain sensitivity to ß. This is not always possible when attempting to satisfy 
(2.106) as well. Or, the circuit has gain limits for acceptable gain sensitivity 
to ß. 

2.13 Matched Transistor Buffers and 
Complementary Combinations 

A simple but elegant circuit (Fig. 2.15a) consists of a pair of matched JFETs. 
The lower JFET acts as a current source for the upper source-follower. The 
beauty of this circuit is that the lower transistor sinks a particular amount of 
current (7DSs) with VGS = 0 and that, with negligible loss of current to the load, 
JDSS also flows through the upper JFET, resulting in the same VGs of zero 
volts (because they are matched). This voltage amplifier of unity gain (or 

+ Vr DD 

vss 
(a) (b) 

FIG. 2.15 Voltage buffer (x l voltage 
complementary CC buffer. 

amplifier) circuits: (a) matched FET buffer and (b) 
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buffer) consequently has zero voltage offset. This is desirable because the 
purpose of a buffer is to provide a voltage source at a much reduced output 
resistance than the input voltage (from a higher-resistance source). A simple 
emitter or source-follower would cause an offset due to an undetermined VBE 

or VQS and introduce a voltage error at the output. A BJT circuit based on 
the same general idea is shown in Fig. 2.15b. Here, the VBE offsets of opposite 
polarity CC BJTs cancel to the extent that their currents are equal (for matched 
junctions). This offset match is more difficult than with the JFET circuit in 
that the devices are of opposite polarity. This circuit is nevertheless quite 
useful for acceptable offsets of typically less than 50 mV. 

The NPN/PNP pair of Fig. 2.16 functions like a PNP with current gain 
from the output NPN. This circuit is commonly used in the output stage of 
amplifiers so that only power NPN transistors need be used (and is sometimes 
called a "complementary PNP" circuit). It can also be used, as in Fig. 2.16b, 
to source current. Although the output is from an emitter, the base resistance 
is large (rc of the PNP), resulting in an acceptably large output resistance to 
pass as a current source in applications in which the driven node is of relatively 
low resistance. 

Some complementary pairs are regenerative and form latching circuits. 
Thyristors are a class of four-layer (PNPN or NPNP) devices that are used 
as high-power switches and also are formed as parasitic elements in ICs that 
have multiple n and p layers (such as CMOS or biMOS circuits that have a 
tendency to latch if their inputs exceed the supply voltages). A common 
thyristor, the silicon-controlled rectifier (SCR), is shown in Fig. 2.17a along 

+^cc 

C- | 1 | 

-VEE 

(a) (b) 

FIG. 2.16 Uses for a complementary PNP circuit: (a) PNP equivalent CC amplifier and (b) 
current source. 

$H 
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a o 

> 

?o—* JV/L 

(a) (b) 

FIG. 2.17 Thyristor equivalent BJT circuits: (a) SCR and (b) PUT. 

with a variant, the programmable unijunction transistor (PUT). For either device, 
transistor collector currents supply base current to the other transistor, causing 
regenerative action. SCRs cannot be turned off by the gate; the anode-to-
cathode voltage must reverse, causing cessation of conduction. SCRs are used 
in power conversion, and PUTs are useful devices for constructing simple 
oscillators and programmable timers. 

2.14 Closure 

We have examined a variety of amplifier circuits that have one to three 
transistors. More complicated "building-blocks" will be introduced later. As 
additional transistors are added, complexity grows to the point that a multilevel 
or hierarchical organization is needed. Multiple circuits are combined to form 
complete subsystems, which in turn are combined with other subsystems to 
form the final system. We can deal with complexity at these various levels in 
the same way. An op-amp (introduced in the next chapter) contains many 
circuits but, like the transistor, can be modeled as a single device with a simple 
functional description. In this chapter, we developed a "library" of basic 
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circuits that can be used to develop a library of basic subsystems, in the same 
way that commonly used computer routines can be joined to form more 
complicated routines. 

This circuit discussion was based on simplifying assumptions that must 
now be examined. We assumed that a circuit input was independent of the 
output, that there was no feedback. Furthermore, although both static and 
dynamic quantities were introduced, we omitted reactive components such as 
capacitors and inductors. These components require the use of complex num
bers to describe their behavior and lead to discussion of transient and frequency 
response. 
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Feedback Circuits 

3.1 Basic Feedback Topology 

An amplifier with an input that includes some of its output is a feedback 
amplifier. This kind of amplifier can improve control of the output. If we 
compare the actual output with the desired output (represented by the input), 
an error can be constructed and used to correct the output. Feedback is 
analogous to recursion in mathematics and to iterative loops that branch 
backward in software. 

The block diagram representation of a classical feedback system is shown 
in Fig. 3.1a. The input R is summed with output C through feedback gain H 
or HC. The summation is defined such that HC is subtracted from R, resulting 
in the error E. The forward gain G amplifies E, resulting in output C. The 
algebra represented by the block diagram is 

E = R-HC (3.1) 

C = GE (3.2) 

Solving (3.1) and (3.2) for the overall gain of the feedback amplifier, the 
closed-loop gain, results in 

T = - = —^— (3.3) 
R \ + GH 

The input and output quantities R and C are arbitrary but are usually voltages 
or currents in circuits. The total gain around the feedback loop GH is the 
loop gain. 

52 
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R > Φ - ► C 

H 

(a) 

Ro-

(b) 

FIG. 3.1 The classical feedback system represented as (a) a block diagram or (b) a signal-flow 
graph. 

An alternative representation for the same feedback circuit is the flow 
graph, shown in Fig. 3.1b. By convention, nodes represent quantities such as 
R, £, and C, and directed arcs or paths between nodes represent transmittances 
(gains or attenuations). When multiple arcs enter a node, they add. The output 
of an arc is the product of its input node quantity and the arc gain, written 
along it. Block diagrams are often associated with control theory and flow 
graphs have traditionally been used in network theory. They are equivalent 
representations but block diagrams are somewhat easier to read and flow 
graphs easier to draw compactly. Both representations will be used here. 
Transmittance in network analysis is transfer function in control theory; it is 
the ratio of output to input quantities. (In network theory, G is usually called 
a, and H is called / ) 

3.2 Identification of Forward and 
Feedback Paths 

One of the difficulties of feedback circuit analysis is in identifying the forward 
(G) and feedback (//) paths, the summer Σ, and the output pick-off point. 
Circuits often consist of components connected in messy topologies that are 
hard to compare with the simple feedback forms of Fig. 3.1. We need to 
develop a view of feedback circuits that makes their decomposition into G 
and H blocks intuitive yet exacting. This will be done inductively; examples 
will be analyzed so that a more general perspective can emerge. After G and 
H are known, the techniques of control theory can be applied. In this chapter, 
we will constrain our investigations to real, dynamic analysis. 

Before we attempt to identify G, H, and Σ in examples of feedback circuits, 
some general principles can be deduced. First, from (3.1) it is clear that R 
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and B ( = HC) must be compatible quantities; they must have the same units 
to be summed. Of course, E must also have the same units. If R is a voltage, 
then E and B must also be voltages. Beginning with the input and output 
quantities, we will find that the kind of transfer functions (or gains) that G 
and H are will follow from this analysis of units. G has the units of C/E, 
and because the units of E and R are the same, G has the units of the overall 
amplifier C/R. Since H = E/C, its units are the inverse of G For example, 
if G is a transconductance, H is a transresistance; if G is unitless, H is also 
unitless. 

Second, since E is the summation of R and B, the kind of circuit topology 
that realizes this summation depends on the kind of quantity being summed. 
If voltages are summed, then look for a loop, because, by Kirchhofes voltage 
law (KVL), voltages sum in loops. For current summation, by Kirchhofes 
current law (KCL), look for a node. Because voltages in loops are summed 
in series, voltage summation is often called series feedback. Similarly, current 
summation at a node is shunt feedback. Sometimes the summing loop or node 
corresponding to Σ is not obvious, and some circuit transformations are 
required to reveal it. 

Finally, the block-diagram pick-off or sampling point for the output will 
be realized in circuit form as a loop for currents and a node for voltages. For 
sampling, currents flow in loops and current sampling is series sampling, 
whereas voltage sampling at the output node is shunt sampling. 

Most feedback circuits are more complex than the simple form of Fig. 
3.1. A gain block can precede the input or follow the sampling point to the 
output. In these cases, the input does not directly sum with the feedback, and 
the output is not the fed-back quantity (see Figs. 3.2a,b, respectively). There-

? » E » V 
\B 

G 

H 

(a) 

ΣΥ 

\B 

E 
G 

H 

α0 

(b) 

FIG. 3.2 The classical feedback system with additional input (a) and output (b) transfer functions. 
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fore, our first task in the general analysis is to identify the summing and 
sampling quantities and their corresponding loops or nodes. 

Generally, the choice of summing and sampling quantities is arbitrary. 
Figure 3.3 shows that choosing the sampling anywhere in the feedback loop 
results in a correct overall transfer function T as long as accounting is made 
for G2, the gain block between the output and sampling point. This flow graph 
begins (Fig. 3.3a) with a feedback circuit in which ax precedes the summing 
circuit. Then 

E = aiR-HCt (3.4) 

The output C is shown buried somewhere in the assumed forward path G, 
where 

G=GlG2 (3.5) 

The output is along this path at C = Gx · E. A further gain is required to get 
to C", where the assumed feedback path H begins. 

Ro 

(a) 

-GXH 

(b) 

/?o-
a{Gx 

Ό 
—G\G2H 

(c) 

RO-
1 + GH G2 

-►OC 
(d) 

FIG. 3.3 Choosing the sampling anywhere within the feedback loop, such as at C" instead of C 
results in a correct transfer function where G2 becomes part of the feedback path. 
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Flow-graph reduction is shown in Figs. 3.3a-d. Each step in the reduction 
illustrates a basic reduction rule. The feedback path is moved from E to C in 
Fig. 3.3b, and the Gx path is eliminated. Using (3.4), we find this is algebraically 
equivalent to 

C = GXE = G^a.R - HC) = Gxa,R - GXHC (3.6) 

Eliminating the G, path is equivalent to distributing Gx over the terms in E. 
Eliminating C" by combining G2 and -GXH results in Fig. 3.3c with a direct 
feedback path to the same node. Writing the expression for C from Fig. 3.3c 
we have 

C = aiGxR-GxG2HC = " ^ 1 * (3.7) 
l-(-GxG2H) 

The last expression is the solution for C. The closed-loop gain T is 

C G 1 
T = -=ax (3.8) 

R l + GH G2 

The significance of this result is that if a sampled quantity is chosen that is 
not the actual output quantity, as long as it is within the loop the correct 
expression for T still results. Because G2 is actually part of the feedback path 
from C, the total feedback path is G2H, and (3.8) can be expressed as 

T=ar-—^ ' „ , (3.8a) 
1 + G1(G2H) 

The forward path is Gx. 

r 
G 

a{ E Gx C G2 
RO Mfc ■ »p » o c 

-H 

(a) 

a{Gx C G2 
RO feQr^ X>C Ό 

-GXH 

(b) 

G2 1 + GXH 
RO »OC 

(c) 

FIG. 3.4 Choosing the sampling at C instead of at the output C results in a correct transfer 
function with an = G?. 
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For the case in which the sampling precedes the output, as in Fig. 3.2b, 
a0 must be introduced. In flow-graph form, this is shown in Fig. 3.4. The 
reduction of the flow-graph results in 

T=ar \ + G,H 
G2 (3.9) 

In this case, a0 = G2, and the forward path gain is Gx. As long as the sampled 
quantity is chosen within the loop and (3.5) holds, Gx and G2 can be arbitrarily 
chosen. 

G 

(a) 

a{ E' Gx E G2 RO »o »ce- *oC 

(b) 

-G\H 

RO-
αλ G 

(e) 

Ό 
-GH 

(d) 

-GXH 

RO-
1 + GH 

-►OC 

(e) 

FIG. 3.5 Choosing the error summing anywhere in the forward path, such as at E instead of 
£", results in a correct transfer function. The choice of E' eliminates the common factor of Gx 

from the branches into E. 
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A similar situation for choice of E is shown in Fig. 3.5. Choosing E 
anywhere in the forward path results in a correct expression for T. Suppose 
E is chosen as the summing circuit instead of E'. Since E is in the forward 
path, T is correctly derived (Fig. 3.5e). The flow-graph summing node closest 
to the input is usually preferred because the common factor Gx in axGx and 
-GXH is eliminated from each transmittance. The common factor suggests 
that input and feedback paths are sharing a common path Gl9 and that a 
different summing circuit closer to the input can be chosen. 

3.3 Operational Amplifier 
Configurations 

The circuits closest to ideal block or flow-graph representation are operational 
amplifier (op-amp) circuits. An amplifier is operational when its behavior is 
dominated by feedback path components instead of forward path gain. 
A feedback path can be as simple as a divider composed of resistors. Generally, 
resistive dividers are more stable and precise than amplifier gain. If the forward 
path gain is made as large as possible (that is, G-»oo), then 

G 1 
lim = — (3.10) 

and G is no longer a determinant of closed-loop gain, only H. 
Integrated circuit (IC) op-amps are commonly used in analog signal 

processing. Op-amps, by definition, have a differential input and single-ended 
output with (open-loop) gain K so that 

v0 = K(v+-v.) (3.11) 

where v+ is the noninverting (+) input voltage and i?_ is the inverting ( - ) 
input voltage. An ideal op-amp has infinite input resistance, zero output 
resistance, and infinite gain. 

Figure 3.6 shows the two basic op-amp configurations. In the noninverting 
configuration (Fig. 3.6a), Σ is the differential op-amp input, where 

v+ = vÌ9 V- = Hv0, E = v+ —V- = υ·χ — Hv0 (3.12) 

From (3.1) and (3.2), we can create general expressions for G and H. In (3.1), 
if R is set to zero, then by superposition 

E\ 
H= c 

and from (3.2), with no feedback from H, 

(3.13) 

(3.14) 
I B = 0 

Since R = υλ, a voltage, then E is a voltage. C = v0 and H denotes a voltage 
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Rx 

JP 

V: *■ Φ 
H K 

* i 
Rf + Ri 

(a) 

/?f + /?i 

/?f + /?i 

(b) 

- ► v 0 

► v 0 

FIG. 3.6 Basic op-amp configurations: (a) noninverting, (b) inverting, and their block diagrams. 

gain (unitless). From (3.13), 

H = 
~V- V- Ri 
v0 v0 Rr+Ri 

(3.15) 

H is the voltage divider attenuation from v0 to v-, given by (3.15). 
The forward path gain is found from (3.14) by opening the loop so that 

no feedback is introduced into Σ. This is done by setting B ( = i?_) to zero: 

Vi Vi 

Since K ->oo, we can use (3.10) to find the closed-loop gain. It is 

(3.16) 

I XVf I / V j Rf 
noninverting op-amp Ay\K^oc = — - — = H (3.17) 

Ri Ri 

A finite-gain expression for the closed-loop voltage gain follows from (3.3) 
and is 

K 
noninverting op-amp Av = l + KWiRr+Rd) (3.18) 

In the case of finite K, E is nonzero. Atypical open-loop gain K of IC op-amps 
is 105. Because E=0 for proper op-amp function, if E is represented by a 
circuit node voltage, it is a virtual ground because the feedback characteristic 
of the op-amp keeps it from changing significantly. 
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For the noninverting op-amp configuration, it is not difficult to identify 
the sampling node v0 or Σ. For the inverting configuration (Fig. 3.6b), Σ is 
more difficult to identify but must involve the Ü_ node because the input and 
feedback path components both connect to it. Since v+ = 0, let E = u_. The 
V- node is thus a virtual ground. A further complication is that υ·χ does not 
add directly to v- ; there is an input voltage divider between them. The divider 
attenuation is 

c*i= ' (3.19) 
Rr+Ri 

The value of a, of the block diagram of Fig. 3.6b does not involve v0 since ax 

is not in the feedback loop. Consequently, since an ideal op-amp has zero 
output resistance, the attenuation from υ·χ to v- can be found by setting v0 to 
zero, and (3.19) results, a, is V-/vx when uo = 0, so only the ax branch (and 
not the feedback branch, Hv0) contributes to E. 

Similarly, for H, the same components Rf and Rx form a divider in the 
reverse direction. In this case, from (3.15), R = vx is set to zero, and H is 

(3.20) 
Rr+R, 

In effect, what we have done to find u_ is to apply the superposition theorem 
when we found ax and H. Both vx and v0 contribute to u_ through the divider 
components, and they sum to V- by superposition. Voltage summation must 
occur in a loop, but here it occurs where two loops intersect. Both vx and v0 

sources can be Thévenized to produce the equivalent loop in which the 
summation Σ occurs. In this case, Σ is not obvious from the circuit topology. 

The last block to be determined is G. It is —K of the op-amp. In this case, 
G < 0 because the gain is from the inverting input. Combining these blocks, 
the closed-loop voltage gain is 

R —K 
inverting op-amp Α¥ = - ^ ■ 1 + {_K){_RJ{R(+m (3.21) 

The simplified gain expression for K^oo is found by applying (3.10): 

inverting op-amp AV|A:^00=-—- (3.22) 
R\ 

This simplified gain expression can be explained in terms of the circuit. With 
infinite K, v- is a virtual ground, and we can let u_ = 0. Then the input current 
is vj Rx, and it must all flow through Rf, creating an output voltage of 

"(t) VO = ~R\R) (3,23) 

From (3.23), (3.22) readily follows. This explanation does not easily fit into 
the previous approach, but it does suggest an alternative analysis. 
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-Φ 

I " I 

m 

i i O 

l i O 

(a) 

(b) 

Rf + Ri 

(e) 

FIG. 3.7 The inverting op-amp configuration with a Norton equivalent input source (a). Choosing 
E = v_ results in the flow graph of (b) whereas E = i_ results in (c). Both are correct representations 
of (a). 

Suppose that υ·χ and Rx are replaced by a Norton equivalent circuit, as 
shown in Fig. 3.7a. Here, i"i = vj Rx. What results is a transresistance amplifier 
with rm = £>0//j. The blocks can be identified as follows: 

(3.24) 

(3.25) 

(3.26) 

V-
— rin — R[ || R 

h I B=O 

G = ^ 
V; 

= -K 
B = 0 

H V-tl — 
X Ό 

R> 
v.=o Rf+ Rx 

The closed-loop transresistance is ax times (3.3) and is 

G RfRx -K 
' l + G/Z Äf+Äi l + (-K)(-Rx/(Rf+Rx)) 

(3.27) 
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For infinite K, this reduces to 

rm\K+oo=-Rr (3.28) 

The gain of this transresistance amplifier is independent of Rx because it is 
from V- to ground. For v- as a virtual ground, no current flows through Rx. 
Its contribution to a-t cancels its contribution to the reverse voltage divider 
of//. 

The voltage gain, Av, of (3.21) can be derived using (3.27) and ij = vj Rx: 

Av=rm'±='f (3.29) 
Vi Ri 

When the substitutions shown in (3.29) are made, (3.21) results. This shows 
that there is not necessarily a unique choice of blocks for closed-loop gain 
derivation. 

To further illustrate this point, consider the choice of E in Fig. 3.7c. 
Instead of an error voltage u_, an error current i_ is assumed. This choice of 
E most closely approaches the alternative explanation based on currents 
flowing into and out of a virtual ground at the V- node. For this alternative, 
«i = 1; the input current contributes directly to E = i_. G is a transresistance 
vj i-. The op-amp responds to an input voltage of v- at its inverting input, 
and i_ develops u_ across rin. This voltage is multiplied by -K of the op-amp 
to produce v0. Therefore, 

G = -rinK (3.30) 

Finally, H must be a transconductance. With ij set to zero, B is the current 
generated by v0 that flows into the inverting op-amp node at voltage V-. This 
feedback current is (v0 — v-)/Rf. Because this expression contains u_, it is not 
too useful in determining feedback current B. Notice that Rf and v0 form a 
Thévenin equivalent circuit connected to the summing node. If we change it 
to a Norton equivalent circuit, Rf and Rx are in parallel (which is rin), and 
the two current sources lx and v0/Rf are in parallel. Then, 

H=-vf=-i (331) 

Combining (3.30) and (3.31) with (3.3) gives the resulting transresistance: 

_VQ_ G -finK c\-\r\ 
Vm U 1 + GH l + ( - r i n K) ( - l /Ä f ) ^ ' 

Substituting for rin from (3.24) and rearranging (3.32) results in (3.27). We 
have solved for the closed-loop gain of the inverting op-amp configuration in 
three ways. What is mainly required to produce the correct closed-loop gain 
is consistency, making sure that blocks connect correctly and that sampling 
and summing circuits are in the loop. 



3.4 Feedback Effects on Resistance / 63 

3.4 Feedback Effects on Input and 
Output Resistance 

The input resistance of a voltage summing amplifier is increased due to negative 
feedback. In Fig. 3.1a, let R and E be voltages and the circuit represented by 
this block diagram have an open-loop input resistance Rx, due to the input 
resistance of G shunting the output resistance of H (Fig. 3.8a). Without 
feedback, E = R = vx, and the input voltage is applied to Rx directly. The same 
input voltage is largely canceled by feedback, resulting in a much smaller error 
voltage applied to Rx. In effect, the input resistance is increased because the 
same input voltage, v-x produces a current in Rx that is E/Rx. The ratio of 
closed-loop to open-loop input resistance is the ratio E/R. This ratio can be 
derived from (3.1) and (3.2) as follows: 

E C 
— =\-H-=\ 
R R 

GH 1 
1 + GH \ + GH 

(3.33) 

The closed-loop reduction through Rx makes the input resistance effectively 
larger by (1 + GH), or 

, x Vi E + B E{\ + GH) , , , 
voltage input rin(cl) =^ = ^— = —K—m

 L=RX(\ + GH) (3.34) 
h h h 

For the noninverting op-amp circuit of Fig. 3.6a, the effective op-amp 
differential input resistance is made larger by feedback. Since V- tracks v+ as 
feedback, the differential voltage across the input terminals is the error voltage. 
This small voltage produces a much smaller current in the op-amp input 
resistance than vx alone would produce (with u_ grounded). In effect, the 
op-amp input resistance is bootstrapped by the feedback voltage. For the 
inverting configuration (Fig. 3.6b), since u_ is the error voltage and is small, 
op-amp input current is also much smaller than it would be with υ·χ alone 
applied to v-. Thus, the resistance across which the error voltage is developed 
is effectively larger with feedback. 

A similar argument applies to an amplifier with an error current. In this 
case, input resistance is reduced by (1 + GH). The input current (rather than 
voltage) is reduced by feedback current. The same input current results in a 

o 
(a) (b) 

FIG. 3.8 Feeback effects on input resistance for (a) voltage and (b) current inputs. 



64 / 3. Feedback Circuits 

reduced voltage across the input resistance due to feedback current cancellation 
(Fig. 3.8b). The resulting voltage across Rx produced by the error current is 
1/(1 + GH) times smaller than the voltage that the input current alone would 
produce. A smaller voltage resulting from the same input current means that 
the effective resistance is smaller: 

current input rin(cl) = - = — — = = (3.35) 
ii E + B E(l + GH) \ + GH 

For the circuit of Fig. 3.7, open-loop input resistance is R{ || Rf. With 
negative feedback, the resulting error current produces an error voltage of V-
that is much reduced from the voltage that ix alone would produce across rin. 
The closed-loop input resistance is effectively (R{ || Rr)/(1 + GH). 

The effect of negative feedback on output resistance can be analyzed by 
representing the output as a Thévenin equivalent voltage source with internal 
voltage of v and open-loop output resistance of R0. An output voltage of v0 

is produced by a current i0 applied to the output. With feedback, output voltage 
error due to the drop across R0 is corrected. The output voltage is (with no 
input signal applied): 

v0=v + i0R0 = -GHv0+i0R0 = j ^ j (3.36) 

The effective closed-loop output resistance v0/i0 is 

voltage output rout(cl) = 1 + ( ^ (3·37) 

Similarly, for current output amplifiers, rout is increased by feedback. If the 
output is represented by a Norton equivalent circuit with current source i, 
then internal shunt resistance R0 reduces output current. The output resistance 
can be found by applying a voltage v0 to the output. The resulting output 
current is 

c _ l + i _ ( _ o l 0 c + i _ _ & _ (3,8) 

The effective closed-loop output resistance is 

current output rout(cl) = R0(l + GH) (3.39) 

Feedback has advantages for both input and output resistance. For the 
four cases considered, the effect of feedback is toward the ideal. We have 
considered the effect of input resistance at the error node or loop and output 
resistance at the sampled node or loop. For voltage summing, the resistance 
across the error voltage is increased; for current summing, the resistance 
through which the error current flows is decreased. If other gain blocks separate 
these nodes or loops from input or output, their effect on resistance must also 
be considered. 
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FIG. 3.9 A noise source N is injected into the feedback system forward path. Feedback rejects 
noise to the extent that N is injected toward the output C. 

3.5 Noise Rejection by Feedback 

Feedback increases the immunity of a circuit to noise, which is any undesirable 
electrical disturbance to the circuit. Figure 3.9 shows the classical feedback 
topology with the addition of noise N injected into the forward path. Noise 
rejection ability will be defined as the signal-to-noise ratio (SNR), the ratio of 
signal to noise at the output, or 

SNR = 
C/R 
C/N 

For the open-loop case, 

C C 
-=GlG2=G, -=G2 

Then open-loop SNR is 

SNRol = ^ ^ = G 1 

(3.40) 

(3.41) 

(3.42) 

With feedback, the ratios are 

C G 
R \ + GH 

C 
N \ + GH 

The closed-loop SNR is 

SNRcl = Gx 

(3.43) 

(3.44) 

The open- and closed-loop SNRs are the same, suggesting no advantage to 
feedback. However, for the same input, the open-loop output is much larger 
than the closed-loop output for G » 1. Comparing C/R for open and closed 
loop, the open-loop gain is (\ + GH) times larger. For the same C/R 
(signal gain), the open-loop G must be 1/(1 + GH) that of the closed-loop 
amplifier, or 

Gc] Gol = -
l + GcIH 

(3.45) 
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The ratio of open- to closed-loop SNRs shows the advantage of feedback: 

SNRcl Glcl Gc]/G2c] 
SNRol GIo| C l / C o l VCcl <m (l + GCItf) (3.46) 

When G2c\ = G2oi, the familiar (1 4 GH) factor reappears as the advantage of 
feedback on SNR. This feature of op-amp circuits leads to better rejection of 
noise from the power supply by stages following a sufficiently large Gx. The 
closer to the input that N is injected (that is, the smaller proportion of G that 
Gx is), the less advantage feedback has. In the extreme, noise injected at the 
input summer is indistinguishable from signal. Noise at the output is rejected 
by a factor of (1 + GH). 

3.6 Reduction of Nonlinearity with 
Feedback 

A further benefit of feedback is the linearization of nonlinear forward path 
gain blocks. Assuming the classical feedback topology of Fig. 3.1, let G = K 4 ε, 
where K is a fixed gain and ε represents the nonlinear terms of G; ε varies 
with E or C. The closed-loop gain T is 

(Κ + ε) 
T=XHK + e)H ( 3 · 4 7 ) 

For Κ»ε, 14-(X 4 ε)Η = 14- KH, and T can be separated into linear and 
nonlinear terms: 

K ε 
T = 4 , Κ»ε (3.48) 

l + KH 1 + KH y ' 
The second term is the nonlinear closed-loop gain. The open-loop nonlinearity 
has been reduced by (14 KH). 

In all of the improvements brought about by feedback, the improvement 
factor has been (14 GH). The improvements investigated here were the sensi
tivity of the closed-loop gain to the open-loop gain, input and output resist
ances, noise rejection, and linearization of nonlinear open-loop forward-path 
gain. 

3.7 Miller's Theorem 

The inverting op-amp configuration has a resistor connected from output to 
inverting input. This is not uncommon for feedback amplifiers and can be 
generalized as shown in Fig. 3.10a. The inverting voltage amplifier has a gain 
of—K with input quantities of vx and ix. The output voltage is v0. The equivalent 
input resistance can be found as follows. First, 

O0 = -K-vi (3.49) 
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FIG. 3.10 Miller's theorem produces equivalent circuit (b) from the inverting voltage amplifier 
shunted by resistance Rf in (a). 

For the input node, applying KCL we obtain 

Rf 
£ - i i = 0 

Substituting for v0 from (3.49) gives 

Rf Rf 

Rearranging (3.51) for input resistance, we have 

Miller's theorem 

= h 

Rr 
1 + K 

(3.50) 

(3.51) 

(3.52) 

This result is in conformance with (3.35) and also follows from it as a special 
case. It is given separately here because it appears repeatedly when working 
with CE amplifier stages with collector-to-base feedback. 

For an amplifier with output resistance, the equivalent shunt contribution 
due to Rr can be found similarly, or from (3.39): 

v0 (~K)Vi ( K \ 
-i i -V-A1 +K)/Rf \1 + K/ 
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From the output, Rf appears to be slightly less than its actual value for large 
K. From the input, Rr appears to be 1/(1 + K) times its actual value, causing 
input resistance to be much reduced and providing a low-resistance path for 
ij. For infinite K, the input node is a virtual ground, as for the inverting 
op-amp. The equivalent circuit resulting from Miller's theorem is shown in 
Fig. 3.10b. 

3.8 An Inverting Feedback Voltage 
Amplifier 

The first discrete transistor feedback amplifier we will analyze using the 
techniques already developed is shown in Fig. 3.11. To simplify analysis, an 
ideal unity-gain buffer follows the collector of Qi, but otherwise could be an 
emitter-follower. This circuit poses a challenge in identifying the input summer 
Σ. Since the input is vi9 a voltage, the error quantity must also be a voltage 
(without a quantity-transforming a,). Voltages are summed around loops, 
according to KVL. Since the error voltage must be in a loop that includes the 
feedback, the loop containing Rf (the only component providing feedback) 
must include the error voltage. It is appealing to let the error voltage be vb 

since it meets these requirements. Then both υλ and v0 contribute to the loop 
containing Rr and Rb. This error loop is shown in Fig. 3.11b and is similar to 
that for the inverting op-amp configuration—two loops combine, resulting in 
error voltage vb across part of the loop. 

What is not apparent is what to do with the input resistance of (?! : 
rin = (ß + l)(re + ^E)· It turns the two voltage sources with their series resist
ances into a loaded divider similar to that of the cascade amplifier (Fig. 2.8). 
As in that case, a decision must be made about what to do with rin. If it is 
included in calculation of vb, then when the gain of G is found, the external 
base resistance is not included in the gain formula because it was taken into 
account in finding vb. Alternatively, by solving for a Thévenin equivalent vE 

in series with RB \\ Rf (Fig. 3.11c), this resistance is included in the gain formula 
of (?! as external base resistance. 

We first analyze the circuit by letting rin load the input. The contribution 
of Vi to vb is through the divider formed by RB in series with rin || Rr. This 
divider has a transfer function of vb/'vx = at: 

Rt 11 rin /α ς„χ 
a\ — ~^~u ;r~ (3.54) 

Äf||rin + ÄB 
A similar divider defines H: 

= - * B | | r i " (3.55) 
i>i = 0 ^ Β II r i n + Rf 

Since rin is taken into account in ax and H, vb is the actual base voltage with 
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(a) 

m m 
(b) (c) 

FIG. 3.11 (a) A typical inverting voltage feedback amplifier, (b) For E = vb, v-x and v0 sum by 
superposition across rin. (c) For E = vE, the Thévenin equivalent voltage source is a combination 
of input and fedback output. 

external base resistance taken into account. Therefore, G does not include its 
effect and is 

v0 RL U = — = —a · (3.56) 

The closed-loop voltage gain is found by substituting (3.54)-(3.56) into (3.3) 
and is 

A v = a j 
Ki 

1 + GH r e +R E + ÄB/(i8 + l)H-(re+ÄE+aÄL)(ÄB/Äf) 
(3.57) 

This gain expression is similar to that of nonfeedback amplifier stages but has 
no transresistance interpretation; it is merely a simplified form of the feedback 
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formula in terms of component values and Qx parameters. It is useful for 
calculating the closed-loop gain but offers little of the insight into feedback 
characteristics of individual block transfer functions. 

An alternative derivation of (3.57) is based on incorporation of external 
base resistance into G In this approach, E is different; the error voltage is 
no longer vb but is the Thévenin equivalent voltage from the voltage divider 
formed by the two sources with the base of Qx open. It is 

M^^+ferkK (3.58) 

This Thévenin error voltage is in series with a Thévenin resistance of RB \\ Rt 

that forms a divider with rin (Fig. 3.11c). Then, 

vHz^h (3.59) 

It is apparent from (3.58) that ax is different from the previous analysis and is 

Rf 
« i = -

From (3.58), H is 

H = VE 

Va 

Kf+Kß 

K B 

/Vf H" /vg 

Finally, G is 

G = 
vE 

K, 

β = 0
 a ' r e + Ä E + (ÄB||*f)/(i8 + l) 

(3.60) 

(3.61) 

(3.62) 

Combining (3.60)-(3.62) into (3.3) and rearranging gives (3.57). This circuit 
demonstrates a multiplicity of valid choices for the error voltage. In the 
loaded-divider case, the error is an actual node voltage vb whereas in the 
second analysis it is the Thévenin voltage vE. Both approaches produce the 
correct closed-loop gain. 

3.9 Input and Output Loading 

If the buffer of the inverting amplifier (Fig. 3.11) were replaced by a CC stage, 
it would be included in G, and its output resistance would form a voltage 
divider with Rf. The divider would be part of G since the divider output is 
v0. The CC stage gain depends on the resistance at the output node. But what 
is this resistance? At the output, Rr is in series with RB || rin. This appears to 
be the CC load, but it is not. Output loading due to H is Rf only because vb 

is an actual voltage calculated by taking into account the loading of Rf. 
Similarly, the loading of the output on the input suggests that, from the vh 
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node, Rç is in series with the CC emitter and its ß -transformed base resistance 
RL and is 

f e ß + 1 

But likewise, this is not the loading on the input. The CC output resistance 
would not be added to Rf when determining external base resistance in (3.62) 
because it would already have been taken into account in the output divider 
in G 

The situation is similar to the input loading problem. If the loading of rin 

is taken into account when calculating vb9 then the base resistance RB \\ Rr 

should not be accounted for when calculating the gain of the Qi stage; it was 
already accounted for when calculating vh. But keeping track of this accounting 
is not always easy, and a more formal basis for it is needed when determining 
the input and output loading on G. If the loading interactions between G and 
H are applied to G, then when H is determined, loading will already have 
been accounted for. To clarify this, we consider the general problem of 
determining loading on the input and output of G. 

To approach the loading interactions of G and H generally, we model 
both of these blocks as two-port networks. Each will have either Thévenin or 
Norton equivalent circuits representing input and output. Both input and 
output (voltage or current) sources are controlled by either the two-port voltage 
or current of the opposite port. 

We now establish constraints on what these source dependencies must be 
so that loading can be found. Because these are controlled sources, equivalent 
resistance cannot be found by shorting or opening them because the sources 
themselves can affect the resistance. If the source value varies with a terminal 
quantity, it appears to have a finite resistance. For example, a Thévenin 
resistance cannot be found by shorting the controlled voltage source in series 
with it. (See the derivation of Miller's theorem. The output voltage is controlled 
by the input voltage, affecting the input resistance.) Also, the two-port sources 
do not correspond to actual sources in the circuit topology. Shorting or opening 
them does not necessarily correspond to a short or open in the actual circuit. 
Their controlling variables, however, are actual circuit quantities. For example, 
if a two-port equivalent voltage source is kxv0, it can be nulled by shorting 
the v0 node of the actual circuit. 

First consider the loading on the output of G caused by the input to H. 
The input equivalent circuit to H could be either a Norton or Thévenin circuit. 
In either case, its source is dependent on either the H output port voltage or 
current. If voltage, then shorting the H output port causes the port voltage to 
be zero, and the dependent source driving the H input has zero output. This 
removes the effect of the source and leaves the H input resistance alone loading 
the output of G. The output loading due to H has been isolated. The dual 
case is a source dependent on the H output current. An open H output port 
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causes this current to be zero, nulling the source at the input of H and leaving 
only the H input resistance. 

In either case, the H input source is dependent on an H output quantity 
that is set to zero by either shorting a node or opening a loop at the output 
port of H. If the error quantity is a voltage, then it is summed around a loop 
that includes the H output port. Opening the port (thus breaking the loop) 
causes the error loop current to be set to zero. The H input source is made 
dependent on this loop current to be removed by opening the error voltage 
summing loop. Similarly, if the error quantity is a current, input and feedback 
currents are summed at a node. The H input source is made dependent on 
the voltage at this node (to ground) so that when it is shorted, the H input 
source is removed. This can be summarized by the following conditions (Fig. 
3.12). 

Output loading conditions: 

• Voltage feedforward through H is nulled when the error summing node 
is shorted, causing the output of G to be loaded by the H input. (If rin = 0, 
open the input to G to assure that error current = 0.) 

• Current feedforward through H is nulled when the error summing loop 
is opened, causing the output of G to be loaded by the H input. (If rin of G 
is infinite, short the input to G to assure that error voltage = 0.) 

Since the error quantity is arbitrary within the feedback loop, the loading is 
also arbitrary but is dependent on the choice of error. 

A simplifying constraint upon the two-port output sources of H involves 
the error circuit. For voltage summation, input and feedback voltages must 
sum around a loop. To insure that these voltages are being summed in the 
same loop, the same current /,oop, must flow through all loop elements. When 
the output of H is represented as a Thévenin equivalent circuit (Fig. 3.12a), 
the Thévenin voltage source and resistance are in series with the loop, and iloop 

flows through both. (A Norton circuit would have created another loop.) In 
the case of an error current, summation occurs at a node (Fig. 3.12b). To 
insure that input and feedback currents are summed at the same node, the 
same voltage i;node must be across each source at the summing node. The 
output of H is thus a Norton equivalent circuit. Both current source and 
equivalent resistance are across i;n0de· 

This constraint on choice of equivalent circuit is not necessary because 
whatever representation is used of the port, the port voltage and current are 
still the same. With this constraint, the summing circuit is easier to identify 
because an additional loop or node has been avoided. The identification of 
H is also made easier because the H output source quantity is the same kind 
as the error. 

Now consider input loading due to the output of H. If the sampled quantity 
to be fed back is a voltage, it must be at the sampled node (to ground) and 
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FIG. 3.12 Loading on the output of G is found by nulling the H input source, which is driven 
by an H output quantity. For an error voltage, E is summed around a loop (a) which, when 
opened, causes E and ktiloop to be zero. For an error current, E is summed at a node (b) which, 
when shorted, causes E and /Cji>node to be zero. 
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across the H input. It is nulled (B = 0) when the sampled node is shorted. 
Then the output loading of H on the input can be found. For sampling a 
current, feedback is nulled when the loop containing the current is opened. 
The second simplifying constraint on H, therefore, is that its output source be 
dependent on the sampled quantity. Then the following conditions can be 
applied to find input loading. 

Input loading conditions: 

• Voltage feedback through H is nulled (B = 0) when the output sampling 
noded is shorted, causing the input of G to be loaded by the H output. 

• Current feedback through H is nulled (B = 0) when the output sampling 
loop is opened, causing the input of G to be loaded by the H output. 

The reason is the same as for output loading. If the H output source is set to 
zero, what appears across the port is the H output loading resistance. 

Simplifying constraints on H as a two-port network: 

• The H input source must be controlled by the H output quantity that, 
when set to zero, makes the error (input to G) zero. 

• The H output source must be controlled by the G output quantity. 

These constraints apply to the given loading conditions. When the condi
tions are evaluated for voltage and current cases, simple loading rules result. 

Loading rules: 

• For input loading, short H input if G output is a voltage; open H input 
if G output is a current. 

• For output loading, short H output if error is a current; open H output 
if error is a voltage. 

To illustrate the use of two-port equivalent models, the passive network 
of Fig. 3.13a will be analyzed using the two-port model of Fig. 3.13b. We need 
to determine the two-port parameters Ra, Rb, a, and b. For the resistances, 

^aUb = 0 = ^ f j ^ b U a = 0 = -Rf (3.63) 

These resistances are found by setting their series sources to zero. For Ra this 
requires that vb = 0. This is accomplished in Fig. 3.13a by shorting the node 
of vh. The resulting resistance loading the va node is Rr. The method is the 
same for Rb. 

For the transmittances a and b, 

a = — = 1, t ^ = 1 (3.64) 
ib = 0 

By opening the ports, we can find the (open-circuit) Thévenin equivalent 
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FIG. 3.13 A simple network (a) with two-port equivalent circuit (b). The four parameters of the 
two-port are determined in (c). The block diagram of (c) is given in (d). 
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voltages in terms of the controlling variable. The resulting two-port equivalent 
circuit is shown in Fig. 3.13c. The two sides of the circuit have been isolated 
from each other except through controlled sources. When this network is 
solved for va and vb, the result is 

va = 

vb = 

Ri + Rr 

R^ + ^ + Rf 

νλ + 

ϋι + 

Rx 
Rx + R2+R{ 

Ri + Rr 
Rl + R2+Rf 

v2 

v2 

(3.65) 

(3.66) 

Of curious note, these equations can be cast into feedback form (Fig. 3.13d). 
For vb, 

G = 
R, Rf 

R2~ì~ Rf R\ +Rf 
H = 

Ri 

Ri + Rr 
F = 

(Rr/(R2 + Rr)) 
1 - ( Α , / ( Λ , + Α Γ ) ) ( Α 2 / ( Α 2 + Α Γ ) ) 

A similar formulation is possible for ua. Although this simple network could 
be solved for v.d and vh more easily by using the voltage divider formula, the 
two-port approach is illustrated by it. 

The inverting amplifier of Fig. 3.11 is the second example. The two-port 
network for H is shown in Fig. 3.14a. Since E = vh9 the error voltage is directly 
across (rather than in series with) the H output. When it is shorted, E is 
directly nulled. The H input source is thus set to zero, and Rr loads the output. 
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FIG. 3.14 A two-port equivalent network for H of the inverting amplifier of Fig. 3.11 for 
(a) E = vb and (b) E = ih. 
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The sampled quantity is v0. The H output source must be controlled by 
it. Shorting it allows the input loading resistance Rf to be found. 

If E is chosen as ib instead, the resulting H network is shown in Fig. 
3.14b. The H output is a Norton circuit, so the current source directly connects 
to the current summing node. The H output port voltage is still vh. When 
shorted, ib is diverted through the short, ensuring that E — 0. This causes the 
H input voltage source, controlled by vh9 to be set to zero, and the input 
loading on the G output can be found. To find the loading of the H output 
on the G input, the G output quantity v0 is shorted. Since it is the H input 
voltage, it controls the H output current source and sets it to zero. This leaves 
Rf as the H output loading on the G input. 

Example 3.1 Inverting Feedback Amplifier 

Figure E3.1 shows an inverting feedback amplifier similar to that of Fig. 
3.11. After dc analysis1 (and assuming ß = 99, / s = 1CT16 A), the dynamic 
emitter resistances are 

rel = 230.93 Ω; re2= 18.61 Ω 

A few other incremental resistances are needed. The input can be Théven-
ized, combining RH and JRP into rs; the input voltage source has an 
attenuation of as : 

r s = /? B JRp = 861.11Ω, as = -——— = 0.8611 
" RP+RB 

Let E = vh= i?(20) and C = ve2 = f(40). The input resistance of Q, is 

rGi = (ßx 4- l)(rel + REl) = (100)(230.9 Π + 330 Ω) = 56.093 kO 

Then, 

ai = a s - - ! f ^ £ _ = 0.78179 

G = __ ^L ^ f II ( R E 2 + ^ E 3 ) = __3 6 201 
a i " r e i + Ä E ' Ä f | | ( Ä E 2 + Ä E 3 ) + rc2 + Ä L / ( i 8 2 + l ) 

[In Chapter 4, we learn that there is another forward path through Rf 

to t>e2. It adds to G because it is in parallel with it: 

G JRE2+RE3)\\(rc2+RJ(ß2+l)) _ _ 2 2 2 5 x l Q - 2 
2 (RE2+RE3)\\(re2+RJ(ß2+\) + Rr) 

When this is added t o G , G = -36.179, a difference of 0.06%.] 

1. This analysis can be avoided for ac problem-solving exercises by using the dc bias solution 
from the circuit simulation data. 
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E3.1 Inverting 2-BJT Feedback 
Amplifier 

.OPT NOMOD OPTS NOPAGE 

.OP 

.DC VI -2V 2V 0.05V 

.TF V(50) VI 

vcc VEE 
VI 
RB 
RP 
RL 
RF 
RE 
REI 
RE2 

80 0 DC 5V 
90 0 DC -5V 
10 0 DC OV 
10 20 1 K 
80 20 6.2K 
30 80 22K 
20 40 10K 
60 0 330 
40 50 IK 
50 90 3.9K 

Ql 30 20 60 BJT1 
Q2 80 30 40 BJT1 
.MODEL BJT1 NPN (BF=99) 
.END 
NODE VOLTAGE 
(20) .7545 (30) 2.2458 
(40) 1.4634 (50) .1443 
(60) .0371 
OPERATING POINT INFORMATION 
TEMPERATURE^ 27.000 DEG C 
BIPOLAR JUNCTION TRANSISTORS 
NAME 
MODEL 
IB 
IC 
VBE 
VBC 
VCE 
BETADC 
GM 

Ql 
BJT1 
1.12E-06 
1.11E-04 
7.17E-01 
-1.49E+00 
2.21E+00 
9.90E+01 
4.30E-03 

Q2 
BJT1 
1.39E-05 
1.38E-03 
7.82E-01 
-2.75E+00 
3.54E+00 
9.90E+01 
5.32E-02 

1.0 V 

0.0 V 

-1.0 V 

-2.0 V 

1 1 4 ^ 

1 1 1 1 

1 Ί 1 1 

i A 

\ A 

1 1 1 I 1 
-2.0 V -1.5 V 

v(50) 
-1.0 V-0.5 V 0.0 V 0.5 V 1.0 V 1.5 V 2.0 V 

VI 
V(50)/VI=-5.883E+00 
INPUT RESISTANCE AT VI=1.256E+03 
OUTPUT RESISTANCE AT V(50)=8.327E+02 

FIG. E3.1 
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The remaining transmittances are 

H = — y \ r G i = _ 7 > 8 1 7 9 x 10-2 

^ E 3 
""OD : 0.79592 

Putting the transmittances together, we obtain a voltage gain of 

Vi 1 + GH 

where 14- GH = 3.8284. The input and output resistances are 

rin = RB+RP\\rGi l + ( - G ) = 1.2566 kO 

1 l + < 

+ ÄE2J 

* L / ( J 3 2 + 1 ) ] | | ( * E 2 + * E 3 ) 
GH 

= 832.3 Ω 

The SPICE simulation verifies these numbers to three digits, the given 
simulation convergence accuracy. The graph of v0 - t>(50) versus V\ shows 
feedforward through Rt outside the linear range of the active path 
(through the transistor) when its gain is zero. 

3.10 A Noninverting Feedback 
Amplifier 

The next feedback amplifier example is shown in Fig. 3.15a. It feeds back via 
Rf to the emitter of the CE input transistor Qx. Since both input and output 
quantities are voltages, this is a voltage amplifier. To simplify analysis, the 
output of the CE stage is buffered by an ideal x ( - l ) amplifier. (This could 
be implemented as a PNP CE stage.) 

We will analyze this circuit for three different choices of error E. The first 
choice is preferred because it is simplest to reduce to gain and summing blocks. 

From Fig. 3.15a, let 

RE = Rr\\Ri a n d rs = re + - ^ - (3.67) 
p + 1 

The summing loop must include both v-t and v0 terms (Fig. 3.15b). The feedback 
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(a) 

(b) 

ΛΒ 
0+1 re Ve «f||Äl 

(c) 

FIG. 3.15 A typical noninverting voltage feedback amplifier (a) showing details of the loaded 
divider summing loop (b). By Thévenizing the right loop of (b), the summing loop becomes 
explicit (e). E is the Thévenin voltage source coefficient. 
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from v0 is Thévenized with a series resistance of RE and Thévenin voltage 
source of 

"iiâhov° 
The output of this equivalent circuit is ve. The loop continues (Fig. 3.15c) and 
includes rs and vx. The Thévenin equivalent circuit of Fig. 3.15b is shown in 
Fig. 3.15c. 

The error is chosen to be 

E = vi-vfb (3.69) 

Since the input quantity v{ adds directly to E, ax= 1. From (3.69), 

El H = — 

and the forward path is 

V:=0 \Rf+Rj (3.70) 

= a-^~ (3.71) 

This results in a closed-loop voltage gain of 

a (# L / ( r s +K E ) ) 
A = — — Π 72) 

Now that the circuit has been analyzed by a straightforward analysis, we 
will investigate alternatives to show that feedback circuits can be solved several 
ways. Examination of two alternatives should clarify some of the subtler aspects 
of the approach. 

First, notice that in the preceding solution of Av, because vfh was chosen 
as the term relating v0 to E in (3.69), the gain of G was calculated to include 
RE in the transresistance of Qx. If ve were chosen for E instead of (3.69), RE 

would have been taken into account in the expression for ve9 and G would 
have only rs in its denominator. In this case, the transresistance of G would 
be around an input loop from vx to ve instead of from t»j to ufb. 

Taking this approach, we begin by noting that both v{ and v0 sum at the 
emitter of (?!. The loop that contains E is shown in Fig. 3.15c. An expression 
for the emitter voltage ve can be constructed by superposition: 

0#=(^UpL_y_*L_\„o (3.73) 
e \rs+Rj \rt+Rj\RT+RJ 

T Î 
a, -H 

This time, let E = ve. It qualifies because it contains terms for both v{ and v0. 
The coefficients of these quantities are expressions for blocks a, and —H, as 
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designated in (3.73). These blocks are 

RE 

rs+/?F " = - ( ^ ) ( ^ ) < 3 7 4 ) 

Now an unusual step must be taken to produce G We need two equivalent 
expressions, which are 

G = -a—-=a-± (3.75) 

These expressions for G are equal because the voltage developed across RE 

is the same as that developed across rs except that they are inverted in polarity 
(Fig. 3.15a). If vE increases, the voltage across RE increases and causes an 
increase in IE. This same voltage change across rs causes a decrease in IE out 
of the emitter of Qi9 inverting the polarity of the change in IE. Hence the 
minus sign for the first expression of (3.75). 

Combining the gain expressions gives the closed-loop gain as 

A _( *E \ «(RJRE) 
v \rs + RE) l + aiRJrJlrJirt + R^.WiRr+RÒ] K' 

This is equivalent to (3.72) after the a{ factor is multiplied by the numerator. 
Although the result is the same, the derivation is less obvious due to the need 
for two expressions for G. 

The final approach uses a different choice for E in that ve is used as the 
output-related term and is subtracted from the input υ·χ: 

E = vì-ve (3.77) 
E can be expanded as we did in (3.73): 

Γ / Ό \ / r \ / «?. \ 1 

r k (3.77a) £ = n^r + U^A« 
This reduces to 

E ( r> ÏÏM C-[rs + Rj{Ui{ 

From (3.77b), a( and H are 

Γ Ri 1 
.Rt+Rij +) 

(3.77b) 

Since H = —(Vi-ve)/v0, solving (3.77) for —E/v0 with ^ = 0 yields a negative 
expression that is then negated to produce a positive H of vj v0. 

The gain of G is from E io v0, and G is calculated based on the difference 
in (3.77), or 

G = a— (3.79) 
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Combining (3.78) and (3.79) with (3.3) and rearranging gives (3.72). This 
choice of E does not require two gain expressions for G and is somewhat 
simpler conceptually. In both solutions, E is expressed as a linear combination 
of v} and v0. 

These solutions were constructed by inspection of the loops and nodes of 
the circuit without use of the two-port constraints. The analysis took place at 
a higher level than basic circuit laws, however, since the transresistance method 
and identification of voltage or current dividers make it possible to write the 
block gains directly from inspection of the circuit. This approach is intuitively 
simple as long as the H loading is obvious and G and H are easy to identify. 
Otherwise, the two-port approach would be applied (Fig. 3.16). 

To set the error voltage to zero, the loop around which it is summed must 
be opened. The loop current is ie ; opening the loop at the emitter of (^ sets 
E to zero. Since /e = 0 nulls £, the H input source must be controlled by ie. 
Also, since v0 is the sampled output of G, the H output source must be 
controlled by it. The H output is the result of Thévenizing involving R„ Rf, 
and v0. When v0 is shorted, the G input loading is R, \\ Rf. When ie is nulled 
by opening the emitter, the G output loading is R^R,. The H output source 
voltage is the voltage due to v0 with zero port current (ie = 0); it is 

due to the divider action of Rf and R{. The H input source voltage appears 
at the H input when the H input port current is zero. When the port is opened 
(disconnecting it from v0), the resulting voltage is due to i'e flowing through 
R,, or Riie. 

As for the virtues of this feedback amplifier, two transistors provide a gain 
determined by Rf and Ki /or large G. With two BJTs, G can be made larger 
by allowing the output inverting buffer to have a gain magnitude » L A typical 

^ 

1 , 

11 
*ιΙΙ*γ 

H 

jJÄh *< 
_ΑΑ.Λ i 
Rt+R{ 

h 
FIG. 3.16 Two-port equivalent circuit for H for the noninverting feedback amplifier. 
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achievable gain for G is 500. For a closed-loop gain «500, the gain is set 
predominantly by the external resistors. This circuit is a simple discrete 
implementation similar to the noninverting op-amp configuration. 

Example 3.2 Noninverting Feedback Amplifier 

Figure E3.2 is a noninverting feedback amplifier with an idealized x ( - l ) 
buffer, similar to the one in Fig. 3.15. Assuming the dc analysis from the 
simulation data, we obtain re = 32.73 Ω. Then the three quantities of 
interest are 

3.2106 
^ = 2.5833 

Vi l + GH 1 +(3.2106)(7.5630) x 10 

r.n = (ß + i ) (r e+ R. || R,)(l + GH) = 314.25 kil 

Out = Oil 

The SPICE data are 

— = 2.583; rin = 314.2 kil; 

Also, from bias point calculation, 

JE = 0.7907 mA; VBE = -0.7679 V; 

rOUt = o n 

V0 = 0.4192 V 

+12 V 

FIG. E3.2 
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1mA 

(a) 

* 2 ' e l 

*l+/?2 

'2*02 

(b) 

(c) 
FIG. E3.3 

Example 3.3 Noninverting BJT Feedback Amplifier 

The circuit of Fig. E3.3a is analyzed by first choosing the error E and 
then determining the loaded equivalent circuit (Fig. E3.3b). Let E = vbel. 
As in Section 3.9, the choice of a Thévenin equivalent output port for 
H results in a single summing loop. The port current is iei. When the 
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emitter is opened, iel =0 , and the H output voltage is 

From the emitter of Q}, Rx and R2 are in parallel. The Thévenin resistance 
of the H output port is 2 kil || 10 kil = 1667 Ω. 

The H input port samples the output voltage v0. The feedforward 
path through H is represented by a Thévenin equivalent circuit at the 
H input. The contribution to vQ through H is the voltage at v0 due to 
the path through the feedback network and is dependent on the H output 
port current rel. It is iel · R2. The resistance of the port is found by nulling 
ie,. This is accomplished by opening the Q, emitter. The resistance is 
# , + JR2. 

We will analyze the circuit for 

E = i> j - i> e i = t>bel = i ; i - \Ri^R2)\rc]^R]\\R2)V° 

. / * i l l * 2 \ 1 

U. + M^rU 
and v0 = GE. When E is simplified, ax and H are the coefficients of υ·χ 

and v09 respectively. They are 

ai " Vre.H-K, || Ä 2 / · H ~ ""ü7l co« " \Ri + R2)\rc] + Ri\\R2) 

Now we must determine G. It has two paths, the active path G, through 
the transistors and the passive path G2 through H. G is 

G=GX + G2 

Finally, this is combined in 

+ — 
H,G\olT ^bel 

Rx + R, R2 

Η,Ο,οίΐ 

A v = ufi 
l + GH 

for the closed-loop gain. A numerical solution begins with a dc solution, 
in which 

/ Ε Ι =6 .87μΑ, 

r e l = 3.765 kil, 

7E2 = 680/iA 

r m l = 3.803 kil, 38.04 Ω 

Substituting these and the circuit element values into the above equations, 
we get 

d = 312.4, G2 = 0.5312, G = 312.9 
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Also, 

H = (0.1667X0.6932) = 0.1155, ax = 0.6932 

Putting it all together, we get 

Av = 5.838 

The circuit is solved more easily by choosing 

as shown in Fig. E3.3c. Since this E is also a voltage, the loading of G 
is the same as we found before. But now 

and ax = 1 whereas 

H = ( - \ ) = 0.1667 

G has two paths, as before: 

r -v° 

= tti · jß2 = 216.5 
H,G2ofî rel + Ä | Il R2 

H,G,off 'elicei "*" ^1 II ^>) rel + ^1 || ^2 

Then G = Gx + G2 = 216.9. The closed-loop gain is 5.838, the same as 
before. The SPICE simulation confirms the result. 

3.11 A Noninverting Voltage Feedback 
Amplifier with Output Block 

In the previous examples, feedback was sampled directly at the output. This 
is not always the case, however. Another block between the sampling circuit 
and output must then be introduced just as ax was required for similar situations 
at the input. This block will be labelled a0 . Both αλ and a0 can be included 
in an expression for E: 

HC 
E = a{R (3.80) 

The amplifier of Fig. 3.15 can be modified by adding a PNP BJT, Q2 (Fig. 
3.17a). Its block diagram is Fig. 3.17b. Here, C/a0, the sampled voltage, is 
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*-φ 
(a) 

vl 

H 

«o 

(b) 

FIG. 3.17 A noninverting voltage amplifier (a) with a0. Feedback is from base to emitter of Q2 

whereas output path is through Q2 to collector. Block diagram of (a) is shown in (b). 

labeled vx. Choosing sampled quantities is like choosing error quantities; 
within the loop, the choice is arbitrary. The sampling point is preferably chosen 
as far forward in the loop as possible to minimize common expressions in a0 

and H. 
Let E be that of (3.69). Then vfb is somewhat different due to Q2. Writing 

vfb in the complete error expression gives 

E = vi-\ —— vx 

XR. + Rr+rJ 
(3.81) 

For re2 « Rr+ Ri9 the two resistors dominate the denominator of H, so variations 
in re2 are negligible. G is the same as in (3.71) except that now RE = 
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Ki||(#f+>-e2)and 

G = *i ^ΓΤΤ ^Τ (3·82) 

The final block to be determined is a0 : 

Vi 
<*2 ' , *° , n (3.83) 

r e 2+Äf+Äi 

This is the gain of Q2 from υχ to v0, with the loading of H included. (E is a 
voltage, so the summing loop is opened.) The closed-loop gain can then be 
constructed by substituting the expressions for the blocks into 

^i4'a" ( 3 · 8 4 ) 

The resulting expression is unwieldy and not intuitively beneficial. For compli
cated feedback amplifiers, more insight is gained into amplifier behavior from 
the expressions for the blocks themselves. 

An inverting voltage amplifier with the same block diagram is shown in 
Fig. 3.18. The error voltage is chosen to be 

E = vi-vfh=vi- R3ic2 (3.85) 

The error loop is shown in Fig. 3.18b. The collector current source of Q2 is 
shunted by R3. This Norton source can be transformed into a Thévenin source 
in which the voltage source is R3ic2. The sampled quantity is ic2. G is con
sequently a transconductance amplifier with gain 

E 
Ri z i 

= -<X\ T~^~ * « 2 

Ri i a2 · (3.86) 
rMl ΓΜ2 

Consequently, H must be a transresistance and is 

E 
H = -

ÏC2 
= -(-R3) = R3 (3.87) 

Finally, a0 is 

ao=Vo=VoM=-R2.A- ( 3 . 8 8 ) 
*c2 le2 *c2 a2 

These blocks are combined for the closed-loop voltage gain according to (3.84), 
resulting in 

A <*i(Ri/rMi)(R2/rM2) (3S9) 

\ + ax(RJrMi)a2{R3/rM2) 

To demonstrate an alternative derivation, a0 can be eliminated from the 
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+Vr CC 

Π7 

"O l 

■O 
m 

■VvV 

(a) 

R3 

ΛΛΛτ 

(b) 

: * 2 

( _ ) / ? 3 / c 2 = vfb 

/77 

FIG 3.18 An inverting feedback amplifier with aQ (a) and error-voltage summing loop (b). 

feedback topology by choosing the sampled node to be v0 instead. For this 
choice, the blocks are composed somewhat differently. With the same E9 G 
and H become voltage amplifiers: 

G = ^ 3 
/ / = - — . a2 R2 

(3.90) 

Substituting these into (3.3) yields (3.89). For this circuit, this latter choice of 
sampled quantity is better since it eliminates the redundant path of ic2 to v0 

in H and a0. 
This two-transistor amplifier not only provides a gain determined by R2 

and R3 but also provides a low-resistance source at the output with voltage 
translation from the input. Unless R3 is very small, the input resistance is 
large, approaching the ideal input-output requirements for a voltage amplifier. 
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A limitation is that all of the voltage gain must be realized in the first stage 
(Qi). Thus, Ri must be large relative to R3. Since Ri is loaded by the large 
rin(CC), a large gain can be achieved from Qx. This amplifier achieves much 
functional capability from its five components. Because VEE constrains the 
value of R3 for biasing, an additional resistor from the emitter of Qx to ground 
could be required. 

3.12 Field-Effect Transistor Buffer 
Amplifier 

Another amplifier similar to that of Fig. 3.18 is a common buffer amplifier 
that uses feedback to reduce gain error. The goal is to achieve an accurate x 1 
gain from an ideal voltage amplifier so that a high-resistance voltage source 
can be transformed into a low-resistance source capable of supplying varying 
amounts of load current at the input voltage. The circuit of Fig. 3.19 provides 
this capability with few components. The input transistor is chosen to be a 
JFET for high static resistance. A BJT could be used instead if the base current 
caused negligible dc offset across RG. The current source at the drain simplifies 
the analysis and can be implemented as a large resistor or a PNP collector 
current supply. Since it is constant, it enters into the dynamic analysis as an 
open circuit. 

Let us choose the error voltage to be 

E = Vi - v0 (3.91) 

Then E = vgs. Since, in the FET model (see Fig. 2.2c), ugs develops id across 

■vw 

Ô 
m 

FIG. 3.19 A feedback voltage buffer with FET input. The voltage gain of Q2 increases the loop 
gain and decreases gain deviation from unity. 
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rm, then 

°-t = — = ß— (3.92) 
B = 0 ^gs rm 

Since both input and output are directly in £, H = 1. To find G, we set £ = 0 
as usual. This means that the feedback contribution to E must be eliminated 
to calculate forward path gain. In this case, we set v0 to zero. But since v0 is 
the numerator of G, it must remain free to vary. Therefore, to conceptually 
satisfy (3.92), another v0 source is separately connected to provide feedback, 
and it is set to zero. Think of it this way. If the loop is broken at the output 
and the fedback v0 is v'0, then v'0 is set to zero while calculating G. For 
calculating H, v'0=v0. The closed-loop gain of this buffer is 

For a typical JFET, rm = 100 Ω. If R0 = 1 kil and β = 100, then Av is 0.9990, 
or approximately 10 bits of accuracy (in A/D converter terms). 

The previous examples illustrate the idea that feedback analysis is a very 
fluid activity in that a given circuit can be analyzed several ways, all consistent 
with the basic concept. Whenever a circuit can be cast in the feedback form, 
it can be viewed as having feedback. Even the CD (or CC) configuration can 
be analyzed from a feedback perspective. The FET buffer amplifier is a CD 
stage with an additional transistor that increases loop gain. But even without 
Q2 of Fig. 3.19, feedback analysis can be applied. Let E = νχ-υ0 as before. 
Then G = vj E = R0/rm and H — 1. The closed-loop gain is 

A =^= G = ^ = Ro (394) 
v
 Vi 1 + GH l + (Ä0/rm)(l) rm + tf0

 l " ; 

This result is what the transresistance method would yield. (See (2.30) with 
RB = 0, R0 = RE, and re = rm.) 

3.13 Closure 

We have seen that a major difficulty in analyzing feedback circuits is in relating 
their flow-graph representations to their circuit diagrams. The major difficulty 
is in identifying error summing and feedback sampling. Furthermore, the G 
and H blocks load each other so that loading interactions must be accounted 
for. We approached loading by using two-port models of G and H to derive 
some general rules that are simple and intuitive. (No memorization of various 
kinds of two-port parameters were required.) Fortunately, as long as the 
summing and sampling quantities are chosen within the feedback loop, closed-
loop analysis can be performed. This allows various choices for E and C. 
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Various feedback amplifier examples were investigated with multiple deriva
tions to cultivate the art of choosing them well. 

We are not yet finished with feedback amplifiers. In Chapter 2, we analyzed 
a BJT circuit with a shunt base-emitter resistance. Two other possibilities are 
shunt resistances from collector to emitter (r0) and collector to base. We will 
study these topologies further in the next chapter. 
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C H A P T E R 

Multiple-Path Amplifiers 

4.1 The Reduction Theorem 

The ß transform presented in Chapter 2 greatly simplifies open-loop amplifier 
circuit analysis and makes the transresistance method possible. It can transform 
feedback circuits into open-loop equivalents. For example, the CC or CD 
amplifier has a feedback interpretation (Section 3.12) but can be jß-transformed 
so that the voltage gain takes the form of a resistive divider, (2.30). 

In this chapter, we examine circuits with more complex topologies. It is 
common for feedback amplifiers to have a significant forward transmittance 
through the feedback path. This results in multiple parallel (or shunt) forward 
paths. Shunt c-e or c-b resistance causes bilateral signal flow with a combina
tion of feedback and multiple forward paths. 

Before taking the feedback approach to analyze shunt-feedback circuits, 
we will examine some network theorems that are useful for simplifying these 
circuits. Analytic techniques adaptable to intuitive use are based on powerful, 
general circuit theorems. The ß transform is half of a more general theorem, 
the reduction theorem. It has two forms: 

current form => ß transform 

voltage form =Ξ> μ transform 

These forms are duals. In Fig. 4.1, two networks, represented by blocks, share 
a common port with a controlled source between them. In the current-source 
case (Fig. 4.1a), network Nl could be a BJT base circuit, in which i is the 

4 

94 
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(a) 

v l 

l 
( 0 + l ) r 2 

v2 

i 2 / ( / 5 + » 

(b) 

^ / ( ß + l ) 

v l 

(J3+ D*i 

( 0 + D * 
r 2 

v 2 

'2 

(c) 

FIG. 4.1 The current form of the reduction theorem. For networks N, and N2 with CCCS ßi 
shunting their ports (a), a ß-transformed N2 (b) or Nt (c) is equivalent to (a). 

base current. Then network N2 is the emitter circuit, and the current source 
that shunts the common port is a BJT collector current source. 

Wherever Fig. 4.1a applies, two equivalent circuits are possible (Figs. 
4.1b,c). These correspond, respectively, to equivalent base and emitter circuits 
for a BJT. In Fig. 4.1b, N2 is transformed using ß + 1; in (c), NI is transformed 
instead. All voltages, currents, and resistances in the transformed network are 
affected as shown. 

Figure 4.2 displays the dual of Fig. 4.1 with its corresponding dual trans
form, the μ transform. It applies to circuits with a voltage gain because μ is 
a voltage gain. This transform is used extensively in the modeling of vacuum 
tubes and applies especially to FET's because of their low drain resistance. It 
enables us to avoid use of feedback analysis in shunt-feedback circuits by 
transforming them into circuits most easily analyzed open-loop. 
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(a) 

v l 

«1 

+ 
V ν2 / (μ + 1) 

h 

(b) 

(e) 

FIG. 4.2 The voltage form of the reduction theorem. For networks Nl and N2 with VCVS μν 
in series with their ports (a), a μ-transformed N2 (b) or Nx (c) is equivalent to (a). 

4.2 μ Transform of Bipolar-Junction 
Transistor and Field-Effect 
Transistor T Models 

The μ transform cannot be applied directly to circuits using the T model 
because the transform is based on a controlled voltage source. The T model 
in Fig. 4.3a is shunted by r0. We will use this familiar model later when 
feedback analysis is applied to multipath circuits. For now, it must be trans
formed into a model with a controlled voltage source. This can be done by 
first referring re to the base as r^ (using the β transform). Then rQ shunts 
the controlled current source and forms a Norton equivalent circuit with it 
(Fig. 4.3b). The Norton circuit can be converted to a Thévenin equivalent 
(Fig. 4.3c) by noting that 

Ω. . (vhA vbc 

\rc/ rm 
(4.1) 
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Q c 

(b) 

bo fSjs/Sf 
+ vbe -

"vbe 

(c) 

FIG. 4.3 Transformation of the BJT T model with r0 (a) to a Norton equivalent low-frequency 
hybrid-^ model (b) to a Thévenized form (c). 

This current is converted to a Thévenin voltage by multiplying by the series 
resistance r0, resulting in 

r ° f e ) = f eK = ^ 
More precisely, the definition of μ for the BJT model is 

μ vbe 

(4.2) 

(4.3) 
ic = 0 

The condition that ic be zero allows vce to be the voltage of the controlled 
source alone, without additional drop across r0. Furthermore, 

+ >*m l - ( ^ c e / ^ b e ) | i c = 0 Vbe~VCl 

Vçe 

vch 

= Vçç 

= 0 Vbc 

(4.4) 
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d 
Q 

£ θ + Q M V g ! 
"gs 

(a) 

Ô 
s 

(b) 

d 
Q 

gO-

0 
s 

(c) 

FIG. 4.4 Transformation of low-frequency FET model with rQ (a) to Thévenized form (b). A 
FET T model, equivalent to (a), is shown in (c). 

For /c = 0 (and collector resistance Rc<oo)9 then vc = 0 and 

\μ + 1/ Vb 
(4.5) 

This relationship appears often in circuit analyses and is designated by vy the 
counterpart of a = β/(β +1). 

A similar model transformation for the FET model of Fig. 2.2c (without 
capacitances) begins with the model of Fig. 4.4a where r0 is added. It immedi
ately converts to the Thévenin equivalent form of Fig. 4.4b. An alternative 
equivalent model is shown in Fig. 4.4c, in which the gate is connected to the 
current source and rm is added. This is a FET T model. The gate current ig 

remains zero because all ig must flow through rm. Its resulting voltage drop 
affects vgs, and since the current source is controlled by ugs, a change in drain 
current equal to ig is injected into the gate node; or, more simply, since the 
voltage across rm is vgs, the current that must be flowing in rm is vgs/rm. But 
this is the amount of current injected into the gate node by the drain current 
source. By KCL, ig must be zero. 

The definition of μ applied to this FET model is substantially the same 
as the BJT model. The relationship between the BJT and FET models is simple; 
if re of the BJT model is replaced by rm, the FET model results. 

BJT to FET T model conversion: 

re => rm, e =Φ s, b =ï g, c =Φ d, vbe => vgs (4.6) 
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Applying this conversion to (4.3) results in the FET version of μ: 

FET μ = (4.7) 
id = 0 

Because the r0 for FETs is typically much lower than for BJTs, the use of 
transistor models that include r0 is more common for FETs. We now analyze 
some basic FET circuits using the extended model before applying it to BJT 
circuits. 

4.3 Common-Gate Amplifier with rQ 

Figure 4.5a shows a CG amplifier, drawn so that the reduction theorem can 
be easily applied to it. The gate is at ground and is the common terminal of 
the two networks shown in boxes. Network Nl is the source circuit, and N2 
is the drain circuit. The FET model of Fig. 4.4b is between Nl and N2. To 

Nl 
+ M v g s - N2 

\^) 9 WV ° t—vc 

Vgs ( μ + l)VgS 

+ + 

8 1 
(a) 

(b) 

FIG. 4.5 The CG amplifier, drawn to make the application of the μ transform obvious (a), and 
the resulting model after transformation (b). 
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make this circuit correspond to Fig. 4.2a, rQ must be included in N2. The result 
of transforming the drain circuit (N2) is shown in Fig. 4.5b. The drain circuit 
has been referred to the source side. The output voltage v0 across RL is also 
transformed to υ0/(μ + 1). This transformed circuit is now a voltage divider 
between input υ·χ and output ν0/(μ + 1): 

μ + l Rs+r0/(ß + l) + RJ(ß + l) ^ { ' ) 

The voltage gain is thus 

C G Av = Rs + (RL+r0)/(ß + l) ( 4 · 9 ) 

This result is reminiscent of the transresistance method but uses the μ instead 
of the β transform. It demonstrates the voltage form of the transresistance 
method. The denominator of (4.9) can be interpreted as amplifier transresist
ance rM. The resistance in the drain contributes to rM and appears smaller by 
1/(μ +1) when referred to the source side of the FET. The β transform involves 
base and emitter networks; the μ transform involves the drain (or collector) 
and source (or emitter) circuits instead. 

The input resistance rin can be seen directly in Fig. 4.5b to be 

CG Γίη = ^ ^ + / ί 8 (4.10) 
μ + 1 

The CG output resistance can be found by μ -transforming the source circuit. 
In this case, the resistance of the source referred to the drain is (μ +1) times 
larger, so 

CG r0Ut = RL·\\[r0 + (μ + l)Rs] (4.11) 

4.4 Common-Source Amplifier with rQ 

A CS amplifier is shown in Fig. 4.6a. The voltage-source FET model makes 
KVL analysis easy since there is only one loop. The needed equations are: 

vs = isRs 

vQ = -isRL 

islRs+ro+Ri] = μν^ = μvë-μRsis 

Solving for Av gives 

^ = ^ ( 4 . 1 2 ) 
Og rm + (KL/M) + ((M + l ) / M )Ks 

Although this gain is a ratio of resistances, the terms in the denominator 
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Nl 

KgS 
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:Rs 

Ì77 

(a) 

-μν$ + o 
N2 

{)JWrt-v0 
+μν8-

(μ + l)v, 

(b) 

+ VV: - —SL 

—O—w* 
:*s 

μ + 1 

(e) 

FIG. 4.6 The CS amplifier model (a), redrawn for μ transformation (b) and after transformation 
of N2 and simplification (c). 
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and 

involving μ do not have a simple interpretation in terms of the μ transform 
and circuit topology. By factoring (μ + 1)/μ out of the denominator of (4.12), 
we obtain two factors containing vs : 

î Î 
(V*/Vg) (V0/Vs) 

The first factor, v, is the gate-to-source gain. The second factor is the same as 
the CG Ay. Its denominator can be interpreted as rM, keeping in mind that it 
is vs (not vg) across rM that generates is. Consequently, the voltage form of 
the transresistance method is based on finding rM across vs and then (if needed) 
relating vs to vg through v\ 

rM=- (4.14) 
's 

Vs={^h=v'v^ ( 4 · 1 5 ) 

The gain expression of (4.12) was found using basic circuit laws, not by 
applying the μ transform directly to the circuit topology. For the CS, it is not 
as obvious as for the CG since the gate is not common to both source and 
drain circuits (Fig. 4.6a). In Fig. 4.6b, it is redrawn so that application of the 
μ transform is explicit. Because the port voltage is chosen to be vS9 the drain 
voltage source /xugs is split into two sources so that the first is dependent upon 
vs. The remaining source, μνΒ, becomes part of the drain network and is 
transformed along with it. When the μ transform is applied to the drain circuit, 
Fig. 4.6c results. The transformed voltage across RL is 

——=-v I — — (4.16) 
μ + ì rM \μ, + 1/ 

Solving for the voltage gain gives 

CS A=-p-
Ks + (r0 + flL)/(M + l) K S + ^ + K L A / X + I ) 

(4.17) 
The expression r0/(/x + l) has been expressed as 

Γ·=-ζτ=-·(-ττ) = " · Γ ' » ( 4 · 1 8 ) 

μ + 1 μ \μ H-1/ 
When rQ is referred to the source, it transforms to rs, the FET analog of re, 
in that both are related to rm by dual factors, a and v. Although a expresses 
a current loss due to base current, v expresses a voltage loss due to ugs; μ 
and β are duals, as are v = μ/(μ + 1) and a = β/(β + 1). 
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The input resistance of the CS amplifier is infinite. The output resistance 
is the same as the CG since the source circuit referred to the drain is the same 
for both. 

4.5 Common-Drain Amplifier with rQ 

The last of the three basic FET configurations is the CD or source-follower 
(Fig. 4.7). Applying the voltage form of the transresistance method, we find 
rM by determining the resistance across which the source voltage generates 
the source current is. The μ transform is required to refer the resistance on 
the drain side of the FET voltage source to the source side; as before, it is 

r, + -
Rr 

μ + Ι 

This resistance, when referred to the source circuit, is in series with Rs. The 
total transresistance is thus 

rM — Rs + rs + 
flr 

μ + 1 

The source current generated by vs across rM develops an output voltage across 
Rs. Since the voltage gain from the gate is desired, v must be included as a 

FIG. 4.7 Model of a generalized CD amplifier with rQ. 
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factor: 

CD Aw=v (4.19) 

This gain is more general than a pure CD amplifier since it includes a resistance 
in the drain RO. 

The input resistance of the CD is infinite, and output resistance is 

CD r o u t =Ä s (*+&) 
(4.20) 

4.6 Field-Effect Transistor Cascode 
Amplifier with rQ 

The voltage form of the transresistance method extends directly to multiple-
transistor amplifier stages. The FET cascode amplifier model (Fig. 4.8) has a 

FIG. 4.8 Model of the FET cascode amplifier taking r0 into account. 
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voltage gain of 

cascode Av = - νλ — — ^ ——— (4.21a) 
D , r01 + ( ( r o 2 + /? L ) / (^ 2 + l ) ) 
A c ~\ 

M. + l 

cascode Av = - vx
 L — — — — — (4.21b) 

D _L. _L If ■ ̂  ■ ( ^ L / ( M 2 + 1 ) ) Mi + 1 
This can be interpreted (and also constructed) by inspection of the circuit 
diagram. The input voltage υλ at the gate of the CS produces vs via vx. The 
CS rM is Rs in series with the drain resistance, referred to the source. Drain 
resistance is r0l in series with the CG drain circuit referred to its source, or 
(Γο2 + / ^ ) / ( μ 2 + 1 ) · When these resistances are referred to the CS source, the 
denominator of (4.21), rM, results. The source current develops the output 
voltage, v09 over RL (in the numerator) and is an inverting output. Av can be 
written as (4.21b) using the definition of rs in (4.18)—as r0 referred to the 
source circuit. 

The output resistance of the cascode stage can be found using the same 
approach; it is 

cascode r o u t - RL \\ [ro2 + (μ 2 + l)(r0 l + (Ml + 1)RS)] (4.22) 

In this case, the μ transform is used to refer source resistances to the drain 
circuit. 

4.7 Common-Base Amplifier with rQ 

The application of the voltage form of the transresistance method to BJT 
amplifiers adds the complication of r^ (Fig. 4.9). It forms an additional loop 
or node when compared to the CG circuit. This complication does not sig
nificantly affect the approach. The circuit model is redrawn in Fig. 4.9b to 
make the application of the μ transform explicit. After the drain circuit is 
referred to the source side (Fig. 4.9c), the divider formed by RE and Γπ is 
Thévenized (Fig. 4.9d). The voltage gain can then be found by solving the 
voltage divider: 

CB Λ ν = ( ^ ; ) ^ ι ΐ Α Ε + ( ^ + ο / ( μ + ΐ ) ( 4 · 2 3 ) 

t Î 
(vjvi) (v0/ve) 

This gain expression has two additional complications over that of the CG 
(4.9)^ At the emitter, RE is now shunted by r^. This affects rM in the second 
factor of (4.23). The first factor accounts for the divider formed by r^ with RE. 



1 0 6 / 4 . Multiple-Path Amplifiers 

Qe 

(a) 

m (b) 

M + l 
i-VW-r-^AAr-r—jjti 

Ô + μ + i 

/77 
(c) 

rJI*R > μ+1 

Ä-J'O 

μ + 1 

''be 

/77 
(d) 

FIG. 4.9 CB amplifier model with r0 (a), drawn for μ transform (b), transformed (c), and 
simplified (d). 
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An alternative formulation of Av regards rw and RE as forming a current 
divider with a transmittance of (ic/ie): 

CR A = — 
v U + ( r 0 +Ä L ) / ( / i + l Ä E +r w | | [ ( r 0 +Ä L ) / (M + l)] 

Î Î 
l/r in AL 

For (4.24), ie is the common quantity of the transresistance method. The input 
üi generates ie across the input resistance rin, which acts as rM, the denominator 
of the second factor: 

CB rin=RE+r„ m (4.25) 

Some of ie is lost to the base, leaving ic, and is accounted for by the first factor 
of (4.24). The output voltage is then developed across RL by ic. In this 
formulation, both voltage and current forms of the transresistance method are 
present. The μ transform refers the collector resistances to the emitter; the 
voltage form is applied. The (ic/ie) factor, however, is a circuit-dependent a 
characteristic of gain equations resulting from the current form. In contrast, 
(4.23) has a purely voltage form interpretation. Since it is easier to apply only 
one form, (4.23) is preferred in most cases. 

The CB output resistance is found by applying the μ transform to the 
emitter circuit: 

CB r0Ut = Ä L | | [ r 0 + (M + l ) ( r f f | |ÄE)] = Ä L | | r c (4.26) 

The μ -transformed expression for the collector resistance rc has been derived 
before as (2.38). There, an equivalent formula was derived and given a β-
transform interpretation. (To derive rc of (4.26) from (2.38), substitute μτπ for 
ßrQ and let RB=rv.) 

4.8 Common-Collector and 
Common-Emitter Amplifiers with rQ 

The CC or emitter-follower is shown in Fig. 4.10a, with simplified equivalent 
circuit in (b). This is a generalized CC amplifier in that collector resistance is 
included. Following the approach of Section 4.4, the gain is 
CC Av 

= r *E îr (*c+r0)/(/i+D i + r * Ε κ i 
L A E + U L A E H ^ + ÌAC + OA/LI + D J ^ U E K + (KC + >*O)/(/* + 1)J 

-passive path 1 | active path-

(4.27) 
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Wi 

ΚΕ+'πΓ 

(a) 

FIG. 4.10 CC amplifier model with rQ (a). The μ transform is applied and the resulting circuit 
simplified (b). 

The CC has two gain paths, an active path due to the gain of the transistor 
and a passive path due to a finite rn. The first factor of both terms of (4.27) 
is (vjvi). For the active path, the second factor is a ratio of load resistance 
RE || rn over rM. The second factor of the passive path term is a voltage divider 
gain due to the drop across the collector resistance, referred to the emitter. 
This is a loaded divider with 

K F 
( Γ Ο + Ä C ) 

(At + D 

The passive path gain can be rewritten to make this explicit: 

*E»[(r 0 + *c) / ( / i + l)] 
tfE||[(ro + *c)/(M + l)] + >V 

Figure 4.11 shows the CE circuit model and its successive modifications 
leading to Fig. 4.1 le. Again, the μ transform reduces this circuit to a voltage 
divider. Γπ creates a loaded divider (Fig. 4.11c) that is Thévenized in Fig. 
4.1 Id. The voltage source vvx is combined with V\ in Fig. 4.lie, from which a 

FIG. 4.11 CE amplifier model with r0 (a), redrawn for application of μ transform (b); resulting 
circuit after output network is transformed (c), input circuit Thévenized (d), and further reduced 
(e). 
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Ύ, <«8> 

voltage gain expression can be written: 

r F A =( - i * E ^ * L 
^ \ V ÄE+rw / ( Ä L + r o V ^ + D + r . 

î î î 
(VJVÌ) (vjvi) (v0/vc) 

active passive 
path path 

The second factor of (4.28) is the load resistance over rM, as with the CB 
amplifier. The novelty is in the first factor. The first term, - v, is the μ-transform 
base-to-emitter voltage gain due to the active device μ amplification; it 
expresses the gain due to the active forward path. The CS Ay contained only 
this term (negated). With the CE, the second term is added due (once again) 
to TV. This term represents a voltage divider formed from τπ and RE and 
expresses the gain of a passive path from input to output. This term gives the 
passive gain from v-t to ve. The voltage component of t>e due to the passive 
path is then amplified along with the active path component by the second 
factor of (4.28). Since the passive path gain is noninverting, it decreases the 
overall (inverting) gain somewhat. 

The output resistance can be obtained by direct application of the μ 
transform to the input side of the circuit. Then 

CE r0Ut = ÄL | | [ r 0 + (^ + l ) ( r w | |Ä E )] (4.29) 

The input resistance rin of the CE can be found by redrawing Fig. 4.11c 
as shown in Fig. 4.12a. The right side is Thévenized in Fig. 4.12b. Since the 
voltage source on the right is controlled by vi9 it affects rin. Resorting to basic 
circuit analysis, we can solve for the input resistance; it is 

Vi Vi 

Vi P\RE + (R^+r0)/(ß + i))Vi 

rw + Ä E | | ( Ä L + r 0 ) / ( / x + l ) 

CE ^ ^ 4 Κ ^ Τ Τ : ) + 1 ] + Λ Ε Ι Ι ( ^ + 0 (4·30) 

This expression is not immediately apparent from the circuit topology, as 
previous circuit expressions were, and reveals limits to the extent a topology-
oriented approach can take. Substituting ßrQ for μτ^ gives an alternative 
β-transformlike expression. It is left to the reader to find a topology-oriented 
explanation for these expressions of rin. 
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rn 

-o—VW 

O "— 

r0 + RL 

(a) 

*E μ + Ι 

Ò /?E+(r0 + / ? L ) / ^ + l) 

(b) 

FIG. 4.12 The output resistance of circuit of Fig. 4.28a, Fig. 4.28c in (a) and Thévenized in (b). 

4.9 Some Circuit Transformations 

For circuits with more than three branch or loop equations, finding algebraic 
solutions can be tedious. In these situations, the following formulas are often 
useful. They will be used in Section 4.10. 

Thévenin and Norton circuits for loaded dividers are shown in Figs. 
4.13a,b. For the voltage divider in (a), 

/ a II c \ v I a II c \ / l \ 
v = v\ " , / = - = ( — J i — H - U 4.31 

\ a | | c + D/ c \a \\ c + b/\c/ 

and for the current divider in (b), 

' L||6 + c]U) (4.32) 

Loaded dividers often appear, and it is useful to be able to reverse the loading, 
as the following formulas allow: 

a\\b + c = (a\\c + b)(^£j 

a c a \\b 
a \\ c + b a \\ b + c b 

(4.33) 

(4.34) 
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(a) 

(b) 

FIG. 4.13 Equivalent loaded voltage (a) and current (b) dividers. 

It is also handy to note that 

a + b 
(4.35) 

The manipulation of expressions involving the || operation are made easier by 
the following properties: 

associative property of ||: (a \\ b) \\ c = a \\ (b \\ c) 

distributive property of x over ||: ab || ac = a(b \\ c) 

commutative property of ||: a || b = b ||a 

a || b a || b a \\b 
c\\d c d 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

An alternative to algebraic manipulation is the manipulation of circuit 
models. Two circuit transforms that can be used to separate circuits into two 
more independent circuits are shown in Figs. 4.14 and 4.15. In Fig. 4.14a, a 
current source is replaced by two sources with the same current in series. This 
change introduces an additional node c between the two sources. This is useful, 
for example, in transforming a loop with a floating current source into two 
separate loops with ground-referenced current sources (Fig. 4.14b). 

The dual of this transformation is shown in Fig. 4.15, where a voltage 
source is replaced by two parallel sources of the same voltage. This transforma
tion is useful in separating two branches, giving each its own source, as in 
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FIG. 4.14 The current source-shifting transformation (a) introduces an additional node c. A 
floating source (b) can be referenced to a common node of two loops, isolating the resistors. 
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FIG. 4.15 The voltage source-shifting transformation (a) introduces an additional branch. Shunt 
resistances can be referenced to a common node while isolated in separate loops (b). 
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Fig. 4.15b. These transformations are voltage and current source-shifting trans
formations. 

Finally, the substitution theorem applies to controlled sources as shown 
in Fig. 4.16. It too has voltage and current dual forms. In Fig. 4.16a, a 
voltage-controlled current source (VCCS) of current v/r has a terminal voltage 
of v. Because it is controlled by the voltage across its terminals, it acts as a 
resistance of r. Similarly, the current-controlled voltage source (CCVS) of Fig. 
4.16b has a terminal voltage of ri with current /. It also is equivalent to a 
resistance of r. 

To demonstrate source shifting and the substitution theorem, the CS with 
rQ is modeled in Fig. AAldi. Current-source shifting is applied, resulting in Fig. 
4.17b. This circuit is also modified by splitting vgs/rm into two sources, vjrm 

and vjrm. Since the current source vjrm is across vs, the substitution theorem 
can be applied, resulting in rm in Fig. 4.17c. Successive applications of Norton 
and Thévenin conversions then reduce the circuit to an equivalent form, from 
which the gain given by (4.17) readily follows. 

4.10 Feedback Analysis of Multipath 
Transistor Amplifiers 

Now that we have developed methods for avoiding feedback analysis using 
the reduction theorem, we shall investigate how to extend the results of Chapter 

Ô — 
I + 
I v 

6—-

V C C S < = » r 

(a) 

CCVS < > r 

(b) 

& 

< 

( 

I w 

+ J 
ri "K 

- [ 

FIG. 4.16 The substitution theorem for VCCS (a) and CCVS (b). A source controlled by its 
other terminal quantity is equivalent to a resistance. 
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ϊφ φ£ i* φΐ U * 

ϊφ 

(b) 

-ΛΛΛ-

«s φ >*L v0 

(C) 

FIG. 4.17 The CS with r0 (a) after source-shifting the collector current source and then splitting 
it into two sources (b), and after applying the substitution theorem to current source vj>m (c). 

3 to multipath topologies involving a feedback loop. In particular, we will 
restrict, for now, the topologies to those with a single feedforward path F. 

The two topologies of interest are shown in Fig. 4.18. Each of these has 
the basic feedback loop embedded within it. They differ in that the topology 
of Fig. 4.18b isolates the feedforward path from the feedback loop with a x l 
transmittance from C to v0. This is functionally a x l buffer amplifier. In the 
topology of Fig. 4.18a, the feedforward path injects its signal into the feedback 
loop at the output. When this flow graph is reduced, the voltage gain and error 
are 

v0 axG + F 
Vi 1 + GH 

E = 
ax + FH 
\ + GH 

(4.40) 

(4.41) 
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(a) 

(c) 

FIG. 4.18 Flow graphs for feedback analysis of transistor configurations with r0: (a) common 
multipath topology with feedforward path F injecting into output of feedback loop; (b) isolated 
feedforward topology. When (b) is reconstructed in the form of (a), an extra path FH results 
from Vi to E (c) that cancels F(-H) through the path Uj-> y0-> E. 

For the topology with the isolated feedforward path: 

^=a G 

Vi α' 1 + GH 
- + F (4.42) 

E = 
l + GH 

(4.43) 

Notice that in (4.42) F adds to the output without involving the loop, whereas 
in (4.40) its output contributes to E via H, and the FH term is also divided 
by 1 + GH of the loop. 

The relationship between the two topologies can be made explicit by 
writing (4.42) as 

axG + F (FH)G 
l + GH l + GH 

(4.40a) 

where the first term is (4.40) and the second adds transmittance FH from vx 
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to E. This gives the equivalent topology of Fig. 4.18b shown in (c). Isolating 
F from C at v0 is equivalent to adding the FH branch parallel to ax. What 
this branch adds to E exactly cancels the contribution to E from the path 
from V\ through F and —H. 

To find F from circuit topology, the G path must be nulled. Then F can 
be found from 

Vi 
(4.44) 

If we set GE to zero, then v0 is due to F alone. In the isolated feedforward 
topology of Fig. 4.18b, if possible, C can be set to zero as an alternative to 
E. Similarly, because the F branch contributes to v09 finding G must have the 
additional condition (besides B = 0) that Fi?i = 0. These conditions are 
necessary in envisioning the transmittances from the topology. 

This approach to feedback circuit analysis is summarized in the following 
steps: 

1. Identify signal flow paths and summing and sampling points (i.e., the 
flow graph) from the circuit topology. 

2. Use the transresistance method and divider formulas to find path 
transmittances by inspection. 

3. Write gain expression by use of flow-graph reduction. 

Feedback analysis can be applied only if forward and feedback paths are 
separately identified. Then their interactions can be reduced to loading and 
two-port source transmittances. If path interactions are not apparent, it is 
always possible to fall back on basic circuit laws; KCL, KVL, and Î1L (Ohm's 
law). The disadvantage in this is the difficulty of expressing equations so that 
the path transmittances in them are explicit. 

Falling back to the basic laws is not always the end of intuitive elegance. 
More algebraic calculation is involved, but this too can be neatly minimized 
by an orderly procedure based on building flow graphs from circuit equations 
and then reducing the graphs. This method will be called flow-graph analysis: 

1. Apply KVL, KCL, and CtL to produce circuit equations. 
2. Construct a flow graph from these equations. 
3. Reduce the flow graph. 

A good approach to solving extremely difficult circuits is: 

1. Make simplifying assumptions and apply feedback analysis. 
2. Apply flow-graph analysis. 
3. Use the results of step 1 to guide the formulation of equations from 

step 2 so that the flow paths become obvious. 
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An example of this approach is to solve a FET equivalent of a given BJT 
circuit and then attempt to construct the more complicated BJT expressions, 
guided by the FET results. 

4.11 Feedback Analysis of the 
Common-Base Amplifier 

We shall now apply both flow graph and two-port feedback analysis to the 
BJT configurations with r0 since (as we shall see) all the signal paths are not 
trivially obvious. The corresponding FET circuits follow from the BJT-to-FET 
transformation (4.6). 

We begin with the simplest configuration, the CB amplifier in Fig. 4.19a. 
Applying KCL to the emitter node e, we obtain 

a te , " V " 1 + - + - £ - = 0 (4.45) 

This can be rewritten as 

( re II ro \ / ^ E II re \ , 

ii Y P Ti + U II a! K <4·46) Ml r0+REJ \RE

\\ rc+rj Similarly, for the collector node c, we obtain 

vc vc-ve , vbe ate , — + + — = 0 (4.47
) 

which reduces to 

( rm || rQ\ (4.48) 

Equations (4.46) and (4.48) have the general form: 

at e, E = avl + bvc (4.49) 

*-G> ate, E = dvc=^vc=[-)E (4.50) 

where 

E = vc=-vbe (4.51) 

The form of (4.49) and (4.50) is similar to the basic feedback equations (3.1) 
and (3.2), respectively. These equations are represented as a flow graph in 
Fig. 4.19b. 

From the flow graph, ai9 G, and H can be identified as 

-(ft "-ai = a G= - , H = -b (4.52) 
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vjO-

I 
d (c) 

(b) 

FIG. 4.19 Feedback analysis of the CB amplifier (a) and flow graph (b) with transmittance paths 
shown in (c). Notice that the forward path G consists of two paths: Gl9 an active path, and G2, 
a passive path. 

When two-port loading rules from feedback analysis are applied, a{ is the 
voltage divider attenuation from v, to ve. RE forms a divider with re || r0. From 
(4.46), H is 

/ * E | | r e \ 
\RE\\rc+rJ 

Finally, G requires further decomposition: 

^ C || ro , ^ C n i * c II 'c 
G = Z t = Ü 

d rm r0 
Rc + rt 

= GX + G2 (4.53) 

G can be interpreted as having two signal paths, Gx and G2. Gx has a 
transresistance interpretation and is the gain from ube to vc. This is the active 
path. G2 is a passive path attenuation from ve to vC9 formed by divider 
resistances r0 and .Rc. Both paths are from E to vc-, therefore, these parallel 
paths both contribute to G. 
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In this analysis, the circuit equations led to the identification of four signal 
paths (Fig. 4.19c). In Fig. 4.19b, these paths interact to form a familiar feedback 
topology. Combining ai9 G, and H into the feedback formula, the CB closed-
loop gain is 

CB Λ ^ · 7 ^ = 7 ^ ( 4 · 5 4 ) 

The input and output resistances can be derived by making use of the 
gain calculations. The input resistance can be found by Nortonizing vx and 
RE. Then the closed-loop emitter resistance is 

ve E [qEii/(l + G//)] aE re || rQ || RE 

ij ij ij 1 + GH 1 + GH 

where 

« E - . = re II r0 II RE (4.56) 

and I'Ì = vj RE. Then rin can be put in the following form: 

CB -Mïïfe)lfè)-^(^ R- » re || r0 

(4.57) 

The feedback in Section 3.4 was assumed negative so that \ + GH>\. 
Here, 0 < 1 + G H < 1 ; the feedback is positive but less than 1. This causes 
some reversals of effect. For rin, RE is in series with the closed-loop resistance 
of the emitter node. By inspection, the resistance there is due to re (grounded 
at the base) in parallel with the resistance to the output, r0. The closed-loop 
resistance is re || r0, divided by 1 + GH, or (4.57). The exact expression includes 
RE/ GH in parallel with this resistance and is due to interaction of the feedback 
loop with RE. 

More directly, rout is 

C B r^-\ + GH-\-b/d ( 4 5 8 ) 

The loop gain for this amplifier is less than 1 because the feedback due to r0 

is positive. Although typically G> 1, -H« 1 so that |GH| < 1, and the circuit 
does not oscillate. But the effect of positive feedback is to work against the 
benefits of negative feedback. In most circuits of this kind, where rQ is due to 
transistor base width or channel length modulation, r0 is much larger than 
external circuit resistances and has little effect on circuit performance. For 
accurate calculations, however, it is among the dominant second-order effects 
to be accounted for. 
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Example 4.1 Inverting CB Feedback Amplifier 

The amplifier of Fig. E4.1 is a x(-T)-buffered CB stage with feedback 
through Rf. (The default BJT model is being used here: β = 9 9 , Js = 
10~16 A.) From SPICE, we have the following data: 
IE = 0.8781mA, VE = 2.2294 V, Vc = 4.8716 V, V0 = 0.1337 V 

and 
- = -2.470, rin = 2.724 kCl, rout = 83.12 Ω 
Vi 

From these data, re = 29.46 Ω and re || Kf = 29.44 Ü. Then, applying feed
back analysis with E = vbc, we have 

Gx = -a · — „ f „ = -274.78 

G2 = Re 
Ro + R^ 

= 2.4938x10" 
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Then G = Gl + G2 = -274.78. Furthermore, 

H = - „ „ ^ = -7-2826 x 10~ Rf+ RE || re 

* r , , r e =1.0789xl0-2 

J?r| |re+ÄF. 

Combining these transmittances yields 

- = - i ' 7 - ^ 7 = -2.4703 t?i 1 + Gtf 

rin — / ? R + JV 
Ar 

- 2.7245 kO l + (-G) 

ÄolKÄf+ÄFlIO Λ 
r ° u t = 1 + GH ^ 8 3 ' 1 1 8 f ì 

Example 4.2 CB BJT Amplifier with RCE 

The circuit in Fig. E4.2 is a CB amplifier with a fixed external collector-
emitter resistance JRCE- This resistor is a simplified form of r0 since it is 
independent of IE. To analyze this circuit, the approach given in Section 
4.10 for difficult circuits will be taken. If we solve the same circuit without 
RCE, then if RCE has a minor effect on the circuit, the simplified analysis 
gives us an approximation by which to evaluate more complicated 
solutions. The dc solution for the simplified circuit is 

IE = 0.826 m A, VE = 2.231V, Vc = 5.292 V 

(The default BJT model is being used here: β =99, Js = 10~16 A.) Then 
the ac solution follows: 

Γβ = 31.3Ω, ucM = 2.97, r i n -2 .73kH, rout = 8.2kO 

SPICE simulation results for the operating point are 

h = 0.7511 m A, /RCE = 76.075 μ A, VE - 2.2355 V, Vc = 5.2785 V 

The dynamic parameters are 

re = 34.456 Ω, rm = 34.804 Ω, rw = 3.4456 kil, μ = 1149.3 

The simulation results are 

— = 2.955, rin = 2.741 kfì, rout = 8.162 kfì 
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40 kQ 

With these data, we can now apply various methods to find the three 
parameters of interest and verify the results. The first solution is based 
on (4.54), derived from KCL, and involves simple substitution: 

Vi 

1.2591 x 10~2 

; 2.9556 
d-b -8.4982xl0~4 + 5.1100xl0~ 

From this calculation, 1 + GH -l-b/d = 0.83370. The resistances are 

>·ίη = -2-+JRF = 2.7413 kÜ 
1 + GH 

Rc [I rQ 6.8050 k(l 
\ + GH~ 0.83370 = 8.1624 kn 

Next, we shall solve the circuit using the μ transform and (4.23), (4.25), 
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and (4.26): 

— = (0.56066)(5.2710) = 2.9552 
fi 

rin = 2.7 kn + 41.399fì = 2.7414 k(ì 

rout = 8.2 kil II (40 kO+ 1.7413 ΜΩ) = 8.1624 kü 

Finally, we can use Miller's theorem to find rin. First, 

then, 
^ C E RP + rt E ^ ' e \ + K 

K = - § = - ! = -195.69 
£ d 

-■ 2.7 kfì + (34.46 Ω) || (40 kil/(-194.7) = 2.7414 kO 

4.12 Feedback Analysis of the 
Common-Emitter Amplifier 

For the CE of Fig. 4.20a, KCL is applied at emitter and collector: 

/ RE || rQ \ ( RE || re \ 
"-■ "HKÛi7Mj±t7h (4·59) 

at c, 

Let £ = vhe. These equations can be made explicit in E by negating them and 
adding vh. The result is 

^ = (P n \ W/if"l ' V ( 4 · 6 1 ) 

\ Ä E II r 0 + r e / \ i ? E | | r e + r 0 / 

- = ( ^ ; ) - ( ^ ) » · < 4 · 6 2 ) 

The more general forms of these equations are, respectively: 

E = avx + bvc (4.63) 

E = ct>i + A;c=> vc = [-j)E ~ ( 4 ) r i (4·64) 

Compared with (4.49) and (4.50), the CE has the additional term with 
coefficient c. These equations are represented by the flow graph of Fig. 4.20b. 
The identifiable paths are 

at = a, H = -t, G = ( i ) , F = -(f) (4.65) 
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(a) 

(c) 

(b) 

FIG. 4.20 Feedback analysis of the CE amplifier with r0 (a), showing the five paths of flow graph 
(b). A two-port equivalent circuit is shown in (c). 

G is the same as for the CB but is negative, as expected for a CE. (The CE 
E is also the negated CB E.) G represents the same two paths, Gx and G2, 
as for the CB. H is a voltage divider from vc to ve = -E (and is the negated 
CB H). a, is the voltage divider attenuation from v{ to vbe. Because of the 
additional term in vC9 there is a feedforward path F from v, to vc in the CE 
that is absent in the CB. F can be expressed (using formulas from Section 
4.9) as 

SJ^)(^-)J-^-) (4.66) F = 

The path of F can be traced from this expression. It is the attenuation of the 
passive divider from emitter to collector through rQ. F i s vj υλ, where v{ is at 
the base (not the emitter). To find F, as we did with G and H in Section 4.10, 
the path through G must be nulled to allow only the signal through F to affect 
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vc. This can be accomplished in this case by setting E to zero, or 

F = (4.67) 

Then for £ = i;be = 0, then vb = ve and F=vc/ve, as in (4.66). Figure 4.20a 
shows the five signal paths. The two additional paths, G2 and F, are a result 
of the r0 branch to the collector. They differ in that G2 is the path from vbe 

whereas F is from the input vx. For F, an increase in base voltage causes an 
increase in emitter voltage. This increase is transmitted through the divider to 
the collector uninverted. For E = vbe, an increasing E causes a decreasing ve. 
Consequently, G2 is inverted. E and vx do not follow identical paths to the 
output since υ·χ (through F) can affect vc even though the effect of G2 on vc 

is due to E. 
A two-port equivalent of H is shown in Fig. 4.20c. To meet the constraints 

on H (from Section 3.9), the H input source ve must be expressed in terms 
of vbe (using a divider formula). Since this is possible, this approach also leads 
to a solution. We now examine this aspect further. 

Since the choice of E is arbitrary within the feedback loop, Fig. 4.21 shows 
the solution with 

E = vx -1 — vc (4.68) 

The two-port equivalent CE circuit is shown in Fig. 4.21a. The flow graph 
(Fig. 4.21b) can be derived from Fig. 4.20b by moving a forward through the 
E node. Paths out of E become multiplied by a and paths into E divided by 
a, as shown. The paths are identified as 

ax=l 

_ a (1-c) c ^ ^ G = - = )-—-J-a+-a = Gi + G2 d a a 

where 

Gx = —a Re 
RE II r0+re 

Gl \R^\\r0+rJ\Rc+rJ 
b RE 

a A E +r 0 

^_ c_iRc\\r0\[l To_ 
d \rm\\r0)l rm + r{ 

Re 
Rc. + rn 

(4.69a) 

(4.69b) 

(4.69c) 

(4.69d) 

(4.69e) 

(4.69f) 

This choice of E places it across the transresistance rM of the transistor forward 
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(a) 

(b) 

FIG. 4.21 Feedback analysis of the CE amplifier with r0, with two-port circuit for H and E as 
shown in (a); flow graph (b). 

path gain Gx. vx is directly in the loop containing E, so that ax = 1. Similarly, 
the divider formula of the Thévenin feedback source is H. 

G2 is the passive forward path through r0 and consists of two voltage 
divider factors in (4.69d). The first is the divider from E to ve with output 
across vhc. The second is from ve to vc. To find G2, then, GXE, B, and F- vx 

must be nulled. The Gx path is nulled by disconnecting the BJT collector 
current source. B is set to zero when the H output source is set to zero. Nulling 
the signal through F is not easy because it shares essentially the same path 
as G2. In this case, instead of attempting to null Fvi9 we subtracted it from 
the derived expression for G2. We must find 

vc=G2E + Fv\B,Gx=0 = (G2cti + F)v„ B9G, = 0 (4.70) 
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Then, 

G2 = 
a i I B,G} 

/ RE\\r0 \( Rc \ ( Rc \ re ^ _ 
~\RE\\r0 + rJ\Rc+r0) U c + > J ~ # E II r0 + re ' Rc+ r0 

This derivation of G2 shows that when paths overlap significantly, isolating 
the path being found may require an approach other than nulling sources. 
Opening paths and subtracting the effects of intertwined paths are also options 
in meeting the transmittance constraints. Use of a different flow graph, such 
as Fig. 4.18b instead of (a), can "untangle" paths. The basic idea when finding 
a path transmittance is to eliminate contributions from other paths to the 
output node of the path being found. 

Example 4.3 CE Amplifier with RCE 

Figure E4.3 is a CE amplifier with the default BJT model: /3=99, 
/ s = 1(Γ16 A. From SPICE, the dc values are 

h = 0.6775 mA, VE = -0.7639 V, Vc - 5.2644 V 

The simulation ac solution is 

— = -2.946, rin = 216.4 kO, rout = 8.160 left 
Vi 

From these data, we can calculate the following: 

re = 38.2 a , rm = 38.585 Π, rv = 3.82 kù, μ +1 = 1037.7 

With ÄC E^oo, vJvx^-2.96. Applying Blackman's formula (Section 
4.18) for rin, we get rin = 216.40 kil. Applying (4.28) through (4.30) gives 

^= (-0.58493)(5.0358) = -2.9456 

rin = (3.82 kil)(55.992) + (2.5568 kit) = 216.45 kÜ 

rout = 8.2 kn || (1037.7X1.5819 kil + 40 k«) = 8.1602 kO 

Next, we use feedback analysis to find a solution. Following Section 
4.12, let E = t>be. Then the transmittances are 

£*i = 1.4878 x 10~2, G = -176.53, H = 9.4079 x IO 4 , F = 0.17012 
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Then 1 + GH = 0.83392 and 

— = " ' + — ^ — = - 3 . 1 4 9 6 + 0.20401 = -2.9456 
Vi 1 + GH 1 + GH 

r ° u t = lT^ = 8 ' 1 6 0 2 k ü 

Another feedback solution is based on (4.68): 

/ RE \ 
E = v; -1 — — I vc 

\RE+RCJ The transmittances are 

a, = 1, G = G, + G2 = -2.6240-2.5312 x 10~3 = -2.6265, 

H = -6.3232 x IO""2, F = 0.17012 



1 3 0 / 4 . Multiple-Path Amplifiers 

Then 1 + GH = 0.83392 and vc/v-, = -2.9456. Furthermore, 

rm = (l + GH)(ß + l)(re+RE || (RCE+RC)) = 216.40 kfì 

^ = : γ τ ^ Γ = 8.1602 kfì 

These results are further confirmed by the μ transform. From Section 4.8, 

- = - 2 . 9 4 5 6 , rin = 216.45 kü, 
Vi 

rOut = Äcl|[(M + l ) ( r w | |Ä E ) + ÄcE] = 8-1602kn 

4.13 Feedback Analysis of the 
Common-Collector Amplifier 

The last BJT configuration is the CC, shown in Fig. 4.22a. If we base the CC 
analysis on the results of the CE, then E is chosen to be vbe. Combining (4.63) 

(b) 

FIG. 4.22 Feedback analysis of the CC amplifier with r0, showing the five paths (a) with 
flow-graph of Fig. 4.20b; flow graph (b) with explicit ve. 
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and (4.64) we obtain 

a-(bc/d) 
E = vbe = avx + b GHSK vi (4.72) 

\-(b/d) 

The CC output, ue, is related to E by ve = v-x - E. Dividing by vx and substituting, 

ve E a-(bc/d)_(l-a)-(b/d)(l-c) 
Vi Vi \-{b/d) l-(b/d) { ' } 

The paths, identified on the topological model of Fig. 4.22, correspond to 
paths of the CE flow graph, Fig. 4.20b. In Fig. 4.22b, (4.73) is represented as 
a flow graph with ve made explicit. The paths are: 

AE II r0 1 c ( 1 - c ) Rc 1| rQ , Rc 
I - a =-—-rt ; - — = - — :— = 1--RE || r0+rj d d d rm Rc+r0 

RE || re 1 -c Rc || r0 

~b = R | . Γ + ; —r=—:— (4·74) 
^<E II re-tr0 a rm 

4.14 Inverting Op-Amp with Output 
Resistance 

A feedback approach will now be taken to the inverting op-amp with op-amp 
output resistance of JR0 (Fig. 4.23a). A nonzero R0 provides another forward 
path to v0 through Rr. Following the approach in the previous sections, let 
us assume that the circuit can be represented by the flow graph in Fig. 4.23b, 
modified accordingly (this time as a block diagram) in Fig. 4.23c. Applying 
feedback analysis, let E = v-. Then 

v, = -Kv. (4.75) 

E = v- = a-fj - Hv0 (4.76) 

Rf+Ri + R0 
(4.77) 

Rf+Ri 

The transfer function from Fig. 4.23b is 

H = - n ' (4.79) 

Vi l + GH 

The feedforward path F must also be determined: 

Av = — = «i — - + F (4.80) 
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FIG. 4.23 Inverting op-amp with output resistance (a), flow graph (b), and equivalent block 
diagram (c). 

Substituting (4.77)-(4.79) and (4.81) into (4.80) and simplifying, the closed-
loop gain is 

/ *,+ *, \/-K(Rf+R0)\ A, 
v \Rf+ R0+ RJ\Rr+(l + K)RJ Rv+Rr+R, V ' ; 

Taking the limit of Av as K -» oo, the familiar —RT/R-X results, as in (3.22). This 
shows that R0 does not affect the closed-loop gain with sufficiently large K. 

This op-amp circuit can also be used to demonstrate an alternative gain 
derivation based on a different flow graph, that of Fig. 4.24b with the two-port 
equivalent circuit in (a). This choice of topology has no feedforward though 
G still has two parallel paths. The difference that this flow graph makes in 
the analysis is that the output of G is D0, not υχ as in Fig. 4.23b. The 
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FIG. 4.24 Two-port feedback equivalent circuit of Fig. 4.23a where output of G is v0 instead of 
u, (a), and its flow graph with no feedforward path (b). 

transmittances, found by the usual feedback analysis, are 

R, 
" ' Rt+Rx 

\R,+ RJ \Rr+Rc 

H = — R> 
Rç+Ri 

Substituting these transmittances into the feedback formula, 

Vo G 

Vi 
ar \ + GH 

(4.83) 

(4.84) 

(4.85) 

(4.86) 

results in an equivalent equation to (4.82). The gain expression of (4.86) can 
be verified by applying KCL at v- and v0. From the resulting equations, the 
three transmittances can be readily extracted. 

The implementation of the circuits modeled in Figs. 3.10, 3.14, and 3.16 
has a finite output resistance and a feedforward path. Similar analyses are 
applicable to them. 

We have examined in some detail the effects of r0 or similar shunt resistance 
around the active path of single transistors or amplifiers. Usually the contribu
tion of the extra forward path is negligible, as for the preceding op-amp circuit. 
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In precision amplifier stages such as the differential input stage of an op-amp, 
finite r0 can contribute significantly to imbalance in the collector (or drain) 
load resistance. A differential cascode input stage reduces this problem because 
the CB (or CG) output transistors have a maximum output resistance due to 
rQ. Another influence of a feedforward path is to cause the step response to 
begin with a momentary inversion before responding with the expected polarity 
of step. This is due to a faster passive forward path than the active inverting 
path. This dynamic phenomenon is called preshoot. 

4.15 Feedback Analysis of the 
Shunt-Feedback Amplifier 

The shunt-feedback amplifier is similar to the inverting op-amp but it has 
limited gain. A typical one-transistor shunt-feedback amplifier is shown in Fig. 
4.25. Rf shunts the transistor from collector to base. This is the third and last 

+vcc 

:*L 

*f« 

Vb 

<b 
m 

(a) 

*U 

'Φ 
Π7 

'b 

q> 

(b) 

/?fH/?L 

* + * ί 
(c) 

FIG. 4.25 The shunt-feedback amplifier (a), equivalent circuit model (b), and flow graph with 
E = vb (c). 
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possible shunting configuration for a transistor and is another basic kind of 
amplifier stage. Unlike the base-emitter or collector-emitter (r0) shunts, this 
one is quite useful. We shall analyze it from several perspectives. 

This is a transresistance amplifier because the input is a current lx. Applying 
KCL at base and collector, we obtain 

at b, vh = (r7r || #f)*i + ( ^R )v0 

Γ1 1 _ L H P Ì Γ *i *fii*Li vb 

(4.87) 

(4.88) 

These equations can be written more compactly and directly in terms of 
transmittances of Fig. 4.25c with E = vh : 

vb = alii-Hv0, v0 = {Gx + G2)vh (4.89) 

The closed-loop gain is 

Vo= G _ (r„ || * f ) [ * L / ( * f + ^ ) ] [ W O - l ] , 4 9 0 i 

This derivation can be used to construct the results for a similar amplifier with 
R{ in shunt with ij. This makes the input a Norton circuit, which can be 
converted to a Thévenin equivalent with 

resulting in a voltage amplifier. These equations are easily modified to account 
for Ri by replacing each occurrence of Γπ with r^ || Ri9 since /^ shunts r„. 

Now consider some simplifications of (4.90). If RL is replaced by a current 
source, 

= -aRf+re (4.91) 

For BJT β -> oo, 

β-*οο ■(-^7&0--*{τΕ7) + '·ι*ί <4'92) 
With both of the above assumptions, 

= - Ä f + r e (4.93) 
RL,ß^oo 

A two-port feedback analysis with E = ib is based on Fig. 4.26, in which 
H is identified as the two-port equivalent circuit. Here, 

Ε=^αΑ+{^τίυ° (4.94) 
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(a) 

%_ -ß(Rt\\KO 

Rt + r„ 

(b) 

FIG. 4.26 Two-port H circuit for shunt-feedback amplifier (a) and flow graph (b). 

The transmittances can be derived from the previous calculations by shifting 
r„ forward, out of ax in Fig. 4.25c. The previous E = vb is then divided by rn9 

making E = ib. Then r„ multiplies G and divides H (see Fig. 4.26b). The 
closed-loop gain is the same as (4.90). From inspection of Fig. 4.26, ax is now 
an input current divider: 

Rr 

Är+r, 
■ = fraction of ij through rn ( = ib) (4.95) 



4.15 Analysis of Shunt-Feedback Amplifier / 137 

G has two paths, an active Gx path and a passive G2 path: 

(4.96) 

The first term is ib, multiplied by ß to become ic. This current develops v0 

across the collector resistance Rf \\ RL and is negative. The second term is the 
passive path from the base through Rf to the collector. The H input source 
of Fig. 4.26 is vb. Since E is ib, then ib · r„, or vb, is divided by Rr and RL. 
The second term G2 is thus (vb/ib)(v0/vh). 

If RL« Rf, then G2 = 0 and, for jß^oo, 

-Rf (4.97) 
/3-*oo 
R, « Rf 

This simple formula is the approximate transresistance for the single-BJT 
shunt-feedback amplifier for implementations in which Rfis large. The greatest 
error is usually due to finite ß, causing rn to excessively shunt Rf. 

The input resistance, easy to find by using the feedback approach, is 

vb JV Rr Rf (4.98) 
U 1 + GH l + irJi^ + RrKlRJiRr+RuiiiRr/rJ-li 

This can be checked by resorting to the basic feedback equations for this circuit: 

Then 

Solving for vb/ix yields 

r„ II Rt 

üb=(r7r II Rf)ii-Hv0 

v0 = Gvb 

vb = (r7T || Rf)ii-GHvb 

r„ II Rr 

(4.99a) 

(4.99b) 

1 + GH l - G K / ( r w + R f ) ] tò) (4.100) 

The last expression is cast in the form of Miller's theorem, showing that it too 
could have been applied to find rin. Rf is across an amplifier of gain vjvb 

and is reduced by 1/(1 - G) times its value. This effective resistance is shunted 
by Γπ. If Rt is involved, rin is easily modified by replacing r^ by the parallel 
combination, as for (4.90). 

A KCL solution for rout follows from 

is v0/i0: 

v0 , vQ-vh vb i0 = 1 1 
^ L Rf rm 

vb 
={^ίύνο 

, = R L ß + i 

(4.101) 

(4.102) 
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For a current-source load, #L-»oo and 

'out|/?L-»-oo " 
i8 + l 

(4.103) 

This result has a topological interpretation. A change in ouput voltage v0 

causes a current in Rf that flows entirely into the base. This current is 

V 

The total current resulting from v0 is this current plus the collector current, or 

io=îb+i'c = (i8 + l) /b = (j8 + l) 
Äf+rw 

(4.104) 

Solving for v0/i09 we again obtain (4.103). 
Miller's theorem cannot be used to find rout because v0 is not a voltage 

source; RL is part of the internal resistance. 

Example 4.4 Shunt-Feedback BJT Amplifier 

Figure E4.4 has VBE = 0.8085 V, /E = 3.81mA, and Vc= 1.1896 V. (The 
default BJT model is being used here: 0 = 9 9 , 7S=10~I6A.) Then re = 

+5V 

m 
FIG. E4.4 
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6.79 Ω, rm = 6.858 Ω, and rw = 678.92 Ω. Feedback analysis, with E = vbe, 
yields 

G = 909.09 + 9 0 9 0 9 χ 10-2 = _ ! 32.47 
6.858 Ω 

H = =— = -6.3576X 10" 

so that 1 + GH = 9.4220 and, from (4.90), 

The resistances are 

— = -8.9386 k n 

'-■S-«1» 
Alternatively, from (4.102), 

rou, = RL 1 ( ^ 7 ) = 96.486 Ω 

Finally, 

r.„=rw I (fZo) = 6 7 · 4 7 6 Ω 

To check these results, the SPICE simulation produced 

y = -8.939 kΩ, rm = 67.44 Ω, roui = 96.48 Ω 
' i 

4.16 Shunt-Feedback Amplifier 
Analysis: Substitution Theorem 

Another way to find shunt-feedback amplifier output resistance is to use the 
substitution theorem to find the effective resistance of the collector path. Since 
ic is controlled by v0, it can be expressed as a resistance rc: 

r =—is*—= ^ = ^£±ZV ( 4 1 0 5 ) 
C (vb/v0) (rJ(Rr+rJ) β ' 

The resistance shunting rc through Rf is Rf+r^. Combining these in parallel 
results in (4.103). In (4.105), vb/v0 is -H rather than Ì/G because lx is nulled. 
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Q 

' b 

ΦΉΐ 
Ô 
v b 

(a) (b) 

Q 

/» + » 

o 
Vb 

(c) 

FIG. 4.27 Shunt-feedback amplifier analysis using the substitution theorem. When all of ib flows 
through R{, then R{ and the transistor current source form a Norton circuit (a). The current 
source is controlled by its terminal voltage and can be converted to a resistance (b) and merged 
with R{ (c). 

The substitution theorem can be applied in a more general way to the 
combination of Rr and the ßib current source, as in Fig. 4.27. Since 

. vc-vh vch 

Rf Rr 

the current source becomes ßvch/Rf. The source is across vcb and is also 
dependent on it, making the substitution theorem applicable. In Fig. 4.27b, 
the current source is replaced by a resistance of Rr/ß. When this is combined 
with Rf, the result is a single resistance of Rf/(ß + l). 

This equivalent circuit makes shunt-feedback amplifier resistance analysis 
much simpler than feedback analysis. Figure 4.28 shows the shunt-feedback 
amplifier equivalent circuit for finding rout. The circuit has been generalized 
slightly by including external emitter resistance RE. This resistance always 
adds to re and can be lumped with it. With this equivalent circuit, output 
resistance reduces to divider formulas and parallel resistances: 

**out — Rh i£i+R<+'-) (4.106) 

Input resistance cannot be found as easily because U is injected at the base. 
The resulting ib is not from the Rr branch alone as assumed in the equivalent 
circuit. 

Another direct application of the shunt-feedback equivalent circuit is to 
find rin of an emitter-driven shunt-feedback amplifier, shown in Fig. 4.28b and 
modeled in (c). Here if = ib, and the shunt-feedback equivalent is exact. The 
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~* 'but 

+vfcc 

Rt 

FIG. 4.28 Shunt-feedback amplifier output resistance rOUI (a) for the emitter-driven circuit (b) 
can be found from its equivalent circuit model (c). 
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input and output resistances and voltage gain of this amplifier are 

L e E 

rout — ^ L 
Γ Ä f 1 

—+r e +Ä E 
LjÖ + 1 J 

* , 
t?i ÄL+Äf/(j8 + l) + r c +Ä E 

(4.107) 

(4.108) 

(4.109) 

This amplifier is of limited use for amplification; it has a voltage gain of less 
than 1. It can be used as a voltage translator for meeting biasing conditions. 

Example 4.5 CB Shunt-Feedback Amplifier 

Figure E4,5 is an instance of Fig. 4.28. For j3 = 99, JS = 10~16A; then, 
from SPICE 

VE = 0.1671V, VB = 0.9571V, Vc = 1.1428 V, J E = 1.86 mA 

+ 12 V 

1 kß 

< 

"90 Ω 

"Ò 
m 

FIG. E4.5 
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Then r e= 13.91 Ω and 

v0 RL 
î>i ÄL+Äf/(0 + l ) + #i+ÄB 

=-0,83063 

A« - R L + ^ + r e + RE = 1.2039 kü 

ro« = KL I [ ^ γ + 'e+ *E] -169.37 Ω 
The SPICE values for the above parameters are 

— = 0.8306, rin «1.204 kÙ, rout = 169.4 Û 
Vi 

4.17 An Idealized Shunt-Feedback 
Amplifier 

A more general form of shunt-feedback amplifier is shown in Fig. 4.29. 
A transconductance amplifier replaces the BJT, and R, is included. Solving 
for the usual incremental quantities using feedback analysis based on the flow 
graph of Fig. 4.29b, we obtain the transmittances: 

«i = Äf || Ri (4.110a) 

G'ük->+j^K (4110b) 

Then if we combine these transmittances, the transresistance is 

Rf II KL 

* = « , — ^ - = ( * « * . ) ^ ^ (4.111) 
i, \ + GH v f " , ; Rf || KL Rx

 v ; 

R f | | ( l / G M ) ' Ä r + Ä i 

Removing RL simplifies (4.111) somewhat: 
Λ Γ + 1 / G M 

- | =(R<\\Rd R+!irM W~ ( 4 · 1 1 2 ) 

\/GM Rt+R, 
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■Φ P 

m 

JGM>-

(·) 

(b) 

Ri + Rt 

FIG. 4.29 A shunt-feedback amplifier with ideal transconductance amplifier (a) and flow graph 
(b). 

If Ri is removed instead, then 
ÄfllÄL 

= Rt-
Ä f | | ( l / G M ) 

1 - ÄfllÄL 
(4.113) 

Ä f | | ( l / G M ) 

Finally, when both RL and R, are removed, the transresistance reduces to the 
simple form of 

=-(*'+ir) (4.114) 

This expression is similar to (4.93). When R^ is set to r„ and 1/GM to rm, then 
the transconductance amplifier is equivalent to the BJT shunt-feedback 
amplifier. 

The input resistance can be found from the feedback equations: 

V\ = a-Ji —Hv09 v0=Gvi (4.115) 

Substituting v0 from the second equation into the first and solving, we obtain 

rin = - = —^77 = 7T~^77 (4.116) 
ij 1 + GH 1 + Crtl 
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An alternative solution that uses recursion begins with the first equation of 
(4.115). It is divided by ix\ 

ii \ h / Vi li 

= ax- GH· rin = 
1 + G H 

Writing H in terms of circuit component values, we can reformulate rin as 

Ar II AÌ RxRf 

1 - G[Rx/(Rf + Ri)] (1 - G)RX + Rr 
■=R< 

Rr 
Ì-G 

(4.117) 

This result suggests that we can apply Miller's theorem as an alternative 
approach to finding rin. 

Output resistance is derived as follows, applying KCL to the output node: 

vo MVoZ3. r 
RL Rf 

Solving for v0/i0 gives 

v'={-^y 
rout ~ RL 

Rr+Ri 
\-Rx/(l/GM) 

(4.118) 

(4.119) 

This form of rout is similar to (4.102) when Rx^> r„ and l / G M - » - r m . ( G M is 
positive as defined in Fig. 4.29a.) 

Since the feedback output quantity v0 is across rou t , feedback analysis 
applies directly, resulting in 

Rf 11 RL 
1 + G H 

(4.120) 

Finally, for a voltage amplifier version, the Norton equivalent circuit 
formed by ix and Rx can be Thévenized so that vx = ixRx. The voltage gain is 
then vjvx. This transformation of Fig. 4.29a is easy to make by changing ax 

and the input node of the flow graph (Fig. 4.29b). The new transmittance is 

R, 
RÎ+R: 

The voltage gain is 

Vo (4.111) Rf 

input node is v-x 

Rf\\RL 

Rr\\(l/GM) 
R> Rr+ R\ _ Rr || ^ L R, 

(4.121) 

Ä r | | ( 1 / G M ) ^ f + ^ i 



1 4 6 / 4 . Multiple-Path Amplifiers 

■AMr 
Rf 

10 kß 

-φ 

Vi 
- Ο -

1 kQ 

m m 

-φ l k Q 

m m 

FIG. E4.6 

Example 4.6 Transconductance Amplifier 

Figure E4.6 is a transconductance amplifier with a forward path transcon
ductance of Gm = -10 mS = -1/100 Ω. The SPICE results are 

^i 
-= -4.500 kiì, rin = 500.0 Ω, ; 500.0 a 

For l /G m = +100n, this positive feedback amplifier has 

-50.50 kn, 
f i 

rin = 5.500 kü, rout = 5.500 kil 

These results agree with those derived from Section 4.17. 

4.18 Feedback Circuit Resistances 

The effects of feedback on circuit resistances were introduced in Section 3.4. 
The situations considered were general but not general enough. In the previous 
sections, it was difficult to derive rin for the CB, and no attempt was made for 
the CE and CC. Miller's theorem provides rout, but under the condition that 
the amplifier output be a voltage source (no resistance). This is very limiting, 
as we have seen. Usually it was necessary to resort to KCL. The results of 
feedback analysis, mainly transmittances, are often useless in finding resist
ances, for several reasons. 
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First, from Section 3.4, feedback results can be applied directly to deter
mine the closed-loop resistance across an error voltage or in series with an 
error current. But these error quantities are often not the resistances of interest. 
In the three basic BJT configurations, input and output resistances were not 
directly associated with the error quantity. For example, for the CE and CC, 
for E = vbe, we can immediately determine that re is rex (1 + GH) with feed
back. But rin involves re in series with the rest of the emitter circuit. How is 
its resistance affected by feedback? It is usually not obvious. 

Second, most of the equivalent circuit methods used to find transmittances 
do not preserve circuit resistances. Two-port, Thévenin, and Norton equivalent 
circuits and divider formulas do not preserve resistances. For example, a 
voltage divider consisting of two 1 kfl resistors has a transmittance of 0.5, 
rin = 2 kil, and rout = 500 Ω (when the input is driven by a voltage source). But 
rout 7e 0.5 rm ; the transmittances do not apply to resistances as they do to voltages 
or currents. 

The reduction theorem is resistance-preserving. Consequently, we are able 
to apply the ß transform directly to circuit topology to find resistances. Earlier 
in this chapter, we did the same with the μ transform. The reduction theorem 
reduces circuits to a form that makes resistances available by topological 
inspection (by appealing to causal and topological reasoning, or intuition). 
Therefore, feedback analysis is usually not a good approach to resistance 
determination whereas the reduction theorem is. Miller's theorem can also be 
used, but like feedback analysis it is limited in its application. No single 
method is generally best; judgment is required, based on the particular circuit 
and what aspects of it are desired to be made explicit. 

An early method for finding resistances was published by R. B. Blackman 
in 1943, but it lay dormant for decades and is not found in many circuit 
textbooks. In recent years, R. D. Middlebrook of CalTech and Sol Rosenstark 
of New Jersey Institute of Technology have been reviving it. Blackman 
developed a simple formula for calculating resistances in feedback circuits 
that is also based on inspection of the topology. A feature of this method is 
that only loop gain is needed; no decisions about input or output feedback 
quantities are required. Another advantage is that it can use loop gain results 
from feedback analysis. Its disadvantage is that it is not as intuitive to use as 
the reduction theorem because the answer results from substituting these 
inspected values into a formula that, in itself, is not easily envisioned in terms 
of circuit topology. But it is easy to apply and minimizes calculation. Con
sequently, it will be developed here. 

Figure 4.30 represents a feedback circuit with loop gain -T and a port 
with terminal voltage v driven by a current source i. We want to find the 
closed-loop resistance at this port. Within the feedback loop, choose a con
venient point where it can be opened so that two flow graph nodes, xx and x0, 
are created. We have done this before when finding GH; the gain from E 
through G and H back to E again (or -B/E = - GH) is represented here by 
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FIG. 4.30 Blackman's formula is derived from this flow graph, where —T is the loop gain. The 
loop is opened between x-t and x0 so that when i = 0, -T = xj x0. 

- T. To derive Blackman's formula, it is not necessary to choose an £, but 
instead to pick a point within the loop where it can be opened so that loop 
gain under different conditions can be derived. Loop gain is xjx0. The x 
quantities can be either voltages or currents somewhere in the loop. The 
simplicity of this approach is that G, H, and E need not be identified, only 
loop gains. 

The flow graph of Fig. 4.30 can be expressed algebraically as 

Xj = Ai — Txc 

v = Ri + Dx{ 

For a closed-loop amplifier, x0 = x-x = x, and 

A 

(4.121a) 

(4.121b) 

x = Ai—Tx = -
1 + T 

Γ A " 
v = Ri + D\ 

Ll + T. 
Solving for closed-loop terminal resistance gives 

„ D A r, 
R+ =R 

l + [ r + ( D A / Ä ) ] 
(4.122) 

1 + Γ 1 + Γ 
This is the resistance we are seeking, but to use it in this form requires that 
we know the transmittances it contains. This can be an onerous task. An 
ingenious simplification is made by finding the topological meaning of the 
subexpressions in (4.122). 

Let us find the open-loop resistance. To obtain an open-loop circuit, set 
xo = 0. Then from (4.121b), 

= R (4.123) 

From this, we know that R in (4.122) is the terminal resistance when the loop 
is opened. 

Next, consider the expressions for loop gain that result from both open-
and short-circuiting the port. For an open-circuited port, / = 0. Substituting 
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for i in (4.121) and solving for loop gain, we obtain 

= -T 
Xi 

T = — 
Λ oc 

Xn 

(4.124) 

The denominator of (4.122) can be expressed in terms of the open-circuit loop 
gain as 1 - Toc. Finally, for the short-circuit loop gain, set v = 0 and solve for 
7scfrom (4.121): 

T = — xx 
[AD 

. . " b r + T (4.125) 

Interestingly enough, this matches the numerator of (4.122), so it can be 
expressed as 1 —Tsc. When these expressions are substituted into (4.122), 
Blackman's resistance formula results: 

1 Λ se 

Ì-T 
1 -»oc 

(4.126) 

To find closed-loop resistance at an arbitrary port in a feedback amplifier: 

1. Open the feedback loop and find the port resistance rol. 
2. Open the port and find the closed-loop gain Toc. 
3. Short the port and find the closed-loop gain 7SC. 
4. Substitute these results into Blackman's formula for rc,. 

Blackman's formula can be applied to feedback amplifiers to find input 
and output resistances. For the pathological cases of the CE and CC with r0 

(Sections 4.12 and 4.13), rin is easily found. From the input port, the topology 
of the CC is the same as the CE and rin is identical: 

rin = (/3 + l ) [ r e +K E | | ( r 0 + flc)] 
l-(b/d) 

1-0 

or 

CE.CC r,^ß + nr,+ R^^4>-(^f^)(^r) 
(4.127) 

Finally, let us find rin for the CB with r0 (Section 4.11): 

l-b/d 
CB rin = [ R E + r e | | ( r „ + Ä L ) ] · 

l - ( l / d ) [ r . / ( r e + r 0 ) ] 

For the CB, neither Tsc nor Toc is zero. 
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4.19 The Asymptotic Gain Method 

In close connection with Blackman's resistance method is the asymptotic gain 
method for finding feedback circuit gain. It has been developed extensively 
by R. D. Middlebrook of CalTech. Here the equivalence of the asymptotic 
gain method and the signal flow graph feedback method we have been using 
will be shown. In doing so, the idea of the asymptotic gain method will be 
made clear. 

Consider again the feedback topology of Fig. 4.18b, expressed as Fig. 4.31. 
From Section 4.10, we know that 

x0 axG 

where the path transmittances are 

E\ 
-HC=0 

x0 

\ + GH 

E 
H = c 

- + F (4.128) 

F = -

The asymptotic gain formula is 

x°-r 
X i 1 + Γ 

+ G0 1 + T 

(4.129) 

(4.130) 

where 

GL = 
axG 

\ + GH 
_ ax _ axG ^ 

+ F = — + F = - L - + F , 
H T 

T=GH- G0=F (4.131) 

Substituting for G^ and G0 into (4.130) gives 

x0 I axG \ T _ 1 ax 
— = \ - ^ + F ) + F = 
xx \ T / 1 + T l + T l + < GH 

- + F (4.132) 

The significance of (4.130) is that it reformulates (4.128) in a form that makes 
another method explicit. By finding G^ and G0 from circuit maneuvers, the 
results are substituted into (4.130). The method is similar to Blackman's 
formula: Find some circuit quantities by imposing constraints on the circuit 
and then substitute these results into a simple formula. G^ is x0/xx with infinite 
loop gain. This is not unfamiliar; we analyzed what happens to op-amp circuits 
when op-amp gain is infinite. Discrete transistor amplifiers can be analyzed 

FIG. 4.31 The asymptotic gain method is derived from this flow-graph topology. 
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similarly; the result is the feedforward path added to ax{\/H). G0 is x0/x\ 
with zero loop gain, which is the feedforward path F. 

4.20 The Cascode and Differential 
Shunt-Feedback Amplifiers 

The basic shunt-feedback amplifier can be combined with other elemental 
circuits such as the cascode or differential amplifiers. Figure 4.32 shows a 
shunt-feedback cascode amplifier with current-source load, modeled in Fig. 
4.32b. First, ic2 must flow through R2. Thus, 

*R1 — le2 — lci 

and 

h = *bi+ «RI = Ibi + 'cl = (ßl + l)*'bl = (ßl + 1) 
f b l 

Then 

The output voltage is 

Substituting, we obtain 

vbx = rel · ij 

^ο — Vbì — l ' e l e i — *c2^2 

Vo = fc\i\ - * d # i - OL2icXR2 = rel/i - aìiì(Rì + a2R2) 

m 

R2S\Ì*2 (S)'* 
Kb2 

*b2 

*i>W 
re2 

Kbl 

*φ 
m 

'bi 

Φ 'cl 

'el 

(a) (b) 

FIG. 4.32 The shunt-feedback cascode amplifier (a) and equivalent circuit (b). 
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The transresistance is 

■= — a^R, — axa1R^-\- re (4.133) 

This result is similar to (4.91), where Rr corresponds approximately to Rx + R2. 
Since ic2 suffers from loss of current to both Q, and Q2 bases, both ax and a2 

are factors of R2 in (4.133). 
A differential shunt-feedback amplifier is shown in Fig. 4.33. The results 

of (4.107) apply in finding the equivalent emitter resistance of one side of the 
differential pair due to the other side. With one input open, the other input 

+V< cc 

<L1 

vol vo2 

:*L2 

sg| 9 
Φ* 
+ Vi 

φ'= 
Π7 

EE 

(a) 

Π7 
(b) 

FIG. 4.33 The differential shunt-feedback amplifier (a) and equivalent circuit (b). 
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appears as a high resistance, but when both inputs are driven differentially, 
the emitter currents caused by each input are equal and opposite for a 
symmetrical circuit. 

Example 4.7 Differential Shunt-Feedback Amplifier 

Figure E4.7, using the default BJT model, has (reduced) SPICE program 
and output as shown. The transmittance follows directly from substitution 

E4.7 Shunt Differential Feedback 
Amplifier 

.OPT NOMODS OPTS NOPAGE 

.OP 

.DC II -0.10mA 0.10mA lOuA 

.TF V(40,20) II 
VCC 80 0 DC 12V 
10 30 0 DC 2mA 
11 50 10 DC 0A 
RL1 80 20 2.7K 
RL2 80 40 2.7K 
RF1 20 10 10K 
RF2 40 50 10K 
Ql 20 10 30 BJT1 
Q2 40 50 30 BJT1 
.MODEL BJT1 NPN (BF=99) 
.END 

+12 V 
180 

+12 V 
180 

«Φ 
NODE 
(10) 9 
(20) 9 

VOLTAGE 
2000 
30000 

(30) 8.4261 
(40) 9 
(50) 9. 

3000 
1000 

n 

OPERATING POINT INFORMATION 
TEMPERATURE^ 27 000 DEG C 
BIPOLAR JUNCTION TRANSISTORS 
NAME 
MODEL 
IB 
IC 
VBE 
VBC 
VCE 
BETADC 
GM 

Ql 
BJT1 
1.00E-05 
9.90E-04 
7.74E-01 
-1.00E-01 
8.74E-01 
9.90E+01 
3.83E-02 

Q2 
BJT1 
1.00E-05 
9.90E-04 
7.74E-01 
-1.00E-01 
8.74E-01 
9.90E+01 
3.83E-02 

10 < * > > 50 

30 

/o Φ 2 mA 

φ·. 
m 

m 

V(40,20)/II=1.887E+04 
INPUT RESISTANCE AT II=2.325E+02 
OUTPUT RESISTANCE AT V(40,20)=2.405E+02 

FIG. E4.7 
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of circuit element values into (4.90) and doubling the result to account 
for both sides of the circuit. 

4.21 The Emitter-Coupled Feedback 
Amplifier 

A common multipath topology involving both cascade and emitter coupling 
is shown in Fig. 4.34a with small-signal equivalent circuit shown in (b), two-port 
equivalent for H in (c), and flow graph in (d). Let E = ieì. The error-summing 
node is at the output port of H. F = 0 since all paths from v{ to v0 are along 
either Gx (cascade path) or G2 (emitter-coupled path). The transmittances are 

' e l 
a{ = — 

' e l Hie2 = 0 

1 

'ei + RE 

= Gt + G2 = 

RE 

rel + RE 

v° o 
a0 = — = - « 2 ^ 2 

hi 

<*IRLI RE 
re2+RE r e 2 + ^ E 

' e l / / = " — 
*e2l vt = 0 

Since the input and output quantities are voltages and the error quantity is a 
current, ax is a conductance and a0 a resistance. Other choices for E are 
possible, of course. The voltage gain is 

A * = a ' ^ a ° ( 4 1 3 4 ) 

This amplifier can be implemented by replacing the x ( - l ) amplifier with a 
PNP CE stage or NPN CE stage with negative voltage offset. Unlike previous 
amplifiers with multiple forward paths (for G), the passive path (G2) has a 
significant transmittance and cannot be ignored. 

Example 4.8 Emitter-Coupled Feedback Amplifier 

Figure E4.8 feedback analysis assumes E = ie1. Then dc analysis produces 
the following values: 

Vci = 6.7112 V, VE =-0.7773 V, V0 = 9.6345 V, VB2 = -0.0012 V 

/E1 = 1.14mA, /E2 = 1.09mA 

FIG. 4.34 An emitter-coupled cascade amplifier (a) and model (b), two-port equivalent circuit 
for H (c), and flow graph (d). This amplifier has significant transmittance in its passive forward 
path. 



+^cc 

*L1 

ßl 

+v, ce 

*L2 

3 

^Ll *L2 

Kcl 

Φ 'cl Φ lc2 

rcl 
vcl re2 

zel L ze2 

*E 

-^EE 

(a) (b) 

*L1 

Φ 
-1 

«cl 

*L2 

Φ *c2 

rc2 

'el 

«B Φ 
'e2 

*e2 *E (T) 'el 

I X 
(c) 

(d) 
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+12 V +12 V 

From the current values, 

r e l = 22.69 Ω, re2 = 23.73 Ω 
The transmittances are 

ax = 9.7781 x 1(Γ4 S, H = 0.97781, 

^ =4.5451, G2 =-0.97682 

G = GX + G2^3.5683, a0 = -2.178 kü, 1 + GH = 4.4892 

Then 
t>0 G 

= α" * Τ Τ Τ ^ · α ο = -1.6928 fi 1 + GH 

rin = (1 + GH)[{ßx + l)(rel + ÄE)] = 459.1 kO 

rout = 2.2 kO 

4.22 Closure 

We have found that multiple paths through amplifiers are common and that 
several methods are usually applicable for finding a circuit quantity of interest. 
We shall examine multipath amplifiers again when frequency response is of 
primary interest. 
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Example 4.9 Inverting Feedback Amplifier 

The Fig. E4.9 dc bias solution is given in the SPICE simulation. The 
transistor parameters are for 2N930 transistors. From these values we 
obtain 

rel=244fi, re2 = 26.6n 

E4.9 Inverting Feedback Amplifier 
.OPT NOMOD OPTS NOPAGE 
.OP 
.DC VI -2V 2V 0.05V 
.TF V(70 VI 
VCC 80 0 DC 16V 
VI 10 0 DC 1.3484V 
RB 10 30 2.2K 
RF 30 70 220K 
RL1 80 40 100K 
REI 50 0 7.5K 
RE2 60 0 100 
RL2 80 70 15K 
Ql 40 30 50 BJT1 
Q2 70 50 60 BJT1 
* 2N930 

RB 
102.2kQ 

+ >"■■·< 
V iv J + y 

1.3484 V -ήτ 

.MODEL BJT1 NPN (BF=170 IS=1E14) 

.END 
NODE VOLTAGE 
(10) 1.3484 (30) 1. 3484 (40) 5.4728 
(60 .0973 (70 1.4837 
BIPOLAR JUNCTION TRANSISTORS 
NAME Ql 
MODEL BJT1 
IB 6.19E-07 
IC 1.05E-04 
VBE 5.97E-01 
VBC -4.12E+00 
VCE 4.72E+00 
BETADC 1.70E+02 
GM 4.07E-03 

Q2 
BJT1 
5.69E-06 
9.67E-04 
6.54E-01 
-7.32E-01 
1.39E+00 
1.70E+02 
3.74E-02 

220 kQ 

(50) .7515 

V(70)/VI=-5.106E+01 
INPUT RESISTANCE AT VI=4.260E+03 
OUTPUT RESISTANCE AT V(70)-6.873E+03 

FIG. E4.9 
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Furthermore, the base input resistance of Qt is 

ri = (j8i + l)[r.1 + ÄE 1 | | ( j82+l)(r . 2+ÄE 2)] 

= (171X244 Ω + 5.5700 kÜ)«= 994.2 kO 
Additionally, 

r, || Rr = 180.1 kÜ, r, || 2.2 kii = 2.1951 kO 

Let E = ubl = Ü(30) . Then, 
180.1 kSl 

180.1 kii+2.2 kÜ = 0.9879 

G / 5.5700 kÛ \ / 15kfì||220kfì 170\ 
1 \5.570ka + 244fì/\ 26.6 Ω+100 Ω 171/ 

= (0.9580)(-110.3) =-105.7 

15 kfì G* = 1 < l r t , m . « = 6.3830 x 10~2 s 0 15kfì + 220kfì 

G = -105.6 

H = -9.8793 x 1 0 ~ 3 — — 

Then 

101.2 
1 + GH = 2.0433 

— = « , ·——-=-51.057 «i 1 + Gif 

15kfì||220kfì 
- = 6.8726 kfì l + G/ί 

rin = [2.2 kü +180.1 kû] · i ± l ^ | a = 2 _ 1 8 2.3 kO · ^ ί ^ 
l + (GH)|,,.o 87.466 

= (182.3 kO)(2.3360 x 10"2) = 4.2586 kfì 

Note that in using Blackman's formula to find rjn that G remains the 
same for both numerator and denominator, that the numerator is 
the 1 + GH calculated previously, and that what is different in 
the denominator is H: 

H\^0 = - ~ - = -0.81881 
r> + Rr 

The SPICE simulation results are 

^ = -51.06, rin = 4.260 kii , rout = 6.873 kΩ 
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+16 V 

► l O k Q 

R{ > 1 5 0 k Q 
6.873 kQ 

i—^w ° y * I 2N93° 

0.7161 V 

151<Ω 

FIG. E.4.10 

.RE 
100Ω 

Example 4.10 Shunt-Feedback Voltage Amplifier 
The Fig. E4.10 analysis follows from Section 4.15. The 2N930 BJT is 
used here with β = 170 and Js = 10~14 A. The dc analysis yields 

/Ε = 411μΑ, VBE = 0.646 V, Vc = 8.4941V, :70.3mV 

The rather exacting value of Ri happens to be the output resistance of 
Fig. E4.9. (In Fig. E4.11, they are connected.) This R, accounts for 
interstage loading. The feedback calculations are based on E = vb, and 
the formulas of Section 4.15 apply directly. 

re+RE RE ^ ^ 100Ω 
r M = - - = ^ + - ^ = 37Ω + - — τ τ τ = 137.63 Ω 

a a 0.99415 

/ 1 0 k f ì \ / 150 kÙ \ 
\ 160 kü A 137.63 Ω / -68.057 

Let 

rs = R, || RB || (ß + l)(re + RE) = 6.873 kii || 9.1400 kÙ = 3.9230 kü 

Then, 

H 
3.9230 kü 

-=-2.5487 xl0~ 2 

rs + Rf 3.9230 kil+150 kO 

From this, I + GH = 2.7346 and rs || J?f= 3.8230 kü. Then, 
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Using Blackman's formula for rin, we obtain 

1 + (G//)|S, 
ri„ = [Äi + ÄB||(j8 + l ) ( r c + / l E ) | | Ä f ] 

= 15.488 kü 7 ~ ^ = 8*6280 kfì 4.9088 

1 + (GH)|, 

For (Gf/)|oc = (Of/)|/i=s0, G is the same as before, but H is 

9.1400 kü 
Hl°c=~Qi^nin^i<nin = ~ ~ 5 J 4 3 4 x l Q 9.1400 kfì+150 kü 

The output resistance is 

ÄL II Ar 9.3750 kü 
1 + G/f 2.7346 = 3.4283 kO 

Example 4.11 Audiotape Playback Amplifier 

In Fig. E4.11 we combine Figs. E4.9 and E4.10 into a typical discrete 
BJT tape playback amplifier design. From the analysis of Figs. E4.9 and 
E4.10, the voltage gain is 

AV(E4.9) · AV(E4.10) = (-51.06)(-13.84) = 706.7 

A SPICE ac simulation was performed on Fig. E4.1L Although we have 
not studied frequency response yet, the quasistatic parameters are closely 
approximated by the ac results at high frequencies. At 100 kHz, Av = 
t;(90)/t?(10) = 706.8, showing good agreement Additionally, from the 
simulation, Avl « t>(70)/t>(10) = 10.38 and rin - i>(10)/i(ÄB) = 19.19 kü at 
100 kHz. The discrepancy between Av (E4.9) and Avl is due to how 
interstage loading is handled. In combining Figs. E4.9 and E4.10, the 
Thévenin equivalent of Fig. E4.9 was used to drive Fig. E4.10 instead of 
the output of Fig. E4.9 loaded by Fig. E4.10. The loaded Fig. E4.9 has 
a gain of Avi and can be calculated using feedback analysis with a loaded 
jRL-15kn|| rin(Q3) = 1.563 kü. Then the gain of the shunt-feedback 
output stage is its open-loop G = -68,057. By accounting for the loading 
of rin(Q3) on Fig. E4.9, the actual output voltage of Fig. E4.9 is derived, 
and this is the base voltage of Fig, E4.10. Since t>b3 is known (with 
Q3-stage feedback taken into account in the loading), the remaining 
transmittance is from the base of <?3 to its collector, or G. The overall 
gain is then 

Av = (~1038)(-6S!tt57) = 706.4 
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Rn 
200 kQ 

FIG. E.4.11 

C2 100 μ¥ 

FIG. E4.12 
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Example 4.12 Audio Preamplifier with Noninverting 
Feedback 

The circuit in Fig. E4.12 is an audio preamplifier design using similar 
gain stages as Fig. E4.11 but employing a noninverting feedback amplifier 
similar to that of Section 3.10. It is followed by an emitter-follower to 
provide a low-resistance (voltage source) output. The amplifier has high 
input resistance due to feedback, as desired for a voltage amplifier (see 
Section 2.5). SPICE simulation produced the following voltage gains: 

i?(30) νΠΟ) 
-7—7= 1.512 at 100 kHz, -7—7 = 21.09 at 100 kHz 
t>(10) u(10) 
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C H A P T E R 5 

Transient and Frequency 
Response 

The previous circuit analyses were low-frequency (real) and did not take into 
account inductance and capacitance. The reactive effects of these circuit 
elements1 require complex analysis, and circuit behavior can be expressed 
either as functions of time (time-domain analysis) or frequency (frequency-
domain analysis). These domains are united by expressing circuit response in 
terms of a complex frequency. 

5.1 Reactive Circuit Elements 

What makes circuit behavior different with reactances - inductances and 
capacitances - is that they can store energy and release it later. Their behavior 
depends on the rate of change of signals applied to them. The definitions of 
inductance L and capacitance C are 

L definition L = — (5.1a) 
di 
da 

C definition C = ~r (5.1b) 
dv 

where λ is the magnetic flux linkage and q the electric charge. Since 

d\ t dq , x v=— and i=-j- (5.2) 
dt dt 

1. A circuit element is an idealization of a circuit component or other parasitic (distributed-
parameter) effect equivalent to a component. 

163 
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then 

Lv-i relation 

Cv-i relation 

υ=Λ' 

dv 

— =L — 
dt dt 
dv dv 
dt dt 

(5.3a) 

(5.3b) 

L and C differ by an interchange of v and /; they are duals. Besides the 
definition and v-i relation for L and C, the basic expression based on geometry 
is also important: 

L = ef (5.4a) 

C = y (5.4b) 

where A is the coil loop or capacitor plate area, / the coil length or capacitor 
plate separation, μ the relative permeability of the material inside the coil and 
ε is the relative permittivity (or dielectric constant) of the material between 
the plates. Not all inductors or capacitors are constructed of solenoidal coils 
or parallel plates, but the form of (5.4) is generally correct. It is of interest to 
note that conductance can be expressed similarly: 

G = — (5.4c) 

where σ is conductivity of the conductive material. Equation (5.4c) is the 
reciprocal of the more common formula for resistance: 

R=Pi ( 5 · 5 ) 

where p is resistivity = Ι/σ, and R = l/G. 
The energy W stored by an inductor or capacitor can be derived by noting 

that power P is the rate of energy flow, 

dW , N 

P = - (5.6) 
and that power is, by definition, 

Watt's law P=vi (5.7
) 

Combining (5.6) and (5.7) and solving for W, we have 

W= vidt (5.8) 
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Substituting into (5.8) from (5.2) gives 

inductor energy, W 

capacitor energy, W 

= )Yildt = ) idk (5.9a) 

vdq (5.9b) 

For linear elements, (5.1) can be simplified to 

linear L, λ = Li (5.10a) 

linearC, q = Cv (5.10b) 

Substituting these expressions into (5.9), the energy stored in a linear L or 
C is 

W=\ id(Li) = L\ idi = \-Li2 (5.11a) id(Li) = L 

vd(Cv) = C 

idi = \- Li2 

* 
vdv = l2' Cv2 W= vd(Cv) = C vdv = {' Cv1 (5.11b) 

The energy stored in an inductor is proportional to the square of the current 
through it; for a capacitor, it is the square of the voltage. The proportionality 
constants are half L and C 

The v-i relations for L and C can also be expressed as 

v=- idr, i = — vdr (5.12) 

where r is a dummy variable of integration and t is time. 

5.2 First-Order Time-Domain Transient 
Response 

Using the relations for L and C from Section 5.1, we can find the time-domain 
response (that is, the response as a function of time; time is the independent 
variable) of circuits such as that of Fig. 5.1a. This is a simple RC integrator 
or low-pass filter. The response can be found using KCL at the output node: 

v0 — V\ _ dv0 -JLrr-1+C--- = 0 (5.13 
R dt 

or, arranging (5.13) into the form of a standard differential equation, 

This is an ordinary linear, constant-coefficient differential equation and can 
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R 
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-Ò 
m m 

*Φ 
m 

(a) 

FIG. 5.1 First-order circuits: (a) RC integrator or low-pass filter and (b) RL dual of RC integrator. 

be solved by using the substitution 

vn=Vesl (5.14) 

where s is a variable. Notice that vi9 the input function driving the circuit, 
appears only on the right side of (5.13a). If a specific function is substituted 
for vXt), the output time response can be found for that input. The output 
response also depends on the characteristic of the circuit itself, as represented 
by the left side of (5.13a). By setting the input function to zero and solving 
for v0, we obtain the natural response of the circuit, 

dvg 

dt MM--
Substituting (5.14) gives an algebraic equation: 

(5.15) 

(5.16) 

Since the exponential cannot be zero and W O , the first factor must be 
zero, or 

s+ = 0 
RC 

(5.17) 

This algebraic equation in s is the characteristic equation of (5.15) and of the 
circuit. Solving for s gives 

1 
s = RC 

(5.18) 

Finally, the natural response is 

v0(t)=Ve-{x/RC)' (5.19) 

If the capacitor has an initial charge of vQ(t) = V0 and v-} = 0, then 

V0= Ve°= V 
and 

vo=V0e-"'RC)< (5.20) 



5.3 Complex Poles and Frequency Domain / 167 

FIG. 5.2 First-order response: exponential decay. The initial slope at initial voltage V0, when 
projected to the /-axis, intercepts at the time constant τ. 

The response shown in Fig. 5.2 is very common and is called exponential decay. 
The output voltage decays, asymptotically approaching zero at infinite time. 
This is typical of the natural response of circuits. Given an initial energy in 
reactive elements, this energy is eventually dissipated by any resistive elements. 
Consequently, circuit response to a nonzero initial condition, the natural 
response, is also called the transient response. 

The time scale of the decay is measured as the time constant, the value of 
- 1 / 5 in (5.18), which is 

r = RC (5.21) 

The initial slope of v0(t) is projected to the ί-axis in Fig. 5.2 and intercepts 
the axis at r. At t = r, v0(r)/ V0 = e~x = 36.7%. After 5r, v0 is within 1% of zero. 

The RL circuit of Fig. 5.1b is the dual of (a), and its time constant is 
τ = L/R. For *"i = 0 and an initial inductor current of J0, iQ(t) is about 37% of 
its final value after r. Replacing V0 with I0 in Fig. 5.2 results in the response 
of io(0. 

5.3 Complex Poles and the 
Complex-Frequency Domain 

For circuits with more than one reactive element, the differential equations 
describing them can also be solved with the substitution (5.14). The complica
tion is in solving the characteristic equation. Its degree is equal to the number 
of reactive circuit elements. After its roots are found, the time-domain response 
is obtained by substitution. For multiple roots, linear combinations of (5.14) 
are required. 
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The roots of the characteristic equation are called poles. For single-pole 
response, s is real. For two or more poles, s can be real, imaginary, or complex. 
In general, s is a complex variable. Complex numbers can be expressed in 
rectangular or polar form: 

rectangular form, s = σ +jco (5.22) 

polar form, s = \\s\\ej+ (5.23) 

In rectangular form, s is the sum of real and imaginary numbers (where 
j = \f^ï). In polar form, s is expressed by a magnitude and phase angle. The 
polar and rectangular forms are related through Euler's formula, 

ej4> = cos φ +j sin φ (5.24) 

and the Pythagorean theorem, 

| | s | |Wo-2 + o>2 (5.25) 

The rectangular components are expressed in terms of the polar components 
as 

σ= \\s\\ cos φ (5.26) 

ω = \\s\\ sin φ (5.27) 

Therefore, 

s = a+jo) = \\s\\ cos </>+j'||s|| sin φ = ||s||(cos φ+j sin φ) = \\s\\ eJ<t> 

Dividing (5.27) by (5.26) and solving for φ gives 

'{;} ^ t a n - ' j - (5.28) 

With these expressions we can now examine the general form of a quadratic 
characteristic equation for 

s = (-a, ±œd) = -a ±j(od (5.29) 

which is 

52 + 2^ίϋη5 + ω„ = (s + a+7<üd)(s + a —j(od) = 0 

= s2 + 2as + {a2 + œ2
a) (5.30) 

Equating terms, we get 

α = ζωη (5.31) 

ωΙ = α2 + ωά (5.32) 

The general solution of (5.30) is 

*i.2 = - i û > n ± > n > / w 5 (5.33) 
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where 

ωά = ω n ^ W 1 (5.34) 

The quantity ωη is called the natural frequency, a the damping factor, and ζ 
the damping ratio. From (5.31) and (5.32), ζ can be directly related to the pole 
angle φ as 

£ = cos(/> (5.35) 

We can express (5.33) in polar form by using (5.25), (5.28) and t a n # = 
- t an (180° -# ) = -tan(/>: 

su2 = (one (5.36) 

This pole pair is shown in Fig. 5.3. Complex poles always occur in conjugate 
pairs, as shown. In the complex plane of s (s-plane or s-domain), poles are 
represented by x marks. 

The units of s must be frequency. Since s is complex, it is a complex 
frequency. The s-domain is called the complex-frequency domain. 

FIG. 5.3 General complex pole pair in the complex-frequency domain. The pole angles are ±φ 
(pole angle is φ), magnitude is the natural frequency ωη, real component is -a, and imaginary 
components are ±7^d. The poles are always complex conjugates and are always symmetrical 
about the σ-axis. 
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5.4 Second-Order Time-Domain 
Response: RLC Circuit 

The series RLC circuit of Fig. 5.4 is a typical circuit with a second-order 
differential equation (and second-degree characteristic equation). Using KCL, 
its differential equation is 

d2i / R \ d i / 1 \ 1 di, 

^VJÄmi=-Ljt
 ( 5 · 3 7 ) 

The transient response is found when ij(i) = 0. Solving for the characteristic 
equation using i = es\ it is 

s2+\ ■(-3-te)-· 
Using the quadratic formula to solve for the poles in s, w

e obtain 

These poles are of the for

m 

Sl,2=-<X±j(Dd 

where 

(5.38) 

(5.39) 

(5.40) 

(5.40a) 

Each pole contributes a solution to (5.37) when substituted into est. Because 
the response is the solution to a linear differential equation, then by super
position, the independent pole solutions can be combined linearly to form a 
complete solution. 

The transient response of a second-order circuit depends on the value of 
its elements. For the RLC circuit of Fig. 5.4, the poles are real when7'wd is real: 

2 1 
:0 \2L) LC~{ 

FIG. 5.4 A second-order RLC circuit. 
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or 

^ 2 V I (5.41) 

When distinct poles are real, response is exponential, and the natural frequency 
ωη equals the real frequency a. Distinct real poles are located at s = —a ±ωά. 

A special case of real poles is when they are equal (or repeated). Their 
solutions cannot be combined by superposition to produce a response because 
they are not independent. In this case, the general form of the pole solutions 
is, for n poles, 

or«!·*"" ( 5 · 4 2 ) 

For the RLC circuit, n = 2, and the response is 

i(t) = Ixe-at + I2te-at (5.43) 

For imaginary poles, ωη = ωα, a = 0, and the natural response is a sinusoid. 
This is the case of oscillators and is a conditionally stable response. 

The last case to consider is that of complex poles. The solution is 

i(t) = cx e(-a+>d>' + C2e<-«->d>' (544) 

This can be written as 

i(t) = e~at(cx cos <udt+jcx sin wdt + c2 cos (odt—jc2 sin ωάί) 

= e~a,[(cl + c2) cos (Ddt+jici -c2) sin ωαί] (5.45) 

If cx and c2 are complex conjugate constants, then the coefficients in 
(5.45) are real. Let 

/i = c, + c2, I2=j(ci-c2) (5.46) 

Then the response is 

ί(ί) = e~at(Ix cos cudr + I2 sin ωάί) (5.47) 

with real Ix and I2 determined by initial conditions. This can also be expressed 
as a single sinusoid with a phase angle #: 

i(t) = Ie~at sin ((odt + $) (5.48) 

where 

/=V7f+7I, # = t a n 1 ( ^ (5.49) 

This response is a damped sinusoid (Fig. 5.5). For left half-plane poles, the 
sinusoid decays with time due to the decaying exponential factor. This factor 
is the envelope of the sinusoid and is shown as a dotted line. For right half-plane 
poles, the response is unstable; it is an exponentially growing sinusoid. The 



172 / 5. Transient and Frequency Response 

FIG. 5.5 Damped sinusoidal response of second-order circuit. The envelope (dotted curves) of 
the sinusoid is exponential decay, dependent upon a. The damped frequency is a>d. 

limiting of actual circuits causes nonlinear limiting of such a response and 
distorts the sine wave. 

The pole angle φ and its related parameter ζ most explicitly express the 
kind of response a circuit will have. The pole angle is 

φ = tan ■(?) (5.50) 

As ζ decreases, poles move toward each other and then split off the real axis, 
increasing in pole angle (Fig. 5.6). As the poles leave the real axis, the 
time-domain response begins to show a sinusoid, with noticeable "ringing." 
The larger the pole angle, the more sinusoidal cycles occur before being 
damped out by the decaying exponential factor. We have, then, the following 
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Pole movement 
as ζ decreases 

Poles split off 
aaxis here 

£ = 0: 
Undamped 

0 < ζ < 1 : Underdamped 

FIG. 5.6 Responses for various pole locations. As ζ decreases, the imaginary component gains 
in dominance, and sinusoidal response becomes more prominent. 

categories of response: 

ζ > 1 overdamped response 
ζ = 1 critically damped response 
0 < ζ < 1 underdamped response 
ζ = 0 undamped response 

poles real and distinct 
two equal real poles 
complex pole pair 
poles imaginary 

As ζ decreases below unity, the poles move in a circular arc of radius ωη and 
increasing pole angle until, at ζ = 0, they are located on the ]ω axis at ±/o>d = 
±/ωη. The frequency ωά, the damped frequency, is less than the natural 
frequency ωη when ζ>0, that is, when damping exists due to R (5.34). 

The real component of s, -a, is related to the exponential factor in the 
response. It has units of 1/time (or frequency) and is the reciprocal of the 
time constant of the exponential factor. For large a, the exponential response 
is fast. For poles on the jco axis, a = 0 and no exponential decay occurs. 

The RLC circuit has 

1 R 
2τ 2L 

(5.51) 

1 
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and 
a R i=^^m ( 5 · 5 3 ) 

The RLC circuit is critically damped at ζ= 1. Solving (5.53) for R, we obtain 
the equality of (5.41), Define 

^ n = y ^ (5.54) 

This is the characteristic impedance of the LC elements. L and C also determine 
ωη (5.52). A combination of elements (L and C or negative elements) can give 
rise to an underdamped response or a resonance. The behavior of resonant 
circuits exhibiting sinusoidal response is oscillatory. Resonance occurs at a 
frequency of ωη (or ω0) and a characteristic impedance of Zn (or Z0). Circuits 
with more than two reactive elements have more than one resonance (or 
resonant mode). These circuits can have more than one complex pole pair. 

Resonance is either series resonance or parallel resonance. The previous 
RLC circuit is series resonant since L and C are in series with R. For critical 
damping of a series resonance, R must be equal to the sum of the (equal) 
reactances of L and C at resonance, or 2Zn. A circuit with R, L, and C in 
parallel is parallel resonant, and for critical damping, once again, R must 
equal the combined reactance of L and C or be half of Zn. 

5.5 Forced Response and Transfer 
Functions in the s-Domain 

We have seen that the natural or transient response of a circuit is due to initial 
nonzero energy storage in reactive elements. At t > 0, the circuit responds to 
this energy without external input sources. With resistive elements in the circuit, 
this initial energy is dissipated and eventually goes to zero. For a circuit 
quantity (a voltage or current) x, then 

lim xtr = 0 
f-*oo 

When the circuit is driven by a source, it continues to respond indefinitely to 
the source. This is the forced or steady-state response. It continues after the 
transient response has decayed and is 

xss = lim x 

For linear circuits, the total response is the superposition of the transient and 
steady-state response, or 

x(t) = xtr(t) + xss(t) (5.55) 

The transient response can be found, as we did in Section 5.4, by solving the 
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circuit differential equations for zero input. This (homogeneous) solution can 
then be used to find the (particular or complementary) solution with a nonzero 
input, resulting in the total response. 

For linear circuits, input sinusoids always result in output sinusoids. 
A differential circuit equation describing an output quantity x0 and input x-x 

is, in general, 
Dì(x0) = Nì(xì) (5.56) 

The transient response is found by setting Nx = 0 and x0 = X0(s) es\ where X0 

is a complex parameter of s (and constant in t). Then, 

Di(Xoe") = 0 (5.57) 

We have seen that the exponential can be factored out of D, leaving the 
characteristic equation D(s) = 0. This factorization is 

D,(X0 est) = D(s) · X0 est = D(s) · x0 (5.58) 

If we let Xi similarly be a complex exponential, then we have a similar 
factorization on the right side of (5.56), or 

N^x-M^xy^ N(s) · Xi (5.59) 

Substituting (5.58) and (5.59) into (5.56) and solving for the output/input 
ratio, or transfer function, results in 

V = ^ T T ' xl9x0 = X(e«) (5.60) 
X\ D(s) 

This is an extremely important result. Whenever the input is a complex 
exponential function, the output will also be, modified by N(s)/ D(s). 
Sinusoidal input is a special case in which s =jœ. Equation (5.60) is a very 
general result because complex exponentials can be summed in a Fourier series 
to create arbitrary functions. Therefore, in (5.60) we have the key to finding 
the transfer functions of linear circuits in general, expressed in s. 

N and D can be factored into the canonical form of a transfer function: 
N(S) (s + Zx)(s + Z2)->>(s + Zm) 
D(s) (s + pl)(s + p2) · · · (s+pn) 

The roots of D(s) are poles, —pi9 and the roots — ζ·λ of N(s) are called zeros 
because N/D is zero at s = —zi. (The word pole fits the idea that since the 
poles make N/D infinite, a plot of N(s)/D(s) typically looks like a tent 
with poles holding it up at the poles.) Poles and zeros are called critical 
frequencies. For actual (causal) circuits, the degree of N does not exceed that 
of D, or m < n. K is a constant, but it is not the dc transmittance. Equation 
(5.61) can be expressed in normalized form by factoring out z-x and px. The 
factors are normalized to unity at 5 = 0, and the new constant K is the dc 
transmittance. 

N(s) (5/z1 + l ) ( 5 / z 2 + l ) - - - ( 5 / z m + l ) 
—7—=Χ*τ—; w—; ; ;—; r> m < n (5.62) 
D(s) (s/Pl + l)(s/p2+l) · · · ( s / p n + i r 
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"O 
FIG. 5.7 RC differentiator. 

To illustrate these general concepts by example, consider the RC differen
tiator circuit of Fig. 5.7. Using KCL at the output node, we obtain 

This can be rearranged as 

dt R 

dvg / 1 \ =dt)i 
dt \RC)V° dt 

(5.63) 

(5.64) 

The right side of the equation describes the effect of the input and is related 
to the steady-state response. The left side, as we have seen, characterizes the 
transient response. Letting both v0 and V\ be complex exponentials and factor
ing, we obtain 

M(s) = 
N(s) s_ 
D ( s ) " s + ( l /ÄC) 

= RC-
sRC + 1 

(5.65) 

There is a zero at the origin (s = 0) and a pole at -Ì/RC. D(s) is the same 
as that of (5.17), also a first-order RC circuit. Since the poles characterize the 
transient response, it is identical for this RC circuit. The numerator describes 
the transformation of the input. Since 

— e" = s e* 
dt 

(5.66) 

s acts as a differentiation operator for complex exponentials and, more gen
erally, for functions that can be described in terms of complex exponentials. 
In (5.65), N(s) = s can be interpreted as a differentiation of the input function 
to the circuit, hence the name RC differentiator. 

Applying this method of finding the transfer function in s to the RC 
integrator of Fig. 5.1a, described by (5.13a), we obtain 

M(s) = 1 1 1 
RC s + U/ t fC) sRC + l 

(5.67) 
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5.6 The Laplace Transform 

The RC integrator and differentiator were described by one differential 
equation resulting from application of KCL in the time domain. For more 
complicated circuits, we must solve a system of differential equations. The 
total solution requires substitution of a particular function for the input. We 
saw in Section 5.5 that for complex exponential inputs, the response is also a 
complex exponential, and the transfer function in the s-domain can be found. 
Since Fourier series descriptions of arbitrary functions can be given in terms 
of complex exponentials, this is a generally useful result. But what remains is 
to determine the time-domain response of a circuit described by transfer 
function M(s) for a given input. Specifically, we need a way of converting a 
function x(t) to its equivalent in the s-domain, X(s). Then we can multiply 
X-Xs) by M(s) to get the resulting output X0(s): 

Xo(s) = M(s) · X-Xs) (5.68) 

Finally, if we can transform X0(s) to the time domain, we have the desired 
result, x0(t). 

The Fourier series is limited to periodic waveforms but in the limit becomes 
the Fourier integral. This integral is a transform from the time domain to the 
j(o domain. By adding a real component σ iojœ, we have an extended transform 
in s, the Laplace transform2, defined as 

■S?{/(0} = f(t)e-"dt (5.69) 
0 

Some transformed functions are the following: 
/(') F(s) = se{f(t)} 

(5.70) 

(5.71) 

(5.72) 

(5.73) 

(5.74) 

(5.75) 

(5.76) 

2. This is the commonly used one-sided Laplace transform since the lower bound on 
integration is zero, not -oo. For causal systems (and all analog circuits are causal), no response 
is possible before an input at t = 0 is applied; the integral is zero before t = 0, and consequently 
we can set the lower integration bound at zero. 

5(0 

u(t) 

e~°" 

sin ωάί 

cos ωάΐ 

e~at sin o)dt 

t" 

1 

1 

s 

1 

s + a 

ω<ι 

s2 + w2
d 

s 

s2 + a>2
d 

^ d 

(s + a)2 + (o2 

n\ 
T 7 7 



178 / 5. Transient and Frequency Response 

These are among the functions useful as inputs to circuits for characterizing 
their responses. The unit impulse function 8(t) is defined as 

fO, t^O 
> _too, f = 0 8{t)=U, ,=„ (5J7) 

Although 5(0) is infinite, j δ dt = 1. At t = 0+, the circuit responds as it would 
to nonzero initial conditions with the transient response. In practice, it is not 
easy to generate δ, and a step input is used to characterize response instead. 
The unit step function u(t) is defined as 

M ( i ) = d ; ,>o ( 5 · 7 8 ) 

Notice that u(t) is not periodic. Step functions are commonly approximated 
as a periodic function - a square wave - with a relatively long period. 

The Laplace transform of operations such as differentiation and integration 
can also be taken: 

/-domain 
Kf(t) 

ΣΛΟ) 
df(t) 

dt 
d2f{t) 

dt2 

J / ( T ) dr 

e-a'f(t) 

t"f(t) 

u(t-r)f(t-

j f(r)g(t-

l i m / ( 0 
f-»oo 

- T ) 

-r)dr 

H m / ( 0 = / ( 0 + ) 
f - 0 

KF{s) 

1FM 

5-domain 
scale invariance 

superposition 

sF(s)-f(0+) 

s2F(s)-

F(s) 
s 

F(s + a) 

d 
( - 1 ) " · -

e~TSF(s) 

F(s)G(s 

lim sF(s) 
s-»0 

lim sF(s 

dt 

'Fis) 

ds" 

shifting theorem 

convolution 

final value theorem 

initial value theorem 

(5.79) 
(5.80) 

(5.81) 

(5.82) 

(5.83) 

(5.84) 

(5.85) 

(5.86) 

(5.87) 

(5.88) 

(5.89) 

Equations (5.79) and (5.80) affirm the linearity of the Laplace transform. The 
transform of a derivative is consistent with (5.66) and the use of s as a 
differentiation operator in the 5-domain in Section 5.5. The initial condition 
/ (0+) is part of the transformed derivative. The shifting theorem expresses the 
effect of shifting / in time by a delay of r. The convolution integral offers an 
alternative to the inverse Laplace transform for finding x0(t) from (5.68) but 
is usually not as easy to use. 
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The Laplace transform can be applied to the v-i relations of R, L, and C 
to find their 5-domain impedances. They can then be used in basic circuit 
analysis. KCL, KVL, and CiL can be applied directly in the 5-domain with no 
need for intermediate steps involving differential equations. For R, C, and L, 
we have 

S£kv\ V(s) 
2{v} = 2{Ri\ = R2{i} => Z^s)=^ = -j-^=R (5.90) 

£{i} I(s) 

f l f 1 1 &{v} £{v} 

™=%J odTi-r^z^)=^=sL (5·92) 

Initial conditions for L and C in the 5-domain can be accounted for by Laplace 
transforming the time-domain expressions for L and C with initial conditions, 
or 

i L (0=7 f 0L(O A + iL(0+) 4 / L ( 5 ) = ^ ^ + ̂ - ^ (5.93) 
L J sL 5 

M < ) 4 ί ic(0 A + M0+) 4 VC(,) = ̂ + ^ ^ (5.94) 
C J 5C 5 

The 5-domain equivalent circuit for L with initial current *L(0+) is a current 
source of iL(0+)/s in parallel with L. The 5-domain equivalent circuit for C 
with initial voltage vc(0+) is a voltage source of Ü C ( 0 + ) / 5 in series with 1/sC 
(Fig. 5.8a). By transforming the derivative form of the L and C v-i relations, 
we obtain an equivalent circuit that accounts for initial conditions (Fig. 5.8b). 

By working directly in s, we can find the transfer function of the RC 
integrator and differentiator from inspection, by treating them as voltage 
dividers. For the RC integrator, 

V0(s) i/sC 1 . . . . . 
M ( S ) = ^ ) = ^TT7^ = ^TT (5·95) 

and for the RC differentiator, 

, . V0(s) R sRC 

By writing circuit equations directly in the 5-domain, we avoid the need to 
either transform or solve differential equations. 

Example 5.1 Series RC Circuit 

Figure E5.1 is a passive circuit with series RC divider impedances. The 
transfer function is found by directly writing out the voltage divider 
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vw Ci 

C2=P 

FIG. E5.1 

formula using s-domain impedances. Both impedances are of form 
R + 1/sC. The transfer function is 

Vois} 
Vi(s) 

i_S±\ '*2Ci+l c | | c . 
Vc. + C j i i R . + RjKC || C 2 )+l ' ' " 2 

c,c2 
c. + c, 

Example 5.2 Wien-Bridge Filter 

Figure E5.2a is a filter topology used as the feedback path of the 
Wien-bridge oscillator. It is another voltage divider, for which the transfer 
function is 

V„(s) sR2Ci 
V,(s) s2RlR2ClC2 + s[RlCl + R2(Ct + C2)] + l 

For a Wien-bridge filter, R, = R2 = R and C, = C2 = C. Then, 

Wien-bridge, ^ ^ ( J l c ) 2 f , £ Ä C ] + 1 

For this filter, ωη= 1/RC and ^ = 1.5. 

k 
Ύνν 

Cl 
I l ■ I l ' 

Cl-

1 

1 + 

i è 

(a) 

FIG. E5.2(a) 
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•o 
Ci 

FIG. E5.3 

Example 5.3 Inverse of Wien-Bridge Filter 

In Fig. E5.3, the divider topology of Fig. E5.2a is inverted. The transfer 
function is 

V0(s) ( J Ä , C , + I ) ( 5 Ä : 2 C 2 + I ) 

VXs) 5 2 Ä 1 J R 2 C 1 C 2 + 5 [ Ä 1 ( C 1 + C 2 ) + / ? 2 C 2 ] + 1 

For the Wien-bridge conditions, this reduces to 

(sRC + l)2 

s2(i*C)2 + s[3flC] + l 

The poles are in the same place as in Example 5.2, but instead of a zero 
at the origin, repeated zeros appear at 1/ RC. 

Example 5.4 Shunt-Series RC Circuit 

Figure E5.4 is another example of an RC circuit. It has a terminal 
impedance of 

sR2C2+l 
Z = R, s2[RìCìR2C2] + s[RìCì + (Rì + R2)C2]+l 

This circuit is sometimes the external emitter network of CE amplifiers, 

:*i = F c i 
:*2 

:c2 

FIG. E5.4 
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in which Rx is the emitter resistor, Cx provides bypassing, and R2C29 

frequency compensation. 

Example 5.5 Crystal Equivalent Circuit 

Figure E5.5 shows the equivalent circuit of a quartz crystal. The terminal 
impedance is 

1 s2LCs+sRCs+l 
Z x t a , _ C p + Cs * s[s2L(Cs || Cp) + si*(Cs || Cp) + 1] 

where (as usual), || is an algebraic operator not a topological descriptor; 
Cs and Cp are in series in the quadratic pole. 

Resonance occurs when the phase is zero. The phases of numerator 
and denominator are 

ΦΝ = 
jRa 

l - < u 2 L C ' Φο = 
a>-a>3L(Cs\\Cp) 
-a*2R(Cs\\Cp) 

Then A.Z(s) = φΝ-φΌ. Setting this to zero and simplifying, we must 
solve for resonant frequency ων in 

a>ÎL2Cs(Cs || CP)-*>2[K2CS(CS|| CP) + L(CS || CP) + LCS] +1=0 

Solving for ω2 we obtain 

ω2 = \{ωΙ + ω2
ρ)±χ^{ω,-ωρ)2 

where ω 2 = 1/LCS and ω2 = 1/L(CS || Cp). The two resonant frequencies 
are at the series resonance ws and parallel resonance ωρ of the crystal 

·& <=> cvdp 

FIG. E5.5 
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5.7 Time-Domain Response to a Unit 
Step Function 

To find the time-domain response to a given input function, we can take the 
inverse Laplace transform ££~x of X0(s) in (5.68) (or apply the convolution 
integral). After X0(s) is in the form of a known transform, it is inverse Laplace 
transformed to produce the time-domain response. Since M(s) is a rational 
function, partial-fraction expansion is the usual method of expressing X0 in 
terms that can be inverse transformed. 

The Laplace-transformed impulse function, when multiplied by M(s), 
yields the s-domain transient response. Because it is such a difficult function 
to generate and observe, the step function is the dominant alternative. It is 
approximated in practice by a square wave with a period much longer than 
the duration of significant transient response (and thereby is effectively 
aperiodic). Various characteristics of circuit response to the step are of interest 
and all are time related. This approach to circuit characterization is time-domain 
analysis. 

Transfer functions represent the complex dynamic behavior of circuits but 
are an abstraction of actual circuit behavior. The response of a circuit under 
controlled conditions produces features that characterize the circuit. We now 
investigate the characterization of circuits by their time-domain response to a 
unit step input, u(t). The time-domain response can be determined by multiply
ing the transfer function by the Laplace transform of u(t), or 1/s, and inverse 
transforming the result. 

The RC integrator response is calculated as 

U Ä C + 1 S) ^ ^ t e T T - ï l ( 5 · 9 7 ) 

The 5-domain expression is partial-fraction expanded to 

A B 1 RC , 
- + = — (5.98) 

s sRC + \ s sRC + l This inverse transforms, using (5.71) and (5.72), to 

v0(t) = u(t)-e-'/RC = l-e-"RC\ t>0 (5.99) which is plotted against t/ RC in Fig
. 5.9, curve a. For the RC differentiator, 

^"-sr,{^ï-7}-sr,{7î(Uiic)}-"""r (5· 100) 

which is shown in 5.9, curve b, with time scaled in time constants. 
The response of a circuit with complex poles is demonstrated by the RLC 

circuit of Fig. 5.10. Its transfer function can be written by treating it as a 
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0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
Time in RxC OTL/R 

FIG. 5.9 First-order responses of (a) RC integrator and (b) RC differentiator. These curves 
apply to any first-order circuit and allow rapid determination of fractional decay versus time 
constant. 

voltage divider. Then 

V0(s) (1/sC) || R 1 1 
Vi(s) (l/sC)\\R + sL LC s2 + s(\/RC) + (\/LC) 

1 
s2LC + s(L/R) + \ 

where 

K = h <on = -
1 1 

/LC 2RC 

For Vj(s) = l/s, the step response of the RLC circuit is 

1 
^stepV'/ °L s s2LC 

- j—} 
+ s(L/R) + l) 

(5.101) 

(5.102) 

(5.103) 

+ 

\\(s) 

sL 

1 J 
sC " 

1 1 1 

>R 

1 

+ 

V0(s) 

FIG. 5.10 RLC circuit with quadratic pole factor. 
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The quadratic factor is of the form 

N(s) 1 N(s) 
(5.104) 

52 + 2α$ + ω„ ω2
η (s2/ω2

η) + (2α/co2
n)s + l 

The denominator can be factored into 

N(s) 
(s + a + > d ) ( 5 + a -j(Da) 

_ J N(s) 
ω„ [(s/ωη) + (α/œn)s +j(œjœn)][(s/ωη) + (a/œn)s -j(œjωη)] 

(5.105) 

This can be expressed as a partial fraction expansion: 

N(s) A* A , 
7 w * Λ = 7 ; + 7 5ΓΓ (5.106) 

(s-p)(s-p*) (s-p) (5-/7*) where X* is the complex conjugate of X and 

p = -a+jwd (5.107
) This form can be shown to be valid by letting 

f A = a+jb 

This is the most general form N can take, with its degree one less than the 
denominator. [If (5.106) is a transfer function of a circuit with zero magnitude 
at infinite frequency, the fraction must be less than 1, or m<n of (5.61).] 
Then the partial-fraction expansion coefficients are 

c , -ac + d 
* = V t> = — (5.108) 

2 2wd 

The time-domain response of the right side of (5.106) is found by making use 
of the polar form of A. Substituting A= \\A\\ e,ß and A* = ||A|| e~jß, we obtain 

[ \ — + -^\=A*ept + AeI 

{s-p s-p*) 
J T M - 1 ± - + -\=A*ept + Aep ' (5.109a) 

[s-p s-p* 

= \\A\\e-(Xt(e-jß e^' + e^e-^) 

= \\A\\e-at{ej{"*t-*) + e-i{^t-{i)) 

= 2\\A\\ e~at cos((odt - ϋ) (5.109b) 
Therefore, the general transform involving complex pole pairs is 

IIAII p j ß IIAII e~JO (f 
11 " -+ " " . =Φ 2\\A\\e-atcos((odt-u) (5.110) s + a +j(od s + a —j(od 
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Returning to (5.103), its partial fraction expansion is 

1 j -Li- -il- B 1 
s(L/R) + \~ LC{s+ s-p + s-p*) ( 5 1 1 1 ) s szLC + s{ 

where p = -a +7'ωα. Solving for the numerators of (5.111) gives 

B 
1 

2ωί ■♦£)] 
1 

2ωί 
1 

• eJ 

η cos γ 

Inverse transforming (5.111), using (5.71) and (5.110), gives 

1 
U s t e p ( 0 = l — 

sin γ 

With the trigonometric relation 

e "' cos (ωαί — γ ) , y = tan 

γ = tan 

■fel 

■ @ 

(5.112) 

(5.113) 

tan # = -
1 

t a n ( 9 0 ° - # ) 

(5.113) becomes 

vstcp(t) = l—r 
1 

sin φ 

The factor 1/sin φ can be expressed as 

e at sin((odt + </>), </>=tan -{?} 

sin 0 V \(od/ 
- 1 / 2 

In circuit element values, for the RLC circuit of Fig. 5.10, 

zn _4L[C 
ζ 2R IR 

(5.114) 

(5.115) 

(5.116) 

An alternative approach to the inverse Laplace transformation of (5.104) 
is to complete the square for the quadrat ic denominator: 

s2 + 2as + ω2
η = (s + a)2 - (a2 - ω2

η) = (s + a)2 + ω2
ά 

Then, for N(s) = cs + d, (5.104) becomes 

N(s) _ es d 
s2 + 2as + ω2

η~ {s + a)2 + ω2
ά (s + a)2 + ü)2

d 

(5.117) 

g + oQ _ / <xc\ ωα / _ d \ ωά 

α)2 + ω2
ά \ü)J{s + a)2 + a>2

a \<oJ(s + a)2-) + ω α 

(5.118) 
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Using (5.75) and a similar extension of (5.74), we obtain 

( d — ctc\ 
) e~at sin ωάί (5.120) 

For the sum of a sine and cosine, 

a cos ϋ + b sin ΰ = Ja2 + b2 sin tf + tan"1 (j) (5.121) 

Equation (5.121) can be applied to (5.120) to express it as a single sinusoid. 
After some manipulation, 

\ac-dj 
CS + d ^ \ € _ β - α , ύ η ( ω α 1 _ φ 1 ^=tan-l(^z^j ( 5 1 2 2 ) 

s +2as + (on sin φ 

If we apply this method to (5.103), the partial-fraction expansion is 

1 s + 2a 
— 1 1 (5·1 2 3) 
5 5 +2as + ct>n 

From this expression, c = \ and ί/ = 2α. Substituting into (5.122) for the 
quadratic term yields 

if"1 (5.123) = 1—τ^— · e-°"άη(ωάΐ + φ\ 0 = t a n sin 0 ■{?} 
(5.124) 

This is the same result as (5.114). 
For the case of repeated real poles (critical damping), 

t>s«ep(0= 1 - 0 + « ' )*" " ' (5·1 2 5) 

and for distinct real poles, since ζ> 1, ωά is imaginary and 

/?! 2 = —a =F<i>d = —α Τωην £2 —1 (5.126) 

These are real roots. The step response for them is 

*.tep(0 = l - (-^- ePlt — ePlt) (5 ·1 2 7) 
\P\-P2 P1-P2 I 

Example 5.6 Magnetic Deflection Yoke Coil Circuit 

Figure E5.6 shows a simplified CRT deflection circuit. The deflection 
yoke consists of horizontal and vertical deflection coils that magnetically 
deflect the CRT electron beam. A yoke coil has significant series resistance 
and intrawinding capacitance, modeled as shown. If ij(/) is a ramp 
function (producing a horizontal or vertical sweep needed for raster 
scanning of the CRT screen by the electron beam), then it can be expressed 

file:///ac-dj
file:///P/-P2
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FIG. E5.6 

as 

m -œ- mt 

where Ï is the peak ramp current and T the ramp duration (or the period 
of an ideal sawtooth function). The output current i0(f) is the current 
that flows through L, creating the deflection field. Our goal is to find a 
general expression in s for /0(s) and also to find the time-domain 
response. 

The current divider formula is used here and yields 

Us) 

For Ii(s) = m/s2, 
IM 

Io(s) = 

1 
s2LC + sRC + l 

1 n 
s2LC + sRC + \ ' s 

and ωΐ = 1/LC, a = ζωη = l/(2L/R). I0 can be written by completing the 
square of the quadratic pole and expressing I0 as a partial-fraction 
expansion. Because of multiple roots at s = 0, it is necessary to take the 
derivative of the partial-fraction equation to find the coefficient k for the 
k/s term. Then, 

(2£/ω η ) ·5 + * ι ( 4 £ 2 - 1 ) , m 2ζτη/ωη 

(s + a) +ωά s s 

Using (5.122) to perform J5?"1 on the first term, we find that 

io(t) = (—^--^ e-"1 sin(a>öt-<l>) + m(t-^) \ w n s i n ^ / \ ωη/ 

i0(t) is a ramp delayed by 2ζ/ωη. Superimposed on this ramp is a decaying 
sinusoid, the first term. When the response of the horizontal deflector is 
too underdamped, the resulting ringing causes the picture on the left 
side of the CRT screen to show an alternating compaction and expansion 
until the sinusoid dies out. 
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5.8 Circuit Characterization in the Time 
Domain 

With the derivations of the previous section, we have both first- and second-
order responses to a unit step function. Higher-order responses are combina
tions of first- and second-order responses. Most circuits can be separated into 
lower-order circuits and analyzed individually. Transfer function numerators 
and denominators can be factored into first- and second-order factors that are 
separated by partial-fraction expansion. 

In Section 5.4, the effect of ζ on the response was examined. For a step 
response, we are interested in the amount above the step amplitude that the 
response reaches for complex poles. For accurate reproduction of a step, this 
overshoot should be minimal. We also want to avoid the other extreme of a 
highly overdamped response. The larger ζ becomes, the longer it takes for the 
response to approach its asymptotic value. In other words, the risetime (or 
for a negative step, falltime) is excessive. An obvious compromise is at critical 
damping, when ζ = 1. This value of ζ is seldom chosen for wideband amplifiers 
because a much faster step can be achieved for a small amount of overshoot. 

When the step response overshoots, its peak occurs at time tp. This time 
is derived by taking the derivative of (5.114), setting it to zero, and solving 
for t. The derivative is 

dvstcp(t) a 
e~at sm{wdt + (j))-(one at cos(wdi + (/>) (5.128) 

dt sin φ 

This reduces to 

tan(o>di + 0) = tan φ 

which requires that 

ωάί = /en-, k = 0,1, 2 , . . . 

The peak occurs at k = 1 for a damped response and is 

*P = — (5.129) 

The peak at this time is, from (5.114), 

üstep(fp) = l + e"w / , a n* (5.130) 

Since the input is a unit step, (5.130) is the fractional peak. The overshoot is 
defined as 

Mp=£,-Wtan4> (5.131) 

Mp is related to ζ through tan φ and (5.35), or 

tan</> = — (5.132) 
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Overshoots for several angles are tabulated: 

Φ H , (%) ζ 

0°(0 rad) 0 1 

30° ( - r a d ) 0.433 0.866 •(H ° 
'(H 

0° ( - rad j 16. 

45° - r a d 4.321 0.707 

60° I - r a d i 16.30 0.500 

To find a compromise optimum between overshoot and risetime, we need 
to define risetime. Furthermore, a third criterion is the time it takes the step 
to settle to its steady-state value. This is the settling time ts; its definition 
depends on the amount of settling that is adequate for the application. If we 
define Ms to be the fractional settling amplitude, then 

Ms=e-at« (5.133) 

Solving for the settling time, we obtain 

, , = _ ι . Ι η Μ , ._ ΐ£Η._^. ΐ 8 Μ , .^ . Ι δ η) (JJ34) 
a a lg e a a \ M S / 

where lg = log2 and lg(l/Ms) is the number of bits of resolution of settling. 
For a second-order response, a = l / (2r) and ts further reduces to 

' . - " - I g f ô ) (5-135) 

A few values of ts are given in the following table: 

ts{r) l g ( l /MJ (bits) 

5.5 
8.3 

11.1 
13.9 
16.6 
19.4 

4 
6 
8 

10 
12 
14 

When we observe an underdamped step, we can make an estimate of φ 
or ζ based on the number of cycles of oscillation Ns until the waveform settles. 
The oscillation frequency is cod. Then, 

s 2TT- 277-V a 7 2TT \MJ 

s ( 0 . 1 1 ) t a n ^ - l g i - ^ - j (5.136) 
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Some values of Ns for 8 bits of resolution (approximately the resolution of 
viewing an oscilloscope trace) are the following: 

Ns 

0 
0.5 
0.9 
1.5 
3.3 
8.8 

Φ 

0° 
30° 
45° 
60° 
75° 
84° 

ζ 

1 
0.866 
0.707 
0.500 
0.259 
0.100 

Finally, the risetime tr could be defined as settling time or as a given 
number of time constants. The most commonly used definition is the time it 
takes the step to change from 10 to 90% of its final value. This definition is 
general in that it does not assume a particular kind of response. For a first-order 
system, from (5.99), we have 

U = i9o%- >io% = -T ln(l -0.9) + r ln(l -0.1) = τ 1η(9) = 2.2τ (5.137) 

This risetime formula holds approximately for complex poles with small pole 
angles. 

5.9 The s-Plane Frequency Response 
of Transfer Functions 

An alternative to characterization of circuits by their response to a step input 
is to use a sinusoid (or "sinewave"). Unlike the step, this is periodic and 
characterized by amplitude and phase, neither of which is time dependent. 
By exciting the circuit input with sinewaves over a range (or band) of frequen
cies, we can determine the amplitude and phase as a function of frequency. 
This is the frequency response of the circuit; it is steady-state sinusoidal 
response. In practice, approximation of this procedure is accomplished by 
sweeping slowly enough through a band of frequencies to let the transient 
response die out. This approach to circuit characterization is frequency-domain 
analysis. 

Time- and frequency-domain analyses reveal different aspects of the com
plex-frequency domain. A cross section of the transfer function M{s) along 
thejco axis is a function of ω only and is the frequency response M(jco). The 
magnitude and phase of M can be found for a particular jwx by substituting 
into Μ(]ω). The magnitude and angle of the resulting complex number is the 
amplitude and phase of the frequency response at ω,. This can be done 
graphically on the s-plane. (Zeros are marked on s-plane plots by an open 
circle.) M(jw}) can be calculated from the graph by first finding the length 
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and angle of each vector. Then, 

\\Μυωχ)\\ = Κ Ilzeros (zero vector magnitudes) 
(5.138a) 

ripoies (pole vector magnitudes) 

Ζ.Μ(]ωλ)= Σ (zero vector angles) - Σ (pole vector angles) (5.138b) 
poles 

For example, Fig. 5.11 shows an M(s) with three poles and one zero. If 
K = 100, then the frequency response at ω = 1 is 

|ΜΟΊ)| | = (100) 
(2.24) 

(6.08)(4.12)(5.00) 
-1.78 

Each of the numbers in the fraction is the contribution of a critical frequency. 
For example, the contribution of p2 is 

| | [ 7 Ί - ( -4+ 7 ·2) ] | | = | | 4 -7Ί | |=7 (4 ) 2 +( -1 ) 2 ^4 .12 

The phase angle of M atjl is 

AM(jl) = 26.51° - (9.46°- 14.04° +36.87°) = -5.73° 

where, for example, the angle of /?, is 

^0"1 - ( - 6 ) ) = ^(6+7"l) = t a n - 1 | ^ | =9.4 '.46° 

FIG. 5.11 Transfer function magnitude and phase can be calculated directly from the 5-plane 
for a given input frequency, jwd (herey'l). Magnitude is the product of zero vector lengths divided 
by the product of pole vector lengths. Phase is the sum of zero angles minus the sum of pole angles. 
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5.10 Graphical Representation of 
Frequency Response 

Several other graphical methods of frequency response representation are 
found in circuits and control systems literature. Some of the more common 
are the following: 

1. Bode plot. Two graphs, one of amplitude and the other of phase, 
against frequency. The amplitude graph is of log-log scale; the phase-angle 
graph is semilog (log frequency). 

2. Reactance chart. Similar to a Bode plot; a log-log plot of impedance 
magnitude, on which divider-type transfer functions can be constructed 
directly. 

3. Nyquist diagram (complex polar plot). Graph of M(jw) with frequency 
as a parameter, on the complex plane with axes)$*n{M(jco)} and 0le{M{jœ)}. 
For feedback systems the loop gain GH is plotted. 

4. Root-locus plot. Feedback amplifier plot on the s-plane of the move
ment of the closed-loop poles with dc gain K. 

5. Nichols chart. Plot on rectangular coordinates of magnitude versus 
phase (the gain-phase plane) or open-loop response of a feedback amplifier, 
with superimposed contours of constant magnitude and phase of M(jw) of 
the resulting closed-loop magnitude and phase [for M(jco) = G/ ( l + G)]. 

6. Hall chart. Complex plot of ^{GO'w)} versus 0ie{G{jœ)} for feedback 
system with superimposed contours of constant ||Μ(7*ω)|| loci [for M = 
G/( l + G)]. 

We will survey the construction of Bode plots and later make extensive 
use of them. For a transfer function in normalized form, the rational expression 
in s is unity at s = 0, so the constant K must be the dc transmittance. A transfer 
function M(s) having one real pole /?, evaluated atjcj, is 

1 1 - t a n _ 1( i ü / p ) 

O / p + 1) χ/(ω//?)2+1 

The log-log plot of the magnitude of a real pole is 

1>/(ω/ρ) 
For ω/ρ« 1, (5.140) becomes 

1 

Άττάπύ-^Μ*' 
log ©■ + 1 = log(l) = 0 

o/p«\ 

For ω/ρ » 1, 

log er + 1 

(5.139) 

(5.140) 

(5.141) 

-(log ω - log p) s - logo) (5.142) 
a / p » l 
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For ω » /?, log ω - log p = log ω. Equations (5.141) and (5.142) are the piecewise 
linear asymptotic approximations of the exact pole magnitude. An ideal Bode 
plot can easily be constructed from these straight-line approximations, as 
shown in Fig. 5.12. The graph is flat until it reaches a frequency of p, where 
the slope changes to - 1 (in log-log coordinates). Hence, p, the frequency of 
the pole, is called the corner or break frequency. 

The relationship between the real part of a pole or zero and Bode plot 
break frequencies is that the break frequency corresponds to -Ι/σ for negative 
poles or zeros. The convention is used here of indicating pole location on 
Bode plots as p instead of -p. Since Bode plot frequencies are always positive, 
no confusion should result. 

Often, magnitude is scaled in decibels (dB). For voltage, ||A||dB = 
201og10||A||. (Notice that decibels, like radians, is a pseudounit, a scaling 
transformation.) A real pole "rolls off" (that is, decreases in magnitude) with 
a slope of - 1 on a log-log plot or -20 dB/dec = - 6 dB/oct. (A decade (dec) 
is a 10 to 1 frequency range; an octave (oct) is a 2 to 1 range.) 

The error in the asymptotic approximation is greatest at the break 
frequency, where the actual curve is at V5/2 = 0.707 or —3 dB. 

FIG. 5.12 Bode plot asymptotic approximations to real pole p, magnitude and phase. 
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The phase-angle plot is also subject to asymptotic approximation. On a 
semilog plot, the exact phase is 

φ = - tan 
' ( ; ) 

For ω/ρ« 1, 

and for ω/ρ » 1, 

-tan ϋ = 0 
o/p« 

-tan ■© = tan Η 0 0 } ^ = -90° 
o/p»\ 

At ω=ρ, φ = -π/4= -45°. The slope of φ at p is 

d(logw) {--(;)} - 1 
i + (W/>)2 l n ( 1 0 ) · - In 10 

(5.143) 

(5.144) 

(5.145) 

(5.146) 

A line tangent to φ at p intercepts the asymptotes at 0° and -90° (-π/2) at 
frequencies logarithmically symmetric about /?, at ap and p/a: 

-77-/2-0 
log(a/?)-log(/?/a) 

ln(10) (5.147) 

Then a = en/ =4.81. This linear approximation to φ does not minimize the 
maximum error. Instead, when a = 10, the maximum error is less than 6°. The 
phase plot for a single pole is shown in Fig. 5.12. 

Linear approximations of Bode plots for other cases are shown in Fig. 
5.13. Since frequency response analysis is linear, these elemental plots can be 
combined linearly to produce the total response plot. For complex critical 
frequencies, decreasing ζ increases the magnitude peak and the slope of the 
phase near the break frequency. 

The maximum magnitude, Mm, for underdamped response occurs at 
frequency a;m. This is derived by setting the derivative of M(jœ) to zero and 
solving. For a quadratic pole factor, 

_d_ 
άω 

1 
| [ 7 (ω/ωη)]2+72ί(ω/ωη) + 1 

When set to zero, ω is 

1 

and 

λ = ωηΛ-2ζ\ ζ< 

l Vi 
2ζΛ-ζ2 2 

^ \ ν [ 1 - ( ω / ω η ) 2 ] 2 + ( 2 ^ / ω η ) 

V2 
(5.148) 

(5.149) 

3. Bruce Hofer has observed that the frequency ratio, e7r /2=y ·'. 
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FIG. 5.13 Bode plot elements for (a) constant K, (b) real left half-plane pole p, (c) real left 
half-plane zero z, (d) pole at origin, (e) zero at origin, (f) complex left half-plane pole pair, (g) 
complex left half-plane zero pair, (h) real right half-plane pole /?, and (i) real right half-plane 
zero z. 

For ζ« 1, Mm varies inversely with ζ. Construction of an approximate Bode 
plot for ζ < 1 is aided by a few points around the break frequency. Besides 
the peak at o)m, the magnitude at ωη is 

Μ(]ωη) = 2ζ (5.150) 
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M crosses unity at 

ω|Μ = 1 
= V2- (5.151) 

The frequency at which M is 1/VÏ (or - 3 dB) down from unity is defined 
as the bandwidth. This definition, like that for risetime, does not assume a 
particular kind of response. The bandwidth of a single pole M is its break 
frequency. For a quadratic pole, we set ||M|| = 1/VÏ and solve for ω. This 
simplifies to 

2 Ί 2 i * r \ 2 

1 \o)J J \ ωη / 
and solving for ω (the larger root) yields 

(5.152) 

(5.153) 

Example 5.7 
Loading 

Phase-Lag Circuit with Capacitive Output 

Figure E5.7 is another passive RC circuit; it is the phase-lag circuit of 
Fig. 5.19a with capacitive output loading. It was constructed of 1% 
tolerance metal film resistors; 1 nF, 1% mica and 0.1 μΈ, 2% plastic film 
capacitors. A 6V peak-peak sinewave for Vx was applied at various 
frequencies, and the corresponding peak-peak voltages at V0 were 
recorded as follows: 

frequency 

10 Hz 
20 
50 

100 
200 
500 

1.0 kHz 
2.0 

II K»ll 

6.00 V 
6.00 
5.95 
5.10 
3.74 
1.80 
0.96 
0.47 

IIVo/vj 

1.00 
1.00 
0.99 
0.85 
0.62 
0.30 
0.16 
0.078 

frequency 

5.0 kHz 
10 
20 
50 

100 
200 
500 

1.0 MHz 
2.0 

II v 0 | | 

0.20 V 
0.11 
0.075 
0.064 
0.064 
0.064 
0.060 
0.050 
0.035 

il vj Vili 

0.033 
0.018 
0.013 
0.011 
0.011 
0.011 
0.010 
0.008 
0.006 

From these data, asymptotic approximation of pole and zero frequencies 
results in 

P! = 150Hz, z = 15.5 kHz, p2 = 1.6MHz 

The transfer function is 

Vo(s)__ sR2C2+l 
V-Xs) 5 2 [ Ä 1 C 1 K 2 C 2 ] + S[JR1(C1 + C 2 ) + / ? 2 C 2 ] + 1 
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/?!=10kQ 
I V W 

FIG. E5.7 

When the circuit values are substituted, the exact theoretical poles and 
zero are 

p, = 156Hz, z = 15.9 kHz, p 2 = 1.62 MHz 

The error is largely a matter of parts tolerances, accurate asymptote 
plotting, and chart reading. 

5.11 Loci of Quadratic Poles 

The quadratic equation 

has complex roots at 

For complex poles, 

and 

as2+ 05 + 1 = 0 

2a vH£) 

'la 
1 

y/a ζ = l4a 

(5.154) 

(5.155) 

(5.156a) 

(5.156b) 

(5.157) 

The coefficients a and b are composed of circuit values when (5.154) is the 
characteristic equation of a transfer function. Often, a circuit element value 
appears in only one coefficient. This allows control of the poles by varying 
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the value of the element until desired pole placement is achieved. We now 
consider three cases in which constraints are placed on the loci of the poles 
in the s-plane. 

5.11.1 a = constant, b is parameter 

Let b be the parameter. Solving for b in (5.156a) gives 

b = —2ασ 

and substituting into (5.156b) gives 

ωζ + σζ 1 (5.158) 

This equation describes the locus of the poles for constant a as a circle with 
radius y/l/a and centered at the origin (Fig. 5.14). 

5.11.2 ft= constant, a is parameter 

From (5.156a), l/a = -2a/b. Substituting into (5.156b) gives 

• ' ~ T - ( ! ) * ( - T ) ' - ' + K ' ) -

FIG. 5.14 Loci of as2 + òs + l for (1) constant a, b parameter; (2) constant b, a parameter; and 
(3) b/2a constant. 
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Adding ( I /o ) 2 to both sides and completing the square, we obtain 

•■♦(-«ϊ (5.159) 

This equation describes the locus as a circle centered at -\/b with a radius 
of I /o (Fig. 5.14). 

5.11.3 6 / 2 a = constant 

Since -σ= b/2a, the locus is a vertical line at 

b 
σ = — -2a 

(5.160) 

This locus is also shown in Fig. 5.14. 
By including the root locus for real roots, we plot the total loci (Fig. 5.15). 

The + and - marks on the loci associate a locus with the positive or negative 
second term in (5.155). With these precalculated loci, we can predict pole 
movement based on variation of circuit element values. 

b increasing 
a>0 + 

2 - 1 / b Ve\ / 

- \ 

-

*v 1 

+ 

j(ù 

σ 

a increasing 
b>0 

(a) 

b increasing 
a increasing 

-

la b 

' + 

>-

1 

A >o 
la 

+ 

j(D 

σ 

(c) 

FIG. 5.15 Real and complex loci for (a) constant a, (b) constant b, and constant b/2a. 
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5.12 Optimization of Time-Domain and 
Frequency-Domain Response 

For accurate step response, the major criteria are minimum risetime and 
overshoot. For wideband amplifiers, the usual criterion of performance in the 
frequency domain is constant magnitude (or flat response) out to a maximum 
bandwidth. A wider bandwidth can be achieved at the expense of greater Mm 

(or peaking). In the time domain, a faster risetime is achievable if more 
overshoot is allowed. As ζ and tr decrease, wbvv, Mm, and Mp all increase. 

Optimization of time and frequency response requires identification of 
relationships between the two domains. For an amplifier with one pole (or 
with a dominant pole approximation), the relationship between risetime and 
bandwidth is 

2.2 0.35 
i r ^2 .2r = — - s — - (5.161) 

This relationship is approximate for complex poles with £ = 0.7. 
Of particular interest are the pole placements for φ of 30°, 45°, and 60°. 

A complex pole pair at 45° gives a maximally flat amplitude (MFA) response 
over frequency (also called a Butterworth response). For φ = 30°, the response 
has maximally flat envelope or group delay (MFED) (or Bessel or Thompson 
response). The major characteristics of these responses are as follows: 

characteristic 

Φ 
ζ 

fe) 
(?) 

critical damping 

0° 

1.000 

0 

0.644 

MFED 

30° 

0.866 

0.500 

0.786 

MFA 

45° 

0.707 

0.707 

1.000 

60° 

0.500 

0.866 

1.272 

Mm — — 1.000 1.155 

_ _ 0.000 0.707 fe) 
ίτ·ωη ίΓα=3.36 2.73 2.15 1.64 

Mn 0% 0.433% 4.32% 16.3% 

From (5.149), Mm = 1 when £ = V2/2 = 0.707. At this value of ζ9 Mm is at 
the onset of peaking. 

Phase delay is defined as 

phase delay, r p = (5.162) 
ω 
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This is the delay time of a sinusoid at frequency ω with a phase lag of φ. If 
phase angle decreases linearly with frequency, each frequency component of 
a signal maintains its alignment in time with the others and no waveform 
distortion occurs. A related quantity, envelope or group delay, is defined as 

T. — ^ (5.163) 

Group delay characterizes amplitude distortion in the time domain. If all 
frequency components of a signal are delayed the same amount, they remain 
aligned in time, and the waveshape remains unchanged. If not, components 
of different frequencies are shifted in time, resulting in waveform distortion. 
A pole angle of 30° results in a second-order Bessel response, with maximally 
flat group delay. For a quadratic pole factor, the phase is 

, f 2ζ(ω/ωη) Ί 
1ΐ-(ω/ωη)2] φ = - t a n - 1 \ ~9) ', n;2 \ (5.164) 

From (5.163), the group delay is 

A ♦· i A A (2ζ\ ("/ωη)2+1 . . . . . . quadratic pole group delay = I — I — — , 4 , 0 Γ _ 2 ΛΛ( ,—^ΤΤ (5.165) \ωη/(ω/ωη) + 2[2£ -1] (ω/ω η ) +1 

where the denominator can be factored into poles of (ω/ωη)2 located at 

\-2ζ2±2ζ^ζ2-\ 
We can find ζ for the MFED as we found Mm in Section 5.10. To find the 
maximum rg9 set drg/dw=0 and solve for ω. It is more convenient to find 
(ω/ωη)2 after the derivative is taken, and it is 

2 

"fâ- - l±2v / l - f 2 , 0 < f < l (5.166) 

Substituting this into (5.165), we get the maximum Tg: 

m a x T g = P ^ = ^ (5.167) 
\ω„/4(1 + ί 2 ) [ ΐ τ ν ϊ - ? ) 

For MFED response, the maximum rg must equal rg at ω = 0, or 2ζ/ωη. 
Setting (5.167) equal to this and solving for ζ, we get ζ = \ίϊ/2 and a 30° pole 
angle. 

This subject has been developed into the electronic circuits specialty of 
filter circuits. Higher-order responses are often characterized according to 
optimal parameters. Butterworth filters have maximally flat amplitude 
response; Bessel filters have maximally flat group delay; Chebyshev filters 
optimize the trade off between amplitude ripple and sharp amplitude roll-off 
(or cutoff) with no ripple in the frequency response above the cutoff frequency; 
and elliptic (or Cauer) filters have the maximum (or "sharpest") cutoff for a 
given order of filter but have ripple above the cutoff frequency. 



(a) 

(b) 

(c) 

(d) 

s -Domain 

■O M 
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overshoot 

Frequency response 

(e) 
-P 
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(o 

(g) 

1+Afp 

ÏÏ 

Μπ 

FIG. 5.16 Relationship of s-domain, step response, and frequency response representations as 
commonly encountered. Cases (c) and (g) are those of all-pass circuits. 
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The responses of common transfer functions are shown in Fig. 5.16 in 
three representations: s-domain pole-zero locations, time-domain step 
response, and frequency response. Right half-plane zeros cause a preshoot in 
the step response. The frequency response in Fig. 5.16g is independent of 
frequency and is an instance of an all-pass filter. It is not a Bessel filter, 
however, because the distorted step response indicates much phase distortion. 
Amplifier designs are often a trade off between conflicting transient and 
frequency response performance. 

Example 5.8 Parallel Resonant Circuit 

The RLC circuit of Fig. E5.8 provides a way of generating the response 
of a quadratic pole. Its transfer function is 

Vo(s)__ 1 
VM s2LC + s(L/R)+l 

When we set L= C = 1, ωη is normalized to unity, and 

or R = l/(2£). A SPICE simulation produced the response to a unit step 
input for the following: 

K (Ω) ζ φ (deg) 

1.000 0.500 60 
0.707 0.707 45 
0.577 0.866 30 
0.500 1.000 0 

The step response, frequency response (amplitude and phase), and group 
delay are plotted from SPICE. Notice that for £ = 0.707, the amplitude 
remains flat to the highest frequency without peaking (MFA) and that 
the group delay for £ = 0.866 similarly remains flat longest without 
peaking. 

L 

FIG. E5.8 (Figure continues.) 



206 / 5. Transient and Frequency Response 
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FIG. E5.8 (continued) 
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FIG. E5.8 (continued) 
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FIG. 5.17 Elemental combinations of elements found in passive networks: (a) series RC, (b) 
series RL, (c) shunt RC, and (d) shunt RL. The reactance charts are given for each, with pole or 
zero at the circuit time constant. 
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5.13 Reactance Chart Transfer 
Functions of Passive Circuits 

The reactance chart is a powerful aid for graphically determining the magni
tudes of the transfer functions of passive divider circuits. Combinations of RL 
and RC are plotted in Fig. 5.17. Asymptotic approximations similar to those 
of Bode plots are used to construct ||Ζ(7'ω)||. The impedance of more compli
cated circuits can be built from these basic combinations. 

These impedance plots follow directly from the behavior of the elements. 
For the series RC, at low frequencies the reactance of C dominates the series 
RC combination; but at high frequencies, the impedance is dominated by R. 
The frequency of equal impedance magnitudes is at the pole frequency 1/ RC, 
where the impedance plot shows an asymptotic break. The other basic combina
tions are analyzed similarly. The break frequency in all cases is 1/r, where r, 
the time constant, is RC for RC combinations and L/ R for RL combinations. 

Transfer functions of voltage dividers are constructed by first plotting the 
divider input impedance magnitude ||Zin|| and the impedance ||ZL||, across 
which the output voltage is developed. Then ||Μ(7'ω)|| is plotted as ||ZL||/||Zin|| 
by visually dividing the two impedances. The inverse of ||Zin|| for a linear 
segment is a segment with the opposite slope. Division is accomplished by 
subtraction (since the reactance chart is a log-log graph). 

Figure 5.18 shows examples of a transfer function constructed with a 
reactance chart for the RC integrator and differentiator. When the plots of 
||Zin|| and ||ZL|| track in slope, || VJ Vj|| is constant (flat, zero-slope plot). For 
the integrator, ||ZL|| and ||Zin|| track in slope until CD = 1/RC, where ||Zin|| 
becomes flat, causing the transfer function to roll off with ||ZL||. For the RC 
differentiator, it is ||Zin|| that slopes below (o = l/RC and causes ||V0/Vi|| to 
slope in the opposite direction. The s-domain transfer functions are given with 
the circuit for comparison. 

The basic combinations of Fig. 5.17 are part of the dividers of Fig. 5.19. 
In Fig. 5.19, the impedance magnitudes for Zin and ZL are plotted. ||Zin|| has 
a break frequency where the line for C intersects the line for Rx +R2 at 
ω = 1/(R{ + R2)C ||ZL|| rolls off with C until it reaches R2, where it breaks 
and is flat. This break frequency is at ω = 1/R2C 

Below ωρ = l/(Ri + R2)C, ||Zin|| and ||ZL|| track, and || VJ Vj|| is flat. Along 
this segment, the input and load impedances are equal, and the transmittance 
is 1. At ωρ, ||Zin|| becomes flat while ||ZL|| continues to roll off (with a slope 
of -1 ) . This causes || VJ Vx\\ to roll off until ||ZL|| breaks at ω2 = 1/R2C Above 
w2,both ||ZL|| and ||Zin|| are flat, and HVO/VJH is flat at the ratio of ||ZL||/||Zin||, 
or R2/(R{ + R2). As on Bode plots, the phase of VJ V-x decreases (or lags) 
whenever the magnitude decreases (or rolls off). This circuit causes a phase 
lag for frequencies between ωρ and ωζ. 

In Fig. 5.19b, we encounter a parallel RC for ZL. Parallel combinations 
introduce a slight complication in identifying a break frequency location. First, 
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FIG. 5.18 Reactance chart analysis of transfer functions of (a) RC integrator and (b) RC 
dififerentiator. 
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FIG. 5.19 Reactance chart analysis of commonly encountered passive RC circuits: (a) phase-lag 
compensator, (b) capacitively loaded divider, (c) RC differentiator with source resistance, and 
(d) phase-lead compensator. (Figure continues.) 
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||ZL|| is dominated by R2 until ωρ= 1/R2C, where the shunt reactance of C 
dominates and ||ZL|| rolls off with C, as shown. ||Zin|| is ||ZL|| added to Rx. 
On the reactance plot, this is accomplished by shifting ||ZL|| upward until, at 
low frequencies, ||Zin|| = Rx + R2. The break frequency due to ||ZL|| is present 
in ||Zin||, which rolls off until it reaches Rl9 where it again breaks flat. This 
frequency is found by going down vertically to the curve for C and reading 
the resistance from the vertical axis. It is Rx \\ R2. The associated break 
frequency is therefore at ωζ = l/(Rx \\ R2)C. 

That the equivalent resistance of ωζ is Rx \\ R2 can be demonstrated by 
taking into account the log-log scaling of the reactance chart axes. The 
impedance of C, ||XC||, rolls off at a (log-log) slope of - 1 as does ||Zin|| 
between ωρ and ωζ. By calculating the slopes of ||XC|| and ||Zin|| between ωρ 

and ωζ and equating, we obtain 

Alog| |Z| |_log/g1- log(/g1 + /g 2 )_log | lX^ z )H-logl |X c ( io p ) | | 
Δ logω \ogwz-\ogwp logo>z-logcup 

At ωζ, ||XC|| equals the equivalent resistance we are seeking. Reducing (5.168), 
we obtain 

log||Xc(«z)||=log||Xc(u>p)|| + logÄ1-log(Ä1 + Ä2) (5.169) 

At ωρ, | |Χ€(ωρ)|| = R2. Substituting and simplifying gives 

log| |Xc("z) | |=logtf2 + l o g # ^ ^ 

(5.170) 

Therefore, the value of resistance that is read off the graph where ωζ intersects 
the line for C is Rx \\ R2. 

For || VJ Vili, ||Zin|| and ||ZL|| are flat to ωρ and || V0/V;|| is also flat with 
a value of R2/(RX + R2). At ωρ, both ||Zin|| and ||ZL|| roll off, maintaining a 
flat || VJ VU until ωζ, where ||Zin|| flattens. Since ||ZL|| continues to roll off, so 
does || VJ Vj||. Consequently, || VJ V\ has a pole at ωζ. 

Further examples are shown in Figs. 5.19c,d. The circuit in (d) is a 
phase-lead circuit since it causes an increase in phase while || VJ ν | | is increas
ing. This circuit also demonstrates how to handle a parallel resistance in the 
time constant. 

Example 5.2 (continued) Wien-Bridge Filter 

The reactance chart transfer function (see Fig. E5.2b) rolls up to 1/RQ 
and then rolls off. Whenever a slope change of 2 or more occurs in a 
narrow band (less than a decade) on a reactance chart, the asymptotic 
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These poles are centered at -1/ RC on a log ω scale. 

Example 5.3 (continued) Inverse of Wien-Bridge Filter 

The reactance chart method produces a flat transfer function of 1 through 
l/RC. \\ZL\\ dominates || Zin|| below 1/RC by C and above by Ry making 
||Zin|| = | |ZJ. If C2 is made large, the transfer function approaches that 
of Fig. 5.19d, with a zero at 1/RXCX and a pole at l/(R]\\R2)Ci. At low 
frequencies it is R2/(Ri + R2)-

Example 5.7 (continued) Phase-Lag Circuit with 
Capacitive Output Loading 

Reactance chart determination of the transfer function is simplified by 
the wide separation of break frequencies. The low-frequency pole occurs 
at about 1/#,C2, or 159 Hz. 

The zero is at l/R2C2, or 15.9kHz and the high-frequency pole is 
at \/R2CX or 1.59 MHz. These frequencies are not exact but are derived 
from the reactance chart. For example, the exact high-frequency pole is 
1.6232 MHz. This difference is insignificant if the accuracy of a graphical 
method is considered adequate. 
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Example 5.9 Cascaded RC Integrators 

Two RC integrators are cascaded in Fig. E5.9a to form a passive filter. 
Its transfer function can be found using the reactance chart. The first 
step is to find Vx(s) by loading the first stage with the second. Then, at 
the input port, ||Zin|| is constructed on the reactance chart by beginning 
with the graph of R2C2. It follows C2 until it interesects R2 at ωζ - 1/R2C2. 
Then Cx shunts this impedance, with Cx and C2 in parallel at low 
frequencies (Cp= C14-C2). The combined Zx decreases along Cp until 
it reaches the break frequency ωζ. It then flattens, following the R2C2 

curve, but at a lower resistance. The curve again breaks where C, 
dominates, at ωρ = 1/R2CS (where Cs is the series combination of Cx and 
C2), and || Zj || rolls off. 

The situation here is similar to that of Fig. 5.19d, in which a curve 
is shifted from its original location by the addition of another impedance. 
In Fig. 5.19d, the R2C curve was shifted upward when the series resistance 
Rx was added to it. This caused the capacitive roll-off of ||Zin|| to be 
shifted to the right so that its break frequency at JR2 was at the same 
frequency as C when combined with Rx || R2. A similar effect occurs in 
this example, except that it is due to the addition of shunt C instead of 
series R. Because Cp dominates Z, at low frequencies instead of C2, it 
reaches ωζ at a resistance of 

When Cx dominates Zx at ωρ, the break in ||Z,|| occurs where this 
resistance intersects Cx. As the upward arrow in Fig. E5.9b shows, the 
capacitance that would result when combined with R2 is Cs. To construct 
||Zin||, Rx is added to \\ZX\\; it shifts the graph upward. Then the transfer 
function with first stage output Vj can be constructed from ||Zin|| and 
||Zi||. Similar construction for the second stage (R2C2) and a combination 
of reactance chart transfer functions produces the desired transfer func
tion (magnitude). 

The expression for Zx(s) is found by writing a voltage divider formula 
from Fig. E5.9a. It is 

Zi{s)^scp(sRiCs+iy C P = C > + C 2 ' C s = " ^ T Z T C l l | C 2 

This expression is consistent with the reactance graph of Fig. E5.9b. 
The first stage transfer function is 

V, sR2C2+\ 
νΓ s2[RlR2CìC2] + s[RìCp+R2C2] + l 
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and the overall transfer function is 

Vi Vt sR2C2+\ s l ^ Ä a ^ C J + s C ^ C p + Ä j C J + l 

It is of interest to note that a double pole at 1/ RC does not occur when 
the resistors and capacitors are of the same values. Under the conditions 

R{=:R2=R, C] = C2=C =i> £=1.5, - { : 
-03S2/RC 
2 .618 / JRC 

This attempt to design a two-pole filter at l/RC fails because the 
second-stage loading causes the poles to shift. To achieve a two-pole 
roll-off at a specified frequency, circuit values must be chosen to make 
the denominator of the transfer function a perfect square. The minimum 
value of ζ = 1 is approached when the second stage loading is minimized 
by making R2 » R} and C2« C,. For/?! = R2or Cx = C2, minimum ζ = \fl. 

An alternative two-pole filter without interstage loading in Fig. E5.9c 
has a voltage buffer separating the stages. The frequency response simula
tions of (a) and (c) show the difference. For Fig. E5.9c, both poles are 
at l/RC for these conditions. 
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5.14 Closure 

This survey of linear dynamic response is the foundation for analysis of active 
circuits with reactive elements. We shall return to the amplifiers of previous 
chapters and extend their analyses to the complex-frequency domain, using 
the methods presented here. In practical circuits, the assumption of linearity 
applies for small-signal amplifiers. The extensive analysis done here of second-
order circuits does not readily apply to higher-order circuits, so the formulas 
for tp, Mp, Mm, and ζ may not be valid when zeros or additional poles are 
present. 
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C H A P T E R 

Dynamic Response 
Compensation 

Dynamic response compensation techniques are applied to achieve desirable 
transient or frequency response of amplifier circuits. In Chapter 5, the response 
of linear circuits in both the time and frequency domain was investigated. 
Here, methods for achieving desired response are developed. 

6.1 Passive Compensation: Voltage 
Divider 

The familiar resistive voltage divider of Fig. 6.1a illustrates the idea of com
pensation. When a capacitive load C2 shunts R2, the step response is over-
damped and bandwidth is reduced. To compensate for C2, Cx is added in parallel 
with Rx. The transfer function of this divider is 

Vo(s) ( R2 \ sR^ + l ( 6 1 ) 

V-Xs) \Rl + R2) ' s(Ä, || R2)(C, + C2) + 1 

The addition of C2 introduces a finite zero and makes N(s) and D(s) of the 
same degree in s, a condition for an all-pass filter. When the pole and zero 
are equated, the (all-pass) compensation condition is 

RXCX = R2C2 (6.2) 

A similar technique can be used with the current divider dual of Fig. 6.1, in 
which series load inductance is compensated by placing series inductance in 
the other branch of the divider. To compensate, the L/ R time constants of 
the two branches are set equal. 

219 

6 
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(a) 

l+a 

\-a 

(b) 

FIG. 6.1 A compensated voltage divider (a) and possible step responses (b). 

Now suppose that this divider, or a circuit with a similar transfer function, 
is not properly compensated and has a step response like that of Fig. 6.1b, in 
which the fractional overshoot (or undershoot) is a. This time response is 

[sTP+l s 
£-' 

tsTp+1 s 

= £' 
U T P + 1 

(5TP+1)J 

l -+ - + 
S STP 

-t/rp (6.3) 

At t = 0, the exponential is l; its coefficient in (6.3) therefore is a, and the 
relationship between the pole and zero time constant is 

τζ = (1 + α)τΡ (6.4) 

An additional cascaded compensation network with a pole time constant 
T

P c = Tz and a zero time constant TZC = rp results in a flat frequency and step 
response. The value of τρ can be estimated by observing the transient decay 
of the step response. The settling time is 4 to 5 times τρ as observed on an 
oscilloscope. With this estimate for rp and from measurement of a from the 
step response, rz can be calculated from (6.4). 
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:* ι :*2 

FIG. E6.1 

Example 6.1 Shunt-Series All-Pass Circuit 

Figure E6.1 has a terminal impedance of 

(sL/R, + l)(sÄ2C + l) 
Z = R> 

K, 

s2LC + s(Ri + R2)C + l 

52(LC/g2/Jtl) + j (L/J t l + JR2C) + 1 

Z has two poles and two zeros. If the poles and zeros cancel, the input 
resistance is merely Ri and is independent of frequency. This is achieved 
when 

L o = LQ 
* i 

+ R2C = (Ri + R2)C 

or 
R\~ R2- R, R 

= RC 

This circuit suggests frequency compensation schemes. A series RC can 
be compensated with a series RL and vice versa. 

Example 6.2 Series-Shunt All-Pass Circuit 

The dual of Fig. E6.1 is Fig. E6.2, in which 

sL 
- + -

R, 
R, 

s2LC + s[(L/Ri) + (L/R2)] + l 
sL/Ri + 1 sR2C + l "2 s2[LCR2/JR,] + s[L/R, + £ 2 C ] + 1 

The all-pass conditions are found by equating N(s) and D(s) and 
equating coefficients: 

LCR, 
* i 

L L L 
LC> "i~ + ^~"==^~~f R*c 

XVj / v 2 / v j 
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FIG. E6.2 

This reduces to the all-pass conditions: 

Notice that they are the same as for Fig. E6.1. For both, R = Zn . 

6.2 Op-Amp Transfer Functions from 
Reactance Charts 

We now return to op-amp circuits and apply the reactance chart method (of 
Section 5.13) to find their transfer functions. With this capability, we can more 
easily attend to their compensation. We begin by considering the voltage gain 
of inverting op-amps: 

Vo(s) Zf(s) 
Vi(s) ZM (6.5) 

This is an s-domain extension of (3.22) and assumes an infinite op-amp 
bandwidth and gain. Under these simplifying conditions, the op-amp integrator 
and differentiator of Fig. 6.2 have gains of 

Vois) 1 
op-amp integrator, 

op-amp differentiatior, Vois} 
VXs) 

sRC 

= -sRC 

(6.6) 

(6.7) 

The transfer functions are shown on Bode plots of Fig. 6.2b and (d). 
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FIG. 6.2 Op-amp integrator (a) and its Bode plot (b); op-amp differentiator (c) and Bode plot (d). 

For the op-amp integrator, a finite-gain op-amp cannot supply adequate 
gain as the input frequency approaches zero. At dc, the op-amp circuit is 
open-loop and subject to dc drift from offset errors. To stabilize the closed-loop 
gain (at some high value at a low frequency), the feedback capacitor is shunted 
by a large resistor (Fig. 6.3a). The dc gain is then -RJR{ and the output, 
though not exactly the integral, is predictable and stable. 

The reactance plots for ||Zf|| and ||Z;|| are shown in Fig. 6.3b. The ratio, 
||Zf||/ ||Zi||, is the magnitude of the gain || Av||. At frequencies below ωρ = 1/ RfC, 
C is effectively an open circuit, and the gain is determined by the resistors. 
Above ωρ, C dominates Rf, and integration occurs; the —1 slope (single-pole 
roll-off) is characteristic of time-domain integration. 

The op-amp differentiator has similar limitations but at high frequencies. 
To limit high-frequency gain, Ri is added in series with C (Fig. 6.3c). The 
differentiator is dc-stable because of the resistive feedback. Above ωρ = 1/ RXC, 
the circuit fails to accurately differentiate, and the gain is determined by the 
resistors. The transfer function plot is derived from the reactance chart as 
before. 

The reactance chart method is not limited to these simpler examples. 
Figure 6.4 shows more involved circuits. In (a), ||Zf|| = l /wCf, and ||Zi|| is 
shown on the ||Z|| plot. As we saw in Section 5.13, the addition of Rs to the 
RiCi plot shifts it upward to R\ + Rs at dc. This ||Zi|| plot rolls off and intersects 
Rs at a break frequency that, if it were caused by Ci5 would be due to an 
equivalent resistance of Rs \\ R,. This is shown by the dotted lines with arrows. 
The upward-shifted ||Zi|| plot rolls off at a capacitive value less than Cx. Since 
the circuit has no capacitance of this value, the zero of ||Zi|| is referred to the 
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FIG. 6.3 Op-amp integrator (a) with finite dc gain and Bode plot derived from reactance chart 
(b); op-amp differentiator with finite high-frequency gain (c) with reactance charge and Bode 
plot (d). 

Cj curve so that its resulting expression is readily interprétable in terms of the 
circuit topology. The ||AV|| plot follows, as in previous examples, from the 
plots of ||Zf|| and ||Zj||. 

The op-amp circuit of Fig. 6.4b does not have a unique transfer function 
plot but depends on the relative values of its poles and zeros. The reactance 
chart method is limited in generality (compared with the s-domain transfer 
function Ay,) because only one case can be plotted. All possible orderings of 
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FIG. 6.4 More complicated op-amp circuits with Bode plots derived from reactance charts. 

pole and zero values have to be considered by generating separate plots. In 
practice, the relative (if not actual) values of the elements are known because 
they are determined by the functional requirements of the circuit. In Fig. 6.4b, 
Rf> Rc, R,> Rs, and the ordering of poles and zeros shown in (c) is assumed. 

The reactance plot of ||Zf|| is shifted from the plot of RCCC because 
||Zf|| = Rf || Rc at high frequencies. At dc, ||Zf|| must be Rf. The zero of ||Zf|| 
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is set by the RCCC plot, and ||Zf|| has a - 1 slope between resistances of Rr || Rc 

and Rf. This slope represents a capacitance greater than Cc but not an actual 
circuit element value. Therefore, the break frequency at Rr is found by referring 
the resistance to the Cc plot (the dotted line with arrow pointing upward). 
The resistance at Cc is Rf+ Rc, and the pole of ||Zf|| is at l/(Rf+Rc)Cc. This 
technique of scaling the impedance at a given frequency by referring to a 
reactive circuit element (such as Cc here) to find the associated resistance is 
also used to find ||Zj||. 

When ||Zf|| and ||Zi|| are combined to form ||AV||, the transfer function in 
Fig. 6.4c results. Again, this frequency response is not unique but depends 
upon the placement of poles and zeros. Some ordering limitations are imposed 
by basic circuits laws. The pole at \/(R\ \\ Rs)Ci must always be higher in 
frequency than the zero at 1/RiQ, and the zero at 1/RCCC must be greater 
than the pole at l/(Rf+ RC)CC. Furthermore, depending on circuit values, 
complex poles and zeros are possible for the circuit in Fig. 6.4b, and the 
reactance chart asymptotic approximations may not be adequate for lightly 
damped response. 

Noninverting op-amp frequency response is determined with the reactance 
chart method in the same way that passive dividers were treated in Section 
5.13. The difference is that for the op-amp, the closed-loop response is the 
reciprocal of the divider ff, or 

II 7 -4- 7 II II 7 II 
||Av|| = l l T f i | l = ^ ^ (6.8) 

where ZHin is the impedance of the feedback network from the op-amp output. 
On a reactance chart, ||ZHin|| is plotted by adding ||Zf|| and ||Zj|| on the chart. 
Since asymptotic approximations are used, 

log||Z1 + Z2||=log>/||Z1||2+||Z2||2 = Mog(||Z1||2+||Z2||2) 

f logen, ΙΙΖ,ΙΜΖ,ΙΙ 
llog||Z2||, ||Z2||»||Z1|| 

Consequently, ||Z, + Z21| = ||Z, || + ||Z21| under the constraints of (6.9) and react
ance chart impedance magnitudes can be combined by addition of individual 
impedance magnitudes. 

6.3 Feedback Circuit Response 
Representation 

The feedback techniques of Chapter 3 derived closed-loop response from loop 
gain. The closed-loop gain Aw(s) is also determined from the loop gain GH(s). 
Feedback in the s-domain is the subject of control theory, found typically in 
control and circuits textbooks, and will not be systematically developed here. 
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developed here. Instead, basic aspects of amplifier stability and good dynamic 
response are explained, leading to methods for compensation of amplifiers 
that have undesirable responses. 

Of the representations of A„(s), the Bode, polar (or Nyquist), and root-
locus plots are the most commonly used. Bode plots are already familiar and 
present the frequency and phase response. Polar plots of the imaginary (jw-
axis) and real (<7-axis) components of GH with ω as the parameter are an 
alternative representation in polar form. For each of these representations, 
closed-loop performance is determined by the loop-gain characteristics. 

Root-locus diagrams are s-plane plots of the loci of closed-loop poles 
with open-loop gain X a s a parameter. As K increases from zero, the closed-
loop poles begin at open-loop poles and proceed toward open-loop zeros 
(some of which may be at infinity). When these poles leave the left half-plane, 
the feedback circuit becomes unstable. The pole loci can be found by setting 
the denominator of Av(s) to zero. Then, 

l + G(s)H(s) = 0 

or GH = - 1 = le±7T. In polar form, the locus conditions are 

| |G// | | = 1, t(GH) = ±lSQ° (6.10) 

Locating the loci in the s-plane is simplified by root-locus rules. These rules 
are constraints imposed on the location of the closed-loop poles by (6.10). 
Some of the more commonly used (and easily remembered) rules are the 
following: 

1. The root loci start at the poles of GH (for K =0) . 
2. The root-loci terminate at the zeros of GH. 
3. There are as many separate root loci as poles of GH. 
4. The loci are symmetrical about the real axis. 
5. The root loci are on the real axis to the left of an odd number of real 

poles and zeros of GH. 
6. The sum of the closed-loop poles is constant. (The centroid of the loci 

remains constant.) 

Other rules can be constructed from (6.10). 
The Bode and root-locus plots for an amplifier with a frequency-indepen

dent H and a single, real pole —p are shown in Fig. 6.5. The amplifier gain is 

G ( * ) = - T T 7 (6.11) 

s/p + 1 
The closed-loop gain for positive K and H is then 

C^ / K \ 1 
AÂS)=T+GH = \KH7\) s/(KH + l)p+l ( 6 1 2 ) 
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FIG. 6.5 
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Bode plot (a) of single-pole feedback amplifier with root locus (b). The open-loop pole 
at p increases in frequency by the dc loop gain 1 + KH. 

The closed-loop response is also that of a single, real pole, but at the frequency 
of (obw = (KH + l)p. The bandwidth has been extended by KH + 1. This 
response is unconditionally stable. [Whenever steady-state frequency response 
(jw-axis response) is related to pole locations in s, it is assumed that the 
positive value of the real component of the pole location is used in relation 
to the steady-state frequency. To be precise, o;bw = (KH + l)\-p\ for real poles. 
Since frequency response involves only positive frequencies, and p>0 for 
negative poles, no confusion should result.] The root-locus plot is shown in 
Fig. 6.5b. The open-loop pole at -p moves toward and terminates at the 
closed-loop pole -{KH + \)p. 

Next, consider an amplifier with two poles: 

0(s)= * (6.13) 
(s/p, + l ) ( s / p 2 + l ) 

For H constant with frequency, the closed-loop response is 

Λ ν ( 5 ) = \KH + \) ' ζ2/(ΚΗ + \)ωΙ + 2ζζ/{ΚΗ + \)ωη+\ ( 6 ' H ) 

Av is also a quadratic pole response. The closed-loop parameters are 

(*nc = wjKH + \= yJpxp2( KH + l) (6.15) 

and 

i c =7fFTî=^f ( 6 · 1 6 ) 

For complex poles, both pole angle and magnitude depend on the dc loop 
gain, as did the single-pole response. That is why dc loop gain is the parameter 
of closed-loop pole movement for root-locus plots. For both first- and second-
order loop gain, stability is unconditional. Response can become unacceptably 
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FIG. 6.6 A two-pole feedback amplifier Bode plot (a) and root locus (b). As K increases, the 
poles become complex. 

underdamped for excessive loop gain in (6.14), but the poles remain in the 
left half-plane. The Bode magnitude and root-locus plots are shown for 
second-order loop gain in Fig. 6.6. 

The Bode plot of ||G|| and | | 1 / / / | | , for G of (6.11) and constant H, is 
shown in Fig. 6.7. Because the magnitude axis is logarithmic, the difference 
between the ||G|| and 1/ H plots is the loop gain. That is, 

l og | |G | | - log( l / / / ) = log||G/J|| (6.17) 

These Bode plots are an alternative to calculation and plotting of | |G// | | to 
determine response characteristics. We need only plot \\G\\ and 1/H separately 
and then use Ì/H as the unity-gain axis. This applies also for | | / /0ω) | | . In 
Fig. 6.7, the open- and closed-loop gains intersect at œbw of (6.12). || Av|| rolls 
off with ||GH|| above this closed-loop bandwidth. 

P ö)bw l ogo 

FIG. 6.7 The 1/H curve can be used as the unity-gain "axis" for analyzing loop gain. 
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The closed-loop bandwidth can be calculated from Fig. 6.7. The dc gain 
magnitude of G is K, and since 1/ H is constant, the difference between them 
is KH on a Bode plot. The slope of ||G|| due to the pole at p is - 1 . Since the 
ω axis is also logarithmic, a logarithmic frequency difference is a ratio, and 
wbw//? = KH + \. The bandwidth is then 

Cübw = ( X H + l ) ' / 7 

and is the same as for the plot of | |G// | | in Fig. 6.5a. 

(6.18) 

- · * ■ - * · -

I I l 

h z h 
-Pi 

(d) 

- · * - -Pi 

I » i -Pi -P\ 

(e) 

k -P\ 

FIG. 6.8 Several common pole-zero configurations: Bode and root-locus plots. 
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Figure 6.8 shows some Bode and root-locus plots for circuits with up to 
three poles and two zeros. Bode plots show the gain-phase relationship with 
frequency directly and are most useful for compensating fixed-gain amplifiers. 
Root-locus plots show the closed-loop poles in the s-plane and how these 
poles vary with loop gain. For circuits with three or more poles, the closed-loop 
poles can leave the left half-plane with increasing K. The addition of zeros 
tends to "bend" the loci back from the ^'cu-axis. This effect is a basis for 
response compensation. 

6.4 Feedback Circuit Stability 

Circuits with no right half-plane (RHP) poles or zeros are minimum-phase 
circuits. Most circuits are of this kind. The stability of a minimum-phase circuit 
can be determined from a Bode plot. When loop gain, G(jo))H(j(o)< - 1 (or 
G ( - / / ) > 1 ) , the feedback is in phase with (and thus reinforces) the error 
input with a loop gain magnitude > 1 , enough to sustain oscillation. In other 
words, the phase lead or lag around the GH loop is large enough to invert 
the signal and cause it to come back to the input in phase. This is positive 
feedback. When GH(jw) = -l, then \\GH\\ = \ and </> = ±180°. On a Bode 
plot, when φ crosses -180°, stability requires that || GH || < 1. Or, when || GH || > 
1, -180°< φ < 180° for stability. This stability condition is called the Nyquist 
criterion. 

For minimum-phase circuits, stability can be determined from a polar plot 
of GH(jw) by observing whether GH encloses the (-ÌJ0) point. By traversing 
GH as ω goes from 0+ to infinity, if (-1,^0) remains to the left of the curve, 
it is not enclosed and the circuit is stable (that is, has no closed-loop RHP 
poles). Figure 6.9 shows some examples of nonenclosing curves. 

\jjr*z{GHUco)} 

1 1 f |M| 1 ► 
1 -1 J r ^ ^ l 1ω=0+ &e{GH{j(ù)} 
y Vv^ b ^y 

ω = 0 + 1 I 

FIG. 6.9 Polar plots that do not enclose -1 +j0. 
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jJ?™<{GH} 

FIG. 6.10 Polar plot of a conditionally stable system. 

Stability is not as easy to determine for nonminimum-phase circuits, those 
with right half-plane poles or zeros. Circuits with RHP zeros can be condi
tionally stable within a loop-gain range. For minimum-phase circuits, a decrease 
in dc loop gain K increases the relative stability. But for a conditionally stable 
circuit, a decrease in gain can decrease stability instead. The reason for this 
can be seen graphically in Fig. 6.10. The plot of GH(jw) extends above 
φ = -1&0° with a magnitude exceeding unity. As magnitude decreases, the 
phase reverts to the stable side of -180° (to quadrant III) and skirts around 
(-ÌJ0), not enclosing it. The phase again lags beyond -180° at a loop-gain 
magnitude of less than unity. Because the plot crosses -180° on both sides of 
- 1 , too great an increase or decrease of K could cause it to enclose (-ÌJ0). 

Figure 6.11 shows a typical nonminimum-phase circuit polar plot in which 
GH encircles points A and B but encloses only A. The complete locus is needed 
to see the encirclements and includes GH for ω = 0~ to ω = —oo. The negative 
frequency range locus of GH is symmetric with the positive range locus relative 

Encircled, 
not enclosed 

FIG. 6.11 Encirclement versus enclosure of points on a polar plot. 
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to the real axis. The GH locus in the s-plane closes at infinity (that is, from 
ω = -oo to ω = +oo) with a counterclockwise path at infinity, enclosing the 
stable LHP. The Nyquist criterion must be generalized to include the non-
minimum-phase case. The number of RHP poles must be zero for stability; 
their number is 

number of closed-loop RHP poles 
= number of poles of GH in RHP 

—net number of counterclockwise encirclements of ( — 1,7*0) by GH 
(6.19) 

For nonminimum-phase circuits, stability cannot be determined by enclosure; 
the Nyquist criterion, (6.19), requires encirclements instead. From (6.19), for 
stability the net number of encirclements of (-1,7*0) must equal the number 
of positive poles of GH. 

Bode plots cover only the positive frequency range of GH and, for 
nonminimum-phase circuits, are likely to be misleading. But for minimum-
phase circuits, stability and (to some extent) major response characteristics 
can be readily determined from them. Since most circuits are minimum-phase, 
we can usually use Bode plots. 

Relative stability is measured by gain and phase margins. The gain margin 
is the difference between unity and the gain at φ = -180°. The phase margin 
(PM) is the difference between the phase at unity gain and -180° and is the 
amount of additional phase lag that will make the circuit unstable. Although 
second-order circuits are unconditionally stable, phase margin still describes 
relative stability whereas gain margin is infinite. Therefore, phase margin is 
usually more meaningful in circuits than gain margin. 

Gain and phase margins are related to second-order response parameters 
such as ζ, Μρ, and Mm. As the margins decrease, the closed-loop damping 
ratio £c decreases, and Mpc and Mmc increase. For second order feedback 
circuits with no finite zeros, the relationship between PM and £c is approxi
mately 

PM 
£c = — , PMindeg, 0<£ c <0 .7 , 0 < P M < 6 4 ° , 2nd-order (6.20) 

Since overshoot is a function of £c [by combining (5.131) and (5.132)], PM 
can be expressed in terms of overshoot: 

Mpc = 7 5 - P M , Mp c in%, PMindeg, PM>20°, 2nd-order (6.21) 

From (5.149), Mmc is also a function of £c and can be related similarly to PM. 
Since pole angle is c o s 1 £c, a phase margin of 50° corresponds to a pole angle 
of 60° and an overshoot of 25%. This is greater than the 16% of an open-loop 
second-order circuit (see Section 5.8). The exact relationship between PM and 
£c is found by choosing 

G ( s ) = — l—— -> H = \ 
s(s/wnc + 2fc/^n c) 
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FIG. 6.12 Phase margin as a function of damping ratio for a second-order system. 

This choice results in a closed-loop transfer function with only a quadratic 
pole factor. Solve for the unity-gain crossover frequency ωτ. Then solve for 
the phase margin, and substitute ωτ. The result, in radians, is 

PM = - - t a n " 
2 

1 

[2ζ^2ζϊ + ̂ ΛζΪ+ΐ] 
(6.22) 

Based on this result, the error of (6.20) is calculated to be less than ±5 degrees. 
Figure 6.12 is a plot of this function, converted to units of degrees. 

Example 6.3 Two-Pole Feedback Amplifier Stability 

A feedback amplifier has two poles in G, none in H, and has a closed-loop 
step response that has 45% overshoot. The dc loop gain is 20. What is 
its phase margin and damping ratio? 

The loop gain has only a quadratic pole factor, so the previous 
formulas apply. (If G has zeros or H has poles, they become zeros of 
the closed-loop gain, and the quadratic-pole analysis does not apply.) 
The closed-loop transfer function is similar to (6.14), where KH is the 
dc loop gain. For overshoot, £c is calculated from (5.131) (or found in 
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the table in Section 5.8) and is £c = 0.25. From (6.16), the open-loop ζ is 

f W K H + l '-£c = >/21-(0.25) = 1.13 

ζ can also be calculated by using the approximations of (6.20) and (6.21) 
with (6.16): 

(75-M p c ) £ - - ^ V X Ï 7 T Ï = 1.37 
* 100 

This overdamped open-loop response becomes underdamped when the 
loop is closed. From (6.20), PM = 100fc = 25°. 

Example 6.4 Transimpedance Amplifier with 
Input Capacitance 

The amplifier of Fig. E6.4 consists of a voltage amplifier with voltage 
gain G(s), The feedback blocks are 

at^R 1 R « « 1 

sC sRC + l' sRC + l 
The closed-loop transimpedance is 

G(s) R C(s) Rm(s) = ai(s) 

R 

l + G(s)H(s) sRC + l l-G(s)/(sRC + l) 
G(s) 

sRC + l-G(s) 
For a single-pole amplifier, 

G(s): 

and 

*~<°)=-*{ΊΓΓΟ 

-K 
srG + l 

1 
S2[RCTG/(K + 1)] + S[(RC + TG)/(K + 1)] + 1 

To find PM, because of the zero in G/(l + GH) due to H, we cannot 
use the second-order approximations even though Rm(s) has no finite 
zeros. Instead we apply a more general approach using the Bode plot. 

For K=999 , R = 1 Mil, rG = 159/xs (/?G = lkHz) , and C - 5 pF, 
then at dc, jRm(0) = -999 kil, and the closed-loop poles are at 

(lkHz)(1000) = lMHz, — ^ ( 1 0 0 0 ) = (31.8 kHz)(1000) 
2TTRC 

= 31.8 MHz 
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FIG. E6.4 
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These poles are not too close, but the dc loop gain is high. The damping 
ratio is low: 

ic = ^T = 0.092 
2va 

From the ideal Bode plot, the PM is about 11°, which is nearly unstable. 
PM is found as follows. First, we find the gain at the higher pole. It is 
31.8 kHz/1 kHz = 31.8 times less than the first pole. The gain slope 
between poles is - 1 , so the ratio of gains is also 31.8. The open-loop 
gain at 31.8 kHz is thus 1000/31.8 = 31.4. The magnitude then decreases 
at a slope of -2 and crosses unity gain at 

fT = (31.8 kHz)v/3L4 = (31.8 kHz)(5.60) = 178 kHz 

We now know fT and proceed to plot the phase. The phase lags of the 
two poles overlap. The 1 kHz pole phase range extends from 100 Hz to 
10 kHz, and the 31.8 kHz pole range is from 3.18 kHz to 318 kHz. In the 
overlap (between 3.18 kHz and 10 kHz), the phase slope is twice that 
due to a single pole. For a single pole, phase changes -90° in two decades, 
for a -45°/dec slope. In the overlap, it is -90°/dec. At the higher pole, 
φ = -135°. To find the additional phase lag t o / T , we calculate the number 
of decades and multiply by the phase slope, and then add -135°: 

/ 1 7 8 k H z \ 
' \31 .8kHz/ 

l 0 8 lHJ^j ( - 4 5 7 d e c ) - 1 3 5 0 = - 1 6 9 ° 
Then PM = - 1 6 9 ° - (-180°) = 11°. The result from the exact Bode plot is 
also 11°. 

Most feedback circuits have more than two poles and are capable of 
instability. Feedback circuit compensation relies on an intuitive understanding 
of how pole and zero placement affects stability. Although optimal compensator 
design techniques exist, they are rarely the most expedient, cost-effective, or 
reliable ways to compensate most feedback circuits. 

Consider a loop gain with n poles at frequency ω = p. The Bode plots of 
magnitude and phase are shown in Fig. 6.13. The magnitude rolls off at p with 
a slope of —n. The phase lags by -45° · n at p and rolls off at —45° · «/dec. 
The frequency at which the asymptotic approximation for phase crosses —180° 
is 

ωφ=ρ. ι ο ( 4 - " ν " (6.23) 

Similarly for the unity-gain crossover frequency ωτ of the magnitude with dc 
gain of K : 

ωΎ = ρ· Kx/n (6.24) 
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FIG. 6.13 Bode plot for « poles at p. Phase margin rapidly decreases as number of poles increases. 

For stability, ωΎ<ωφ or ωφ-ωτ>0. Subtracting log ωτ from log ωφ gives 

1 /104""\ 
log ωφ - log ωτ = - logl — ^ - I > 0 (6.25) 

As n increases, φ rolls off toward -180° faster than \\GH\\ does toward unity. 
As the frequency difference of (6.25) approaches zero, the maximum K for 
stability is approximately 

K < 1 0 4 (6.26) 

For n =4, K < 1, which is hardly a useful feedback circuit. If the poles are 
complex, the situation is worse: φ rolls off even faster. Frequency plots for a 
three-pole circuit are shown in Fig. 6.8f. 

Now consider the effect on stability of separating the poles. For a two-pole 
Av, (6.14), ζ0 increases with open-loop ζ. ζ can be expressed in ρλ and p2 by 
multiplying the factors of (6.13). The coefficients yield 

'n = V / ^ > ζ = 
1 P\+Pi (6.27) 
2 \ip^p~2 

ωη is the geometric mean of the two poles and lies midway between them on 
a Bode plot. Relate the poles by a constant y: 

Px = ypi, y ^ O (6.28) 
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Then 

Minimum ζ is 1 when y = 1 for real poles. For maximum pole separation of 
y = 0 or oo, ζ = oo. For the two-pole case, maximum pole separation increases 
stability. 

A root-locus plot of two real poles, maximally separated, shows that they 
must travel a maximum distance along the real axis before meeting and 
becoming complex. This can be generalized from inspection of Fig. 6.8f for 
three poles. A heuristic stability rule suggested by these observations is 

• Pole separation increases stability. 

6.5 Compensation Techniques 

Compensation is often necessitated by circuit imperfections. Parasitic circuit 
elements, unavoidable reactive input and output loading, and undesirable 
amplifier frequency response are the major reasons. Some of these are shown 
in Fig. 6.14. The power-supply leads to the op-amp terminals contribute series 
inductance (Ll and L2). Stray capacitance from the supply terminals to the 
inputs is significant if appreciable high-frequency ac voltage is present at the 
supply terminals. The op-amp inputs have some internal capacitance to ground, 
causing a shunt RC with RY. The op-amp output is an equivalent shunt RL 
in series with a voltage source. The inductance is due to gain roll-off above 
the op-amp bandwidth (to be studied in the next chapter). This output imped
ance can resonate with a capacitive load. Furthermore, the op-amp usually 
has several poles. All of this amounts to a "naturally occurring" unstable 
circuit requiring response compensation. 

A clue to compensation comes from studying Fig. 6.8, in which we see 
that multiple poles cause instability (with sufficient gain), as in Fig. 6.8f. The 
inclusion of a zero in the loop gain causes poles that would head to the right 
to be "pulled back" from their course toward the jœ axis. Root-locus rule 6 
from Section 6.3 is intuitively powerful for envisioning where the poles of 
separate loci will move. They maintain a fixed centroid on the real axis so 
that pole movement, say, to the left, is accompanied by corresponding pole 
movement to the right (as in Fig. 6.8f). When a zero terminates the movement 
of a pole to the left (as in Fig. 6.8g), the poles moving right also cease moving 
in that direction. Depending on the order of poles and zero, various loci occur 
but always act according to rule 6 (as seen in Fig. 6.8h-j). Adding LHP zeros 
to the loop gain enables the response to be compensated. So another heuristic 
stability rule is 

• LHP zeros tend to increase stability. 
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m 
FIG. 6.14 An inverting op-amp circuit with parasitic elements that degrade performance or 
stability. 

We now consider how to apply these heuristic guidelines more specifically as 
compensation techniques. 

Pole-zero cancellation places the compensator zero on an offending pole 
of GH. If the compensator pole is far removed from its zero, then the offending 
pole is effectively shifted far away. Pole-zero cancellation is demonstrated in 
Fig. 6.15a. 

Phase-lead compensation places the zero near ωφ, where φ = -180°. This 
prolongs a stable phase while magnitude continues to roll off toward unity. 
The compensator pole is an implementation side-effect that must be put 
somewhere. Since the zero is placed where phase lead is needed, the pole 
should be placed at a higher frequency, beyond ω τ , where the additional phase 
lag it contributes will occur beyond where the magnitude crosses unity. Phase-
lead compensation is demonstrated in Fig. 6.15b. Because phase-lead com
pensation occurs at high frequencies, it mainly affects the transient response. 
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FIG. 6.15 Some first-order compensation techniques: (a) pole-zero cancellation, (b) phase-lead, 
(c) phase-lag, and (d) lag-lead compensation. The compensator poles and zeros are indicated by 
the downward arrows. 
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Phase-lag compensation places the compensator pole at a lower frequency 
than the zero. The idea is to introduce the pole at a frequency below the poles 
of the loop, where the magnitude is flat. By decreasing the magnitude while 
the phase lag is still small and then correcting it with a zero, we can reduce 
the magnitude while contributing little phase lag. This technique allows higher 
dc loop gain and consequently smaller steady-state error. 

Phase-lag compensation is demonstrated in Fig. 6.15c. It mainly affects 
low-frequency response error since the compensating pole and zero are placed 
at low frequencies, relatively near dc. The step response can have a long-lasting 
exponential decay (or "tail") (see Fig. 5.15a) before settling to the steady-state 
value. Whenever a low-frequency pole and zero are meant to cancel but are 
misaligned, a dipole is created with a time-domain response that shows a 
long-lasting exponential. 

Lag-lead compensation is a combination of lag and lead compensation, in 
which two poles and two zeros are introduced into the loop (Fig. 6.15d). Both 
techniques may be required to stabilize amplifiers with many close poles. 

Pole separation can itself be a technique. If the poles are far enough apart, 
the magnitude, starting from the lower-frequency poles, has enough frequency 
range to decrease to unity gain before excessive phase lag accumulates. An 
important instance of pole separation is dominant-pole compensation, in which 
one pole is placed at a frequency much lower than the others (and thus 
dominates the response). Another pole separation technique is pole-splitting, 
in which a low-frequency zero is introduced to pull an adjacent pole toward 
it; all the while the next higher frequency pole increases in frequency. The 
effect is just the opposite of what is usually expected on a root-locus plot; the 
poles separate instead of moving toward each other. 

One of the simplest of all compensation techniques is dc loop gain reduction. 
This may not be desirable in many applications due to its reduction in the 
beneficial effects of feedback. But for circuits with abundant loop gain (such 
as many op-amp circuits), this can be an attractive technique. 

Although these techniques are usually sufficient to achieve desirable 
response, combinations of them may be necessary for highly unstable 
amplifiers. In addition to stabilization of the loop with compensators, stages 
in GH can be individually compensated. Sometimes a transistor causes an 
oscillation and must be stabilized before overall loop response can even be 
considered. Therefore, good design practice is to start with an evaluation of 
stage responses before considering loop response. 

The techniques described in this section have various realizations in analog 
circuitry. But a technique and its various realizations (and how to design them) 
are different considerations, just as filter types (Butterworth, Bessel, etc.) have 
corresponding circuit realizations (state-variable, negative impedance conver
ter, Sallen-Key, etc.). The limitations on circuit topology can affect the choice 
of technique (bottom-up design) though ideally the nature of the problem 
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determines the best choice of technique (top-down design). We now turn our 
attention to various ways that these compensation techniques can be realized 
as analog circuits. 

6.6 Compensator Design: 
Compensating with Zeros in H 

First, we consider how zeros can be realized and at what frequencies they 
should be placed. Realizable circuits have no fewer poles than zeros. This 
complicates compensation because we also must be careful where the added 
poles are placed. If the pole is less than the zero, the response of Fig. 6.8a 
results; if the zero is less than the pole, Fig. 6.8b results. 

Some passive compensator circuit realizations are shown in Fig. 6.16. (The 
first two are the same as in Figs. 5.18d, a, respectively.) For the phase-lead 
(Fig. 6.16a) and phase-lag (Fig. 6.16b) compensators, the separation of pole 
and zero depends on the ratio of R2 to Rx + R2. For effective compensation, 
this separation must be significant; therefore, the values of Rx and R2 must 
be significantly different. The lag-lead compensator of Fig. 6.16c has the 
following transfer function: 

( ^ ( ^ + ΐ Χ ^ Ο , + Ι) 
lag-lead compensator => 7n ^ n ^ ττττ, τττ, ττ: (6.30) 

5 H s2RxCxR2C2 + s(RxCx + RxC2 + R2C2) + \ v 
From Fig. 6.16c, the conditions on pole and zero placement are 

px<zx« z2<p2 (6.31
) 

and Rx C, « R2C2. The wide separation of these critical frequencies is desirable. 
By choosing the separation of the zeros, we can determine the pole and zero 
pair separations. A trade off between these separations must be based on the 
particular amplifier requirements. 

These are not the only compensator realizations. The uncompensated 
amplifier topology affects choice of design, especially if the compensator can 
be synthesized from part of the given topology. We now examine some 
particular amplifier compensations. 

The op-amp of Fig. 6.17 has one op-amp pole p in G(s). Another pole is 
due to the input capacitance Cx. If the poles are too close, compensation may 
be needed. Inserting a phase-lead compensator in cascade with either the input 
or output of the op-amp is undesirable because it decreases input resistance 
or increases output resistance. Since H consists of a voltage divider, it can be 
modified to form a phase-lead compensator. The topology of H is familiar; 
it is an uncompensated voltage divider. A compensation capacitor Cf is placed 
in parallel with Rf. Then 

/ R, \ sRfCf+l 
\Rr+Rjs(Rr\\Ri)(Cr+Ci) + l 
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FIG. 6.16 Passive first-order compensators: (a) phase-lead, (b) phase-lag, and (c) lag-lead. 

Now H is equivalent to (6.1), the compensated divider formula. If we set pole 
and zero equal, H becomes an all-pass network, and the pole due to Cx is 
cancelled. In this case, 

Hfr (6.33) 
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m 
(b) 

FIG. 6.17 Phase-lead compensation of op-amp input capacitance with shunt feedback capacitor 
Cf in H for (a) inverting and (b) noninverting configurations. 

Example 6.5 Op-Amp Input Capacitance Compensation 

The amplifiers of Fig. 6.17 have values of R{ = 47 kfl, Rf= 220 kil, Q = 
100 pF, K = 100 k, /? = 10 Hz. The uncompensated loop has an op-amp 
pole at 10 Hz and a pole due to Q at 1/(220 kH || 47 kft)(100pF) or 
41.1 kHz ( Fig. E6.5a). From the Bode plot of GH (Fig. E6.5b),/T = 80 kHz 
and PM=26°. (We cannot apply (6.20) or (6.21) here because H has a 
pole. Poles of H become zeros of the closed-loop gain.) 

The addition of Q creates a zero at 1/(220 kfl)Cr. According to 
(6.33), Cf = 470 pF. The compensated response has a single pole at 10 Hz. 

We could have chosen to cancel p with the zero instead. The com
pensated response ( Fig. E6.5a) has a maximum phase lag of -90°, leaving 
a 90° PM. If p were cancelled, Cf would be 72.3 nF, and the magnitude 
plot would be flat to the compensator pole, now at only 56.8 Hz, with 
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single-pole roll-off from this pole. This alternative provides greater loop 
bandwidth. For the inverting op-amp, the larger Cr causes a lower-
frequency pole in a-, reducing closed-loop bandwidth considerably. 
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FIG. E6.5 (a) 10-Hz pole cancellation strategy, (b) Open-loop response, (c) Closed-loop response. 
(d) Closed-loop step response. 
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FIG. E6.5 (continued) 
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The maximum amount of phase lead that a phase-lead compensator 
introduces into a loop depends on the separation of its pole and zero. From 
the asymptotic approximation for phase, both pole and zero linearly affect 
phase for one decade on each side of them. If they are separated by two 
decades, the zero achieves a full 90° of phase lead before the pole begins to 
take effect. Consequently, 

(45°)log^V 1 < ^ < 1 0 0 
(6.34) 

90°, ( - I > 100 
maximum phase lead = < 

The frequency of maximum phase lead is at wpz or about p/10, where the 
pole begins to cancel the effect of the zero. The frequency range over which 
phase-lead compensation occurs is 

u y A * i log(p/z)dec, l < p / z < 1 0 0 
phase-lead frequency range = \ Λ . (6.35) 

Lzdec, p / z > 1 0 0 

Example 6.6 Op-Amp Phase-Lead Compensation 

The op-amp of Fig. E6.6a has a gain of 2.2M and poles at 100 Hz and 
1 MHz (Fig. E6.6b). The Bode plot of GH (without Cf) shows that phase 
lag approaches -180°, causing oscillatory response. C, is introduced to 
phase-lead compensate the loop. 

First, Bode plot gain at the second pole frequency and the unity-gain 
frequency fT are of interest. On a log-log plot, a line with slope n relates 
changes in magnitude and frequency according to 

feMf (El) 

The loop gain is 2.2M/11 =200k. The pole separation of p, and p2 is 
1 MHz/100 Hz or 4 decades. With a - 1 slope, the loop gain is 4 decades 
reduced, or 200k/104 = 20. For / T , the slope is - 2 , and 

/ T = (l MHz)V2Ö7T-4.47 MHz 

The phase plot (Fig. E6.6b, dashed curve) shows a phase lag of -169° 
at fT, and PM = 11°. At p2, the phase lag is -135°, and the phase rolls 
off at -45°/dec. At 4.47 MHz, or an additional log(4.47 MHz/1 MHz) = 
0.65 dec, this is an additional 29°, or a total of -164°. This linear approxi
mation is 4-5° in error. The phase plot value results in £ΞΞ0.11, a pole 
angle of about 84°, and a step-response overshoot Mp of 71%. This 
response is too underdamped for most applications. 
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The maximum phase lead that can be introduced is 

(45.),o^)=,45.),o4iM|p].»45.,,og(f+1) (E2) 

or (45°)(log 11) = 47°. The phase lead of the zero acts over a frequency 
range of log( 11) = 1.04 dec. If the high end of this range is placed at the 
compensated / T , o r / T c , then phase lag is held constant f rom/ T c / (p /z) 
to fTc. This placement of phase-lead range is accomplished by noting 
that p begins to affect phase at p/10. So we set 

1 0 / T C 
/ T C = 10' 

Z--
(p/z) (E3) 

(a) 

5.7051 

40.449 

75.194 j§ 

10.000 1000.0 +1.00E+05 +1.00E+07 
Frequency, Hz 

(b) 

FIG. E6.6 (a) Circuit diagram, (b) Open-loop response, (c) Closed-loop response, (d) Response 

compensator. (Figure continues.) 
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FIG. E6.6 (continued) 

An increase in z from this placement fails to use the full range of phase 
lead. A decrease in z increases fTc until the break to a -2 slope occurs 
at/Tc2 (Fig. E6.6d). Then fTc remains fixed as z continues to decrease. 
When a decreasing z increases /Tc, the magnitude slope at/Tc is - 1 , and 
phase is decreasing. For maximum PM, phase should begin to decrease 
again at/re· The phase-lead range is then placed with the high end at/Tc. 

We still must relate (E3) to the uncompensated plot. At z the two 
plots roll off at their respective slopes to /T and /Tc. Since their gain 
change is the same, their locations depend on the slope differences. 
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Consequently, using (El) gives 

( τΝτΓ^* 
Combining with (E3), we obtain 

A = \ / S * = / τ λ / Γ 7 Ι , P=f^l0(f) (E4> 
pz _ / lO 
10' Z~hVp/z> 

For the example,/T = 4.47 MHz and p / z = 11. Then 

z = 4.26 MHz, /? = l l z = 46.9 MHz, /T c = -^-= 4.69 MHz 

At z/10 = 426 kHz, the phase is 

- ( T ^ H - * - » « · 
an improvement of about 46° (as calculated from (E2)) over the uncom-
pensated amplifier. The compensated PM ~ 57°. 

Phase-lag compensation of the amplifiers of Fig. 6.17 can be implemented 
in H by connecting a series RC between the op-amp input terminals (Fig. 
6.18). Given the two-pole op-amp of (6.13), 

/ / ( Λ / *i \ sRcCc+\ 
U r + RJ S2[RCCCRPQ] + S[RP(CC+ q ) + ÄCCC] + 1 

\Rr+Rj 

sRcCc+l 
- (6.36) (sRpCç+lKsRçQ + il + Q/Cç+RJRp-RçQ/RpCç)] 

-{CJCc+RJRp-RcCJRpCc) 

where Rp = Rf \\ Rx. For Rc« Rp and C c » Ci9 

/ Rj \ sRcCc+l 
H(S) = " U f + RJ {sRpCc+\){sRcQ + \) ( 6 3 7 ) 

The effect of this compensation is to add a pole and zero. Because Rc« Rp, 
the pole frequency, 1/RPCC, is less than the zero frequency, 1/RCCC. Since 
C c » Cj, this zero is less than the second pole \/RCCX. This results in a pole 
and zero ordering of 

1 1 1 1 , 
p< < < < (6.38) 

RpCc RCCC /vpCj RCC\ 
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(a) 

FIG. 6.18 Phase-lag compensation of op-amp at input by Rc and Cc for (a) inverting and (b) 
noninverting configurations. 

The effect of the compensation network is shown in Fig. 6.19, which demon
strates phase-lag compensation. Above 1/RPCC, the magnitude decreases at a 
steeper slope at small phase angles. Then, as ω approaches unity gain, the 
zero is introduced (at 1/RCCC) to reduce the phase angle slope and increase 
phase margin. 

Another way to add a zero to H when a feedback capacitor is used for 
compensation is to add a resistor in series with it. In Fig. 6.4b, the effect of 
Rc is to add a zero at 1/RCCC and move the pole at 1/RfCc down in frequency 
to l / (Ä f +Ä c )C c . 

Example 6.7 Phase-Lag Compensation 

We want to phase-lag compensate the amplifier of Fig. E6.7 for maximum 
PM. The op-amp has poles at ρλ = 100 kHz and p2 = 1 MHz and a gain 
of 220 k. A phase-lag compensator is realized by adding a series RC 
from the inverting input of the op-amp to ground with elements Rc and 
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FIG. 6.19 Bode plot (a) and root-locus plot (b) showing the effects of phase-lag compensation. 
The gain is decreased at low frequencies where the phase lag is small. The phase is restored with 
a zero, but at a decreased gain. 
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Cc. Then 
/ /?j \ sRcCc+l 
U r + Ä i / i [ Ä c + (Är | |Äi)]Cc+l ( E 1 ) 

Substituting values, //(0) = 1/11-0.0909 and Gtf(0) = 20 k. To achieve 
as much PM as possible, the pole and zero of H must be widely separated. 
The ratio of the H zero to pole is 

z Rf || R{ 

and is large when Rc« Rt || Rt. Since i?f and Rt are given, we can both 
place and separate z and p by selecting Rc and Cc. If the high end of 
the phase range of z is placed two decades below px, then phase is 
restored to zero at Pi/10, but the gain will have rolled off by a decade 
to 2 k. By placing z at 1 kHz, RcCc-= 159 us. For a full 90° of phase lag, 
z/p = 100. Substituting into (E2) gives Rc = 9.18 Ω. The closest 5% resistor 
value is 9.1 fl. Cc is 159 us/9.18 Ω = 17 uF , or a 5% tolerance value of 
18 uF. 

We estimate the compensated PM as follows. The gain at px is 200, 
and φ must be -45°. The gain rolls off another decade to pl9 where it 
is 20. Then /T c = Vr2Ô(l MHz) = 4.47 MHz. This is log(4.47), or 0.65, 
decades above p2. At p2, φ = -90°. At -90°/dec, the additional phase 
lag at Ac is 59° or -149° total, and the PM = 31°. 

Example 6.4 (continued) Transimpedance Amplifier with 
Phase-Lead Compensation 

In Example 6.4, ζ was unacceptably low. We can apply phase-lead 
compensation in H by shunting R with a compensation capacitor Cc. 

The open-loop poles are at frequencies of 1/ RC and 1/TG = pG. The 
addition of Cc shifts the pole in H to pH - l/R(C + Cc) and adds a zero 
at z = 1/ RCC. With phase-lead compensation, z>/? H . The root-locus plot 
is Fig. 6.8c. The complex pole locus bends left in a circle and rejoins the 
real axis above the zero. Since the dc loop gain is given, pole placement 
for the desired response largely depends on the placement of z. 

The addition of Cc results in a closed-loop transimpedance of 

sR(C+Cc) + l 
s2[raR(C + CQ)/(K + 1)] + S[TG/(K + l) + RC/(K + 1) + ÄCC] + 1 

(El) 
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The closed-loop ζ of the poles can be derived as 
b 1 ( # C + r G ) / (K + 1) + KCC (E2) 

b 2VÏ 2 V T G A ( C + C C ) / ( Î : + 1 ) 

For an MFED pole placement, £ = V3/2. Substituting into (E2) and 
solving for Cc gives 2.3 pF. 

6.7 Compensator Design: Reducing dc 
Loop Gain 

In Section 6.6, phase-lag compensation allowed dc gain to remain at K, the 
uncompensated value, because of Cc. In effect, phase-lag compensation 
reduces loop gain except at low frequencies. The simpler technique of reducing 
K does not require Cc and does not appreciably degrade dc performance for 
amplifiers (such as op-amps) with high loop gains. Neither does it introduce 
compensation poles and zeros that must be readjusted when closed-loop gain 
is adjusted. The Bode magnitude plot is shifted downward. With Cc shorted 
in Fig. 6.18, Av of the inverting op-amp in (a) is not affected by Rc but the 
loop gain is. From Section 3.3, the inverting op-amp has input attenuation 
ax = 1 + H\ both ax and H are affected by Rc such that Av remains unchanged. 
Consequently, GH can be adjusted by adjusting H with Rc without affecting 
closed-loop gain. Reduction of K is accomplished by Rc for the inverting 
op-amp (Fig. 6.20a). 

The noninverting op-amp configuration can also be compensated by Rc. 
To achieve the same result, Rc must be placed across the op-amp inputs (Fig. 
6.20b). The flow graph for this topology has a transmittance of a, in front of 
the feedback loop. The feedback equations are 

V0 =KE, E = a, V{ - HV0 =Vi-V_ (6.39) 

The transmittances are 

Rr 
/vj || /Vf ~r / v c 

(6.40) 

H= R
n
cììRi (6.41) 

jfvc || /vj "f" Rf 

G = K (6.42) 

Combining (6.39)-(6.42) gives the closed-loop gain: 
_ (Rr+ R\ [K/(l + * ) ] [ R c || *,] _ / * f + R,\ I 

v \ Ri ) RcWRi+Rr/d + K) \ Ri / L . o o 
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FIG. 6.20 Compensation through reduction of dc loop gain by Rc for the (a) inverting and (b) 
noninverting op-amp. The closed-loop gain remains unaffected by Rc since it affects ai and H 
equally. 

This is the familiar noninverting op-amp gain formula when K -» oo. Av is not 
affected by Rc, but the loop gain is. Since GH = KH, the effect on loop gain 
is to attenuate H by Rc shunting Rt. An apparent disadvantage of this topology 
is that Rc reduces the input resistance. But the effect is minimal with large K 
since Rc is across £, a small voltage, and is bootstrapped. 

Rx and Rf can be generalized to impedances. The closed-loop gain is 
unaffected by Rc whereas the dc loop gain is reduced. This shifts the Bode 
magnitude plot downward, causing it to cross unity gain at a lower frequency, 
where the phase lag is less. 

6.8 Compensator Design: Pole 
Separation and Parameter 
Variation 

One of the simplest compensation techniques is pole separation by dominant-
pole compensation. If one pole is introduced into a feedback loop at a much 
lower frequency than the other loop poles, it causes the gain to roll off at 
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-20dB/dec ( -1 slope) over a large frequency range until the next pole is 
encountered. If the range is large enough, the unity-gain frequency is less than 
the remaining poles, so that their influence is insignificant. An existing pole 
can often be reduced in frequency by modifying the value of its associated 
circuit elements. 

Another pole separation technique, pole-splitting, is commonly applied by 
placing a capacitor from input to output of an inverting amplifier stage with 
an output pole. Figure 6.21a shows a feedback amplifier with dominant 
forward-path pole at -pG and a transfer function of 

-K-
1 

S/PG+1 
(6.44) 

The feedback path is that of an RC differentiator. The resulting loop gain is 

K sRC 
GH = s/pG+\ sRC + l (6.45) 

The loop-gain root locus is plotted in Fig. 6.21b. Because of the zero at the 
origin, the pole at -pG migrates to the right while the pole at — 1/ RC increases 
in frequency. This is pole-splitting. The poles split apart instead of coming 

t }(ù 

j± -PQ 
RC 

(b) 

FIG. 6.21 Pole-splitting due to zero at origin in H due to C (a). Instead of moving together, 
the poles separate (b) so that pa becomes dominant. 
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together and thereby achieve pole separation. The closed-loop transfer function 
is 

Vo(s) 
= -K-

1 
s2(RC/pG) + s[(K + l)RC + l/pG] + 1 

(6.46) 

Because of the Miller effect, evident in the linear term of the denominator, 
the integrator pole moves away from pG as K increases, separating the poles. 

We now analyze the shunt capacitive realization of pole-splitting in more 
detail. Figure 6.22a shows an inverting amplifier stage with its flow graph, (b). 
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FIG. 6.22 A general transimpedance amplifier (a), its flow graph (b), Bode magnitude plot of 
loop gain (c), and root-locus plot (d). 
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The active forward path is a transadmittance amplifier with a gain of ~Gm = 
— l/Rm<0. The input and output are both loaded by general impedances Z{ 

and ZL, and the transadmittance amplifier is shunted by a feedback impedance 
Zf. From the flow graph, the closed-loop transimpedance is 

¥o = (z\\ ΖΛ (zf || zL)/(zf ||-/?m) 
h K f" °l + [(zr|| zL)/(zr| | -Äm)][zi/(zf+Zi)] ι · j 

î î 
G - H 

and Zin is 

Z r 
z = z 1 - G 

(6.48) 

For the simpler case of no loading, Z, and ZL are removed, and the transimped
ance is 

I. 
= -Z(+Rm (6.49) 

Since the output quantity is a voltage, a low-impedance output is desirable 
(to approximate a voltage source). In this case, Z L « Zf, and G2, the passive 
path in G, is negligible. Then 

G i = Z L £ Z t s ^ _ ( 6 5 0 ) 

and 

^Mffe) 
To make the circuit more specific, let ZL contribute a single pole due to a 
parallel RC load: 

^îidbr < 6 · 5 2 ) 

Similarly, let the input loading of the Gm amplifier be a parallel RC, 

Zi = ^ T T <6-53) 

and let the feedback impedance be a capacitance, 

Zf = - ^ (6.54) 

These choices of impedances simulate a CE (or CS) stage with collector-base 
(or drain-gate) capacitance. Substituting these impedance expressions into 
(6.51), we obtain 

RL sRxQ 
GiH~~^' [sR-XCr+Cd + lXsR^+l) (6*55) 
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The frequency response and root loci for (6.55) are plotted in Figs. 6.22c, d. 
The zero at the origin splits the poles. Because the zero is not positive, there 
is no danger of instability with too much dc loop gain Gm. As gain increases, 
however, the lower-frequency pole decreases in frequency, and the bandwidth 
is correspondingly decreased. 

We assumed that G2, the passive forward path through Zf, was negligible. 
If we extend this analysis to include it, we get some interesting and important 
results. The complete G is 

Zf II ZL Z, Zf || Z, 
G = Gi + G2 = ^ - ^ + —^— = Y D

L (6.56) 
^m ^ f + ^ L Z f | | - K m 

Specifically, Gx and G2 are 

G | = " ^ ' s R L ( C f + C L ) + l ( 6 ' 5 7 ) 

G 2 =^k=^L(cr+cr
L) + i (6·58) 

Then G becomes 
^ RL -sRmQ+l 
G = L — (6 59) 

Rm SÄL(Cf+CL) + l l ' ; 

This more complete expression for G has an additional RHPzero at + 1/RmC(. 
The loop gain is 

GH=EL· (sRmCf+l)(sR,Cf) 
Rm [sRdQ+CJ + lïïsRXQ+CÔ+l] { ' ; 

The root locus of (6.60) is not directly obtainable as before because the RHP 
zero varies with Rm, and RJ Rm is the dc loop gain. Root-locus plotting is 
based on fixed open-loop poles and zeros that are independent of dc gain. In 
(6.60), both elements that affect dc loop gain also affect a pole and zero. This 
situation suggests limits on the applicability of the root-locus technique for 
circuits. 

We consequently proceed directly to the closed-loop voltage gain VJ Vx : 

V0_ RL ( - ^ C r + l ^ / ^ Q + C J + l] 
V; Rm s2a + sb + \ 

(6.61) 

where 
a = RiRL(ClCr+ CLCf+ q C L ) (6.61a) 

b = R{Cf( 1 +γ) + RXQ + RLQ-l· RLCL (6.61b) 

Finally, the closed-loop transimpedance is 

I, f " ' Vi y, Rm s2a + sb + l 
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This expression has two left half-plane (LHP) poles and one RHP zero. Its 
characteristic equation is the same as (6.61). 

The Miller effect is evident in the linear coefficient b in the first term of 
(6.61b), where the Miller capacitance Cf is multiplied by the voltage gain plus 
I. As Rm decreases, b increases while a remains constant. This causes the 
poles to move apart with decreasing Rm. It also causes the RHP zero to increase 
in frequency. The LHP zero of (6.61) remains fixed as Rm varies. The movement 
of the poles and zero of (6.61) with decreasing Rm (or increasing Gm) is shown 
in Fig. 6.23. The poles move to zero and -oo; the RHP zero goes to +oo. 

A root-locus plot with a circuit element as parameter is a root-contour plot. 
If KGH can be reformulated as X · F(s), where F(s) is independent of X, 
then X is a constant relative to F and can be varied in the root-locus equation, 
KGH = XF = - 1 . The root-locus rules then apply, and the pole loci are mapped 
as a parameter of X. If a formulation compatible with the root-locus technique 
is not feasible, then movement of the poles and zeros of the closed-loop transfer 
function with variation of a circuit element can still be investigated. This 
closed-loop parameter variation technique is often quite useful in determining 
the effect of a circuit element on the dynamic response. 

If Cf is made the parameter instead of Rm, the movement of the poles 
with Cf can be plotted. As Cf increases in (6.62), the RHP zero decreases 
toward zero. For the poles, Cf is in both a and b. We can estimate pole location 
from extreme values of Cf. When Cf = 0, the poles are located at —\/R-xC-x and 
-l/RLCL. These are also the open-loop poles for Cf=0. As Cf increases 
slightly from zero, the poles decrease until Cf dominates (that is, Cf » Ci9 CL). 
Then the quadratic pole factor becomes 

^ C f l Ä i Ä L i q + C J l + s C f ^ Ä ^ l + ^ + Ä ^ + l 

In solving for the poles, we find that the b/2a term is independent of Cf. Also 
the (Cj+ CL) factor in a is not found in b. If it is varied (as long as Cf continues 
to dominate), the pole loci move together and form a complex circular arc 

-Pi -P\ 
-1 

/?i(Cf+Ci) 

1 jco 

Rm ►O 
oo w 

+1 
RmCf 

σ 

FIG. 6.23 Closed-loop parameter-variation plot (not root locus) for Fig. 6.22 when Zf = l /sCf, 
as Rm decreases. 
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centered at the origin. (See Section 5.11 for a description of root loci due to 
parameter variation.) 

As Cf -* oo in (6.62), both poles and zero move toward the origin. One pole 
and the RHP zero reach the origin and cancel, leaving a single pole at 

- 1 

(ÄLllÄillÄmKCi+CJ 

An infinite Cf is a short between input and output such that V0= Vj. The 
substitution theorem applies to the transadmittance current source, transform
ing it into a resistance across Vj of value Rm. All circuit components are in 
parallel. Therefore, a very large Cf sufficiently couples input and output so 
that their separate poles are merged effectively into one. 

From the open-loop gain, (6.60), if C L » Cf, then Cf has negligible effect 
on the open-loop pole at - 1 / # L ( Q + C Ï ) ; it remains relatively fixed as Cf 

increases. For the other open-loop pole, if Cx is not much greater than Cf, it 
moves appreciably to the right. Under these conditions, variation in Cf causes 
pole separation. 

We now analyze the closed-loop transadmittance of Fig. 6.22a for other 
choices of circuit impedances. Consider new circuit conditions, in which Zx 

is removed and the load is only capacitive: 

ZL = — - , Zi->oo, Zf = — (6.63) 

Then 

h sQ sRmCL+\ 

G has the RHP zero and a pole at the origin with coefficient /?m(Cf+CL). 
H = -\ and GH = -G. As Rm decreases, closed-loop pole and zero separate 
(Fig. 6.24a). The pole and zero can be adjusted independently by varying CL 

or Cf, respectively. 
If we add a resistive Z, to this circuit, the modified conditions are 

ZL = -5r> ZX = RU Zf~ (6.65) 
sCL sCf 

Then 

r 7 = _ 5 J R m ( C f + C L ) 
G = — n " ' λ (6.66) 

and 

/ / = - — ! = L·J- (6.67) 
1/sCf+Ki s^iCf+l 

The closed-loop transimpedance is 

Vn -R, - 5 ^ m C f + l 
I, Ä j C f + C J + ÄtCf 5(5{[^(Cf | |CL)] | |ÄmCL} + l) 

(6.68) 
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FIG. 6.24 Closed-loop parameter variation plots for Fig. 6.22a for specific impedance topologies 
as Rm decreases. Differences in (a)-(d) reflect the changes in impedances for Zx and Z L . 

The closed-loop poles and zero are plotted in Fig. 6.24b. The dc factor, a pole, 
and the RHP zero vary with Rm. Again, pole and zero move outward, away 
from the origin. This circuit acts as an integrator due to the fixed pole at the 
origin. The effect of adding R, is only to shift the non-zero pole. 

Ri is now removed and RL added. The conditions are: 

ZL=RL 
1 * L Z ^oo> 

\sCL sf lLCL+l 

For these conditions, H = - 1 , and the open-loop gain is 

c / / _ V -sRmCr+l 
Rm' sflL(Cf+CL) + l 

The closed-loop transimpedance is 

Vn I K, \ 1 -sRmQ+l 
sCf s(R 

v0_ / J?L \ I 
/, \RL+RjsC 

(6.69) 

(6.70) 

(6.71) 
RL)CL+1 

Again, the s-plane situation is similar to the previous two cases, with the pole 
location modified due to RL. 

Finally, consider the addition of a resistive R, to the circuit of (6.71). The 
conditions are then 

1 RL _ - 1 ZL=RL sCL sRLCL+l Z; = Rit zr= sCf 
(6.72) 
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The closed-loop transimpedance is 

I, " ' Km s^ÄLÄiCLQi + stÄLiCf+CJ + ÄiCfd + Ä L / Ä J l + l 

(6.73) 

The effect of resistances at both input and output is to move the low-frequency 
pole off the origin. The circuit no longer acts as a pure integrator. When Rm 

decreases, the poles split in the usual way; one goes to the origin and the other 
to -oo. Again, this locus of poles is due to variation in the linear-term coefficient 
of the denominator of (6.73). The quadratic coefficient remains constant with 

This extended analysis of the circuit of Fig. 6.22 demonstrates the condi
tions for pole-splitting due to variation in dc loop gain Gm and in Cf. The 
limitation of the root-locus technique was largely overcome by closed-loop 
parameter variation. This circuit is representative of CE and CS amplifiers 
and wideband amplifiers in general. 

Example 6.8 Transimpedance Amplifier Pole-Splitting 

The amplifier of Fig. E6.8 is an idealized form of inverting transistor 
amplifier with a feedback capacitance. Let 

RL=ìkù, £ m = 1 0 0 n , Äi = 10kn, C f =10pF, 

Ci=10pF, CL = 90pF 

From (6.62), we solve for the zero and poles. They are 

z = 159 MHz, pU2 = 124 kHz, 10.8 MHz 

The Bode plot confirms the pole and zero values. 
Since b remains constant with Rm9 the poles should move toward 

each other as Rm is increased. Calculating again for Rm = 1 kil, we obtain 

z = 15.9 MHz, pU2 = 461 kHz, 2.89 MHz 

As predicted, the poles are now closer. With further increase in Rm, they 
will eventually become complex. 

6.9 Two-Pole Compensation 

High-performance feedback amplifiers require high loop gain over a wide 
frequency range. Unfortunately, some of the simpler compensation techniques 
—notably, dominant-pole compensation—are successful because they reduce 
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FIG. E6.8 (a) Circuit and listing, (b) Magnitude response, (c) Phase response. 
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gain appreciably at higher frequencies. The two-pole compensation technique 
sustains high gain to a higher break frequency, where it then rolls off at 
—40 dB/dec ( -2 slope) followed by a zero that restores the magnitude to that 
of dominant-pole compensation. The difference is shown in Fig. 6.25b, with 
a typical two-pole compensator feedback realization in (a). The high loop gain 
is extended from the dominant-pole break frequency of pd to /?, where two 
poles reside. 

Most op-amps have three stages of gain: 

1. a differential (transconductance) amplifier input stage 
2. a frequency-compensated high-gain stage 
3. a current-gain output stage 

(a) 

loglUvll 

Two-pole 
compensation 

Dominant-pole 
compensation 

FIG. 6.25 Two-pole compensator (a) and Bode plot (b). Extra gain is available from pd to z 
over the dominant single-pole amplifier. 
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Two-pole compensation is applied to the second stage. The compensation 
capacitors are typically connected between the output and input of the second 
stage. 

For the ideal op-amp, dc gain is infinite, and the compensation poles 
reside at the origin. From Fig. 6.25a, as frequency increases, the reactance of 
the capacitors decreases relative to R until Xc« R- Then the equivalent circuit 
consists of the two capacitors in series, shunting the op-amp. The series 
capacitance is the same value as for the dominant-pole response shown in (b). 
The zero of the circuit in (a) is located at the frequency for which R becomes 
negligible relative to X c . 

The circuit of Fig. 6.25a represents an internal op-amp second stage or 
other amplifier compensation stage. Its loop gain is 

s RR\(^\(^2 
GH = K s2RRxCx C2 + s(RCx + RC2 + RXC2) +1 

where G = -K. The closed-loop voltage gain includes 

sR(Cx + C2) + \ 
ax = Rx s2RRxCxC2 + s{RCx + RC2+ RxC2) + \ 

and is 

Vo = _ sR{Cx + C2) + \ 
Vx ' s2RRxCxC2(K + 1) + s(RCx + RC2 +RXC2) + 1 

where Vx = RXIX. For an ideal op-amp, K-^oo, and the voltage gain is 

sR(Cx + C2) + l 
Vi s RRXC^XC2 

(6.74) 

(6.75) 

(6.76) 

(6.77) 

As K increases, the quadratic term in (6.76) dominates, shifting the poles to 
the origin. Another useful simplification of (6.76) is to let R, -* oo. This is the 
case of a transimpedance amplifier with input I,. Its transresistance is 

sR(C, + C2) + l 
R _o 5C2[5(X + 1)ÄC, + 1] 

(6.78) 

The pole dependent on R, moves to the origin. Without a finite R(, the poles 
cannot be equal. For an op-amp transimpedance amplifier, both R^ and K-*<x>. 
In this case, 

sR(Ci + C2) + l 
s2RC,C? 

(6.79) 

This amplifier acts as a dual integrator with a finite zero. For the special case 
of C, = C 2 = C : 

YÏ 
h R; ,K^OO,C| = C 2 

s2RC + l 
s2RC2 (6.80) 
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As R -> oo, (6.76) becomes 

= -K- 1 
sRx{Cx || C2)(K + 1) + 1 

(6.81) 

With R open, the circuit defaults to dominant-pole compensation. (The factor 
Cx || C2 is the series combination of Cx and C2 ; || is a mathematical operator, 
not a topological descriptor.) In the case of an ideal op-amp, as X ->oo, the 
pole approaches the origin and the gain is 

^ 2 1 
sRXC, || C2) 

(6.82) 

This is a dominant single-pole amplifier response with an amplifier shunt 
capacitance of C, and C2 in series. For comparison, the plots of (6.77) and 
(6.82) are shown in Fig. 6.26. 

These expressions for closed-loop gain do not of themselves satisfy the 
requirements for two-pole compensation. The following conditions must also 
hold: 

The poles must be equal (or close), or px =P2 = P> 

The poles must be less than the zero, or z/p > 1 

(6.83a) 

(6.83b) 

The condition of (6.83a) is satisfied for real poles (ζ = 1) when the coefficients 
of the quadratic pole factor of (6.76) have the relation 

2 

" © 
Since the K +1 factor is in a only, its variation produces the loci of poles for 

R finite 

2KR(C1+C2) 

FIG. 6.26 Two-pole roll-off from the origin provides additional gain below z for the amplifier 
of Fig. 6.25. When R is removed, the default circuit is dominant single pole. 
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a constant b. (See Fig. 5.15b.) The poles are equal when their value is -b/2a, 
and the corresponding gain is found by setting the discriminant, b - 4 a , to 
zero and solving for K + 1: 

„ ^ , R2(C1 + C2)2 + 2^ /? (C 1 + C2)C2 + ^fC^ 

* + 1"'- = ϊ ^ ^ ( 6 · 8 4 ) 

X is set by either the amplifier open-loop gain or by forming an inner-loop, 
controlled-gain amplifier around which the two-pole compensator is placed. 
This is often too difficult to design because the forward path gain is determined 
by an integrated amplifier with an unspecified (or wide tolerance) gain. If the 
gain is stabilized by use of feedback, the H block interferes with the two-pole 
compensator. Since it is not usually desirable to set the compensator by 
adjusting K, we solve (6.84) for one of the compensator elements, R: 

R,C2 ^ = ^ l ^ ^ [ ( ^ + l ) C 1 - C 2 ± 2 V C 1 ( X + l ) ( ^ C 1 - C 2 ) ] (6.85) 

where px = p2 and, of course, R is positive and real, requiring that KCX > C2. 
Equation (6.85) is rather involved and can be simplified to 

R = R, 4 * ( C , II C2) 
c, + c, K»l, KCX»C2, Pi=p2 (6.86) 

The second constraint on two-pole compensator realization is (6.83b), or 
z> p. From (6.76), 

z = n t r \ r i = - ( 6 ' 8 7 ) 

and the positive value of the two poles is 

b R{CX + C2) + RXC2 1 
P~2a~ 2R,RCXC2{K + 1) " rp

 ( 6*8 8 ) 

Since the poles are equal, a = (b/2)2, and both poles are located on the real 
axis at 

2a~b 

Then z>p becomes 

1 λ-λ 
τζ b rp 

But from (6.76), b = rz+ RtC2. Substituting, we have 

1 2 1 
r7 τζ+ R\C2 r, 
1 2 1 

> — — ^ 7 7 = — (6.89a) 

or 
RiC2 >T7 = R(CX + C2) (6.89b) 
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If we solve for R\C2 in terms of (z/p) from (6.89a), we get the equality 

Α ^ 2 = τ ζ ( 2 · - - ΐ ) (6.90) 
P 

By solving z>p, using b/2a instead of 2/6, we get 

/? \ C, + C2/ p 2(K + l)[C1/(C, + C2)]-z//> 

The constraint on z/p is weak for large K but suggests that C\ be made larger 
than C2 for maximum pole-zero separation. A special case of (6.91) is 

r2<K+i)fer^)· *A » rz (6.92) 

When #iC2 dominates b, the pole-zero separation is pushed to the limits of 
(6.91). In this case, with large K, 

R~Rl4iœ}9 *iC2>>Tz' K>>1> P*=?2 ( 6 · 9 3 ) 

Finally, from (6.89), the constraint on the capacitors is 

§<£-, .6.94, 
With these formulas, we can design two-pole compensators with real and equal 
poles and gain values typical of either op-amps or low-gain amplifiers. 

Example 6.9 Two-Pole Compensation 

An amplifier (not an op-amp) has the following circuit values: 

K = 100, Kj = 33kfl, C, = 10pF, C 2 =100pF 

The circuit is shown in Fig. E6.9 along with the Bode plot from circuit 
simulation. For this amplifier, 

R = 33 k a 
100 

^ — = 825 il 
4(10pF)(100)J 

and the conditions of (6.93) are satisfied. All element values are deter
mined, and the natural frequency of the pole factor, which is the break 
frequency of the two poles, is found either from (6.89a) or directly from 
a: 



(a) 

100 pF 
H I -
10 pF 

m 

10 kHz 30 kHz 100 kHz 300 kHz 1.0 MHz 3.0 MHz 10 MHz 
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(c) 0 

-50 

-100 h 

-150 
10 kHz 30 kHz 100 kHz 300 kHz 1.0 MHz 3.0 MHz 10 MHz 
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FIG. E6.9 (a) Circuit, (b) Voltage gain, (c) Phase plots of two-pole compensation 
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As a check, when the poles of a quadratic factor are equal, ζ = 1. From 
the pole-factor of (6.76), ζ = b/2\fa-l.03. The zero is located at 
1/27TÄ(C, + C2) = 1.75 MHz. From the SPICE simulation, the phase is 
-90° at 100 kHz, where the poles should be. As a check, the magnitude 
will be down - 6 dB (for two poles) at the break frequency. At 34 dB 
(down from a dc gain of 40 dB), it is 91 kHz. The maximum closed-loop 
phase lag occurs at 631 kHz and is -142°. The nonmonotonic phase plot, 
which dips down and comes back up due to the zero, is characteristic 
of two-pole-compensated amplifiers. The magnitude plot rolls off with 
a ~2 slope at the pole frequency to the zero frequency at about 1.75 MHz. 
(Because the amplifier is inverting, the Bode plot phase is offset by -180°.) 

The previous development assumed real poles. A more general set of 
design formulas takes the given design constraints as independent variables 
and yields two-pole compensator element values. We start with Ri9 K, ωη, 
and ζ of the pole factor (now no longer necessarily unity), the pole-zero 
separation, 

z z , 
T-^=—=y (6.95) 
H P I I <°n 

and the location of the zero, z = l / r z . Beginning with 

z = ycon =Φ —=yrz => a = y2r2
z =^> (K + \)RRXCXC2 = y2R2(Cl + C2f 

and solving for R, we obtain 

* = * i ' 2 ( r \ W (6.96) 
y {Cx + C2) 

Now ζ is brought in as 

b b Tz+ÄiC2 

^ ν Τ 2 - ω " = ̂ — W" ( 6 · 9 7 ) 

The compensator element C2 results from solving (6.97) and is 

C2=U£irl)zk> ζ>± (6.98) 
Kj 2 γ 

C2 of (6.98) is expressed entirely in given parameters and is thereby determined. 
Next, (6.87) is solved for Cl9 

Cx=^-C2 (6.99) 

and substituted into (6.96). This results in an expression for R in given 
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parameters and C2, which is known from (6.98): 

R=â['-(Ffï)te)]· R'cHi^h i6m) 

Finally, since R is now known, it is substituted into (6.99) to yield 

1 
c, = c7 {1-[γ7(*: + 1)][τζ/ΚΑ]} '] (6.101) 

Example 6.10 Two-Pole Compensator Design 

The op-amp circuit of Fig. E6.10 has a gain of K = 10 k, Rt = 10 kü and 
is two-pole compensated to have a zero at 500 kHz and roll off a decade 
lower, at 50 kHz. Furthermore, an MFED pole response is desired, where 
£ = 0.866. Component tolerances are 5%. 

The required parameters are 

= 318ns 7 2<rrf7 27r(500kHz) 

z 500 kHz 
— = = 1 0 

r ωη 50 kHz 
First we calculate C2 from (6.98); it is 519 pF. The closest 5% part is 

C2 = 520pF 

Next we calculate R from (6.100), using the calculated value for C2 

(instead of the 5% value) to keep the calculations accurate. (This is 
important when we get to C, because the difference of two large numbers 
is taken.) Then R = 613 Ω. The closest value is 

# = 620Ω 

Finally, Cx is calculated from (6.101), or (6.99) if care is taken to retain 
numerical consistency. It is 0.32 pF. This is a very small discrete capacitor 
value and suggests that it might be difficult to realize this circuit reliably 
in manufacture because this value is on the order of parasitic capaci
tances. The circuit-board layout between the output node and R must 
minimize stray capacitance. Perhaps the best way to implement C\ is 
with a small trimmer capacitor of about 1 pF maximum value. If such a 
small Cj is not feasible, then the given parameters must be adjusted to 
result in larger capacitance. Cx increases if R increases due to a decrease 
in C2. And C2 decreases when £, γ, or rz decrease or JRi increases. 
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FIG. E6.10 (a) Circuit, (b) Gain, and (c) phase plots of circuit response. 
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To check our results, we turn from synthesis to analysis and calculate 
a and b of the pole factor: 

a = RRiCiC2(K + l) = 1 .06x l0 l l s 2 -> / n = 48 .8kHz-50kHz 
fc = jR(C14-C2) + RiC2 = 318ns + 5.19/xs = 5.51iLts =» £ = 0.85-0.87 

Both fn and ζ are within the 5% tolerance of the components. Finally, 
we check our results against the constraints in (6.98) and (6.100): 

^ ° - 8 7 > ^ 4 = 0 0 5 (checks) 

γ2τζ = 0.32pF (checks) ^=°·33ρΡ>*(κ + ΐ) 
The lower limit of C2 is approached because Cx and C2 are so widely 
separated. 

The final check of this example is made from the SPICE frequency-
response simulation. 

The amplifier of Fig. 6.25a has no dc feedback and acts like an integrator 
at dc. Unless it is within a larger feedback loop, the output drifts out of its 
linear range due to offset errors. For stand-alone applications, Rf must be 
included for dc stabilization (Fig. 6.27). (The resulting compensator has the 
topology of a bridge-T filter.) The voltage gain for K -> oo is 

^ 2 Rf $/*(<:! +c 2 ) + i 
Ri s2RfRClC2 + sR(Ci + C2) +1 

(6.102) 

Vi 

•Φ 
Π7 

FIG. 6.27 A two-pole compensator with additional R{ for finite dc gain, forming a bridge-T 
feedback network. The addition of R{ constrains the benefits of two-pole response. 
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As # f ^oo, (6.102) approaches (6.77), as it must. This gain differs from (6.76) 
in that b = rz and does not have the extra degree of freedom that (6.76) does 
with the R{C2 term. Consequently, ζ and y are not independent but are related 
by 

y b τζωη 
< - * y = 2ζ 

Proceeding similarly to the derivation of (6.100), we get 

* ^ ( 1 - 7 ^ ) ' c 
yRr 

(6.103) 

(6.104) 

C2 is chosen to satisfy the constraint of (6.104) that R > 0. This choice depends 
on Rf and interacts with it. The pole locus of (6.76) was varied by (K + l) 
since it was in a but not b. For this compensator, variation with constant b is 
due to Rf instead. To achieve y> 1, as required for a two-pole compensator, 
the poles must be complex and have a pole angle greater than 60° (Fig. 6.28). 
Although the pole-zero separation is zero, 60° establishes the minimum Mm 

as 1.15 (or 1.25 dB) and minimum Mp as 16%. For a useful compensator with 
one octave of pole-zero separation, γ = 2. Then ζ = 0.25 (φ = 76°), Mm = 2.97 
(or 6.3 dB), and Mp = 44%. 

Because of the unavoidable underdamped response that accompanies 
adequate pole-zero separation, the bridge-T two-pole compensator is more 
limited in its application. Consequently, two-pole compensation is best suited 
to inner stages of feedback amplifiers instead of being applied as the sole 
feedback of an amplifier. 

Overall, two-pole compensation is not used to increase amplifier stability 
but to increase mid-frequency performance. It tends to decrease stability and 
must be applied carefully, making sure that no poles exist below the two-pole 
break frequency. Otherwise, a three-pole roll-off occurs that, with any sig
nificant loop gain, can result in instability. 

Rf increasing 

FIG. 6.28 Locus of poles with R{ of Fig. 6.27. At least a 60° pole angle is required to place the 
frequency of the poles below the zero. 
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6.10 Output Load Isolation 

In some feedback amplifier applications, the load impedance is highly reactive, 
and the amplifier has a significant output resistance R0. This combination can 
add a load-dependent output pole to the loop. A method for isolating capacitive 
loads is shown in Fig. 6.29, where CL is the load, and R0 is the amplifier 
open-loop output resistance. 

(a) 

(c) 

FIG. 6.29 Stabilization of amplifier driving a reactive load by isolation of high frequency feedback 
from load with R, for (a) inverting and (b) noninverting op-amps. The passive output network 
has the topology of a bridge (c). 



278 / 6. Dynamic Response Compensation 

This compensation scheme has two feedback paths, an accurate low-
frequency path and a load-isolated high-frequency path. The feedback com
pensation capacitor Cf is isolated from the load by output decoupling resistor 
R. The low-frequency feedback through Rr is taken at the output to eliminate 
dc error due to R0 and R. 

With no load isolation or compensation, 

R = Q=0 

The load introduces a pole in the loop at -l/(Rr || R0)CL. If Cf is then added 
to compensate for this pole, the loop gain becomes 

U r || ( - Ä m ) / U f + Ri) [s(Rr || Äo)(Cf+ CL) + l][s(Äf || RJQ+ 1] 

(6.105) 

where Rm = R0/(-K). When CL = 0 and R^ » R0, the poles are well separated. 
As CL increases, pole separation decreases as the higher pole moves down in 
frequency, reducing stability. Cf introduces a feedback zero and pole as a 
phase-lead network (Fig. 6.30). Its zero can be placed to cancel the amplifier 
output pole by setting 

Q = ^CL (6.106) 
Kf 

From Fig. 6.30, as Cf increases, all poles and zeros shift toward the origin. 
For CL » Cr, the load pole is stationary, and the pole and zero in H move 
together and away from the load pole. 

When R is added and the topology is redrawn (Fig. 6.29c), the output 
network forms a bridge. The exact solution for this circuit, a nontrivial exercise, 
is found by applying KCL at the nodes of voltages: V_, V,, Vh9 and V0. This 

G H H 

-1 -1 -1 
(/?fll/?o)(CL+Cf) (Ri\\Rf)Cf

 RîCf 

L JCÛ 

R = 0 
Cf increasing 

-1 σ 

(*fll(-*m))Cf 

FIG. 6.30 Movement of critical frequencies with increasing Cf and no R, all toward the origin. 
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FIG. 6.31 Flow graph of Fig. 6.29a. Paths c/g and b/d contribute little and can be ignored. 

results in the flow graph of Fig. 6.31 for the inverting amplifier, where 

1 
a =-(ÄS || Äf H 1/sCf) Rr 

'-Ï g = 
1 

( Ä 0 | | l / s C f || Ä) 

c = sQ, 

h=T; 

d = 
1 

R> 

( Z L | | Ä f | | Ä ) 

(6.107) 

The amplifier gain is -K and VX = -KV_. Some simplifying assumptions can 
be made that reduce the complexity of the flow graph (such as removing b/d, 
c/g, and/or f/g), but the remaining circuit analysis is still unwieldy. We need 
a more functionally oriented approach. 

The low- and high-frequency (If and hf) feedback paths have been approxi
mated in Figs. 6.32a, c, along with their Bode plots. The If path in (a) has 
transmittance 

If Uf+Äi/U(Äo+Ä)C L +l / \s (Äf || Ri)Cr+l)9 

1 
R0+R« Rr+Ri (6.108) K o « -

sCf 

where the simplifying assumptions are that Cf and Rf+ R, do not load the 
smaller output resistances R0 and R. The hf path is 

= / sRCL+l \ / sjRrWRÒCr \ 
r 15(^+^)^+1/^(^11^)^+1/' 

R0,R« 
sCf sCL 

« Rf (6.109) 

The hf-path approximations are similar to those of the If path. At high 
frequencies, (6.109) approaches 

R 

Ro + R 
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(a) 

(R0+R)CL (RfWR.jCf 

(b) 

log A 

(c) 

7Ί 
I I 

1 
1 

(R0+R)CL RCL {R{\\Rì)Cf 

(d) 

logu) 

FIG. 6.32 Low-frequency (a) and high-frequency (c) paths of Fig. 6.29a. Bode plot for (a) is 
(b), and for (c) is (d). 

The composite feedback transmittance is the sum of the two paths, or 

Vx U r + A i / W A o + A Î C L + l K s i A f l l A O C f + l ] 

Without R, we have one less LHP zero, as in (6.105). The feedback path is 
an all-pass network when the coefficients of the pole and zero terms are 
equated. This results in 

and the load capacitance pole is removed from the loop gain. The closed-loop 
response, however, is still affected by CL. The constraints of (6.108) and (6.109) 
require that we check l/R0Cr after applying (6.111), to make sure that it is 
well above fT. 

Example 6.11 Load Capacitance Compensation 

A fast op-amp with K = 105 and poles at 100 Hz and 4 MHz is used in 
the inverting configuration to drive a 10 nF load with a voltage gain of 
- 3 (see Fig. 6.29a). jRf=30kO and R^lOkÜ. The open-loop output 
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resistance is 10 Ω. The feedback capacitor Cf and decoupling resistor R 
are calculated from (6.111): 

R = 3.3Ü and Cf=5.9pF 
For the uncompensated amplifier, the step response shows obvious 

ringing (Fig. E6.11a) and peaking in the frequency response and group 
delay plots (Fig. E6.11b). 

I 

as 

I 
3 

2.0 ps 

20.0 
0.0 

-40.0 

_κηη 

| ■ » ■ ■ _J^V r- — | 

1 1 1 

\ 
\ 

_ _ ^ 

10 Hz 100 Hz 1.0 kHz 10 kHz 100 kHz 1.0 MHz 10 MHz 100 MHz 
Frequency 

(b) 

FIG. E6.11 Load-compensated amplifier. (Figure continues.) 
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19 
3 I'll 

0.0 

-50.0 

- imn 

\ ] 
1 1 1 1 1 1 J 

10 Hz 100 Hz 1.0 kHz 10 kHz 100 kHz 1.0 MHz 10 MHz 100 MHz 

Frequency 

(d) 

FIG. E6.11 (continued) 

Compensation is now applied, and the response improves. No ringing 
is evident in the step response (Fig. E6.1 lc) with no peaking in the group 
delay or frequency response (Fig. E6.11d). The SPICE listing (Fig. 
E6.11e) of the compensated amplifier shows how the op-amp is modeled, 
using RC integrators and buffers to create the poles. 
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Î77 

CAzL· 0.159/iF CB : = 39.8 pF 

10 Ω 3.3 Ω 

m 

10 nF 

/77 
(e) 

E6.11 Load-compensated amplifier 
.OPT NOMOD OPTS NOPAGE 
.AC DEC 30 10 100MEG 
.TRAN 2n 2u 
VI 10 0 AC IV PULSE (0 IV) 
RI 10 15 10k 
; amplifier with poles at 100Hz & 4MHz 

-1E5 EA 
RA 
CA 
EB 

50 
50 
60 
70 

RB 70 
CB 80 
EC 
RO 
R 
CL 
CF 
RF 

30 
30 
40 
20 
40 
20 

0 
60 
0 
0 
80 
0 
0 
40 
20 
0 
15 
15 

.PROBE 

.END 

15 0 
10k 
D.159uF 
60 0 1 
Ik 
39.8pF 
30 0 1 
10 
3.3 
lOnF 
5.9pF 
30k 

FIG. E6.11 (continued) 

Capacitive loads can also be isolated by placing a shunt RL in series with 
the amplifier output. At dc, the transmittance to the load is unity. At high-
frequencies, L appears open, leaving R as isolation. For excessive inductive 
loading, the load is often characterized by a series RL. If it is fixed, a series 
RC in parallel with it can form a constant-impedance network. 
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6.11 Complex Pole Compensation 

Previous compensation techniques involved real poles and zeros. Open-loop 
complex poles appear as resonances that can sometimes be damped by identify
ing the circuit elements involved in the undesired resonant mode. This iden
tification is not always successful, especially when the circuit has many possible 
parasitic reactances. 

From root-locus criteria, pole angle can be reduced by the addition of a 
real pole at a lower frequency (Fig. 6.33a). As the pole increases in frequency 
due to dc loop gain X, the complex pole radius (ωη) decreases, but so does 
the pole angle φ. This decrease in φ is slight in a narrow range of K, making 
this a marginally useful technique. 

A real zero, placed at a higher real frequency than that of the complex 
poles, draws them out to a larger pole radius and lower pole angle (Fig. 6.33b) 
with increasing gain. 

Complex poles can be compensated directly by complex pole-zero cancel
lation. Complex zeros are realized by a series RLC network at the output of 
a transconductance amplifier. Typically, the network is placed in parallel with 

\ ^ 

^ \ 

(a) 

jm 

(b) 

FIG. 6.33 Stabilization of complex pole pair with (a) another pole and (b) a zero. The pole 
provides only a marginal decrease in pole angle, whereas the zero both decreases pole angle and 
increases pole radius. 
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G^(X) RL 

ΓΠ 

(a) 

Jto 

(b) 

FIG. 6.34 Complex pole-zero cancellation using an RLC circuit (a); the compensator introduces 
a pair of complex zeros for cancellation and a complex pole pair at a reduced pole angle (b). 

a transistor load resistor (Fig. 6.34a). The transfer function of this circuit is 

I 
= Z0 = RL 

s2LC + sRC + \ 
s2LC + s(fl + flL)C + l 

(6.112) 

The pole-zero placement is shown in Fig. 6.34b. In addition to the desired 
zeros, there is another pair of poles with a larger linear coefficient (due to 
RL). The situation is similar to phase-lead compensation; the addition of zeros 
by passive linear circuit networks is that the added poles are at a decreased 
pole angle from the poles cancelled by the zeros with no loss of pole radius. 

Empirical compensation of hidden complex pole-pairs begins by observing 
the ring frequency/, (which is the damped frequency fd) and the time constant 
of its decay, rr, from a step response. The value of rr can be calculated from 
the peak overshoot Mp (see Section 5.8). The relationship between r r , / r , and 
Mp is 

1 
TV 

1 
2α 4 / ·1η(1 /Μ ρ ) 

(6.113) 

Compensator element values for an MFED response are calculated by using 
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these empirical parameters: 

2R 
R= , L = (6.114a) 

Vl2(7TTr/r)2 + 3 - 2 

2r r 

Κ[4(τττΓ/Γ)2+1] 
C = π Γ „ χ

 2 , ^Ί (6.114b) 

L =— E (6.114c) 

It is usually easier to measure the peak overshoot Mp than to estimate τΓ. 
By using the formula for Mp from (5.131), we find the compensator values 
for a pole angle of c o s 1 ζ to be 

R = , v / p/ (6.115a) 
£V772 + [ ln ( l /M p ) ] 2 - ln ( l /M p ) 

n ^7T2 + [ ln ( l /M p ) ] 2 - ln ( l /M p ) 
C = j — — (6.115b) 

7Γ K L / r 

T (7T2 + [ l n ( l / M p ) ] 2 ) ^ L 
^ = — ; / , , (6.115c) 

4 τ Γ 2 Λ · ^ 7 Γ 2 + [ 1 η ( 1 / Μ ρ ) ] 2 - 1 η ( 1 / Μ ρ ) 

Example 6.12 Compensation by Complex 
Pole-Zero Cancellation 

An amplifier system has an excessively underdamped response. A MFA 
response is desired. A transadmittance stage in the amplifier is free to 
be compensated and has a load resistance of 1 kü. The response to a 
step shows a ring frequency of 30 MHz and a peak overshoot of Mp = 0.25. 

By substituting these values into (6.115) and noting that an MFA 
response has a pole angle of 45° and ζ = V2/2, we obtain the compensator 
elements: 

jR = 1.33'kfl, C = 3.52pF, L - 4 . 1 0 ^ H 

6.12 Compensation by the Direct 
(Truxal's) Method 

The direct approach to calculation of G and H for a given closed-loop response 
M is to begin by specifying what M should be. Neglecting ax and a0 , if any, 
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since they are cascaded with the feedback loop, we describe M as 

G 
M= 

1 + GH 

Solving for the loop gain, we get 

GH= = — (6.116) 
Ì-HM DHDM-NHNM 

where N and D are numerators and denominators of H and M. For a given 
G, we can solve directly for H: 

II_G-M_ 1 1 _NGDM-NMDG 

GM M G NGNM 

Not only M must be chosen to satisfy the system requirements, but also the 
resulting H must be physically realizable. For a high-order system, M must 
be high-order for a realizable H. The familiar criteria of amplifier performance 
are consequently more difficult to express in M. Therefore, this method is of 
limited use. If the amount of calculation were the limitation, a computer 
solution would be feasible, but creative design judgment is required in 
selecting M. 

6.13 Power Supply Bypassing 

The elimination or compensation of parasitic capacitance and inductance is 
not a dynamic response compensation method in itself, but it is related. Before 
a feedback amplifier loop can be compensated, the response of the individual 
stages of amplification must be acceptable. Oscillating stages must first be 
stabilized. Parasitic elements arise from both circuit components and layout. 
(See Sections 9.3 and 9.4 for details.) 

Figure 6.14 shows some of the more common parasitic elements for op-amp 
circuits. The connections of the amplifier to the power supplies involves 
conductors (wire or circuit-board traces) with a corresponding inductance. 
Circuit-board trace inductance is difficult to estimate accurately but is roughly 
10nH/cm for a rectangular trace that is much longer than its cross-sectional 
dimensions [1]. Capacitive bypassing of trace inductance shortens the loop 
length and decreases the characteristic impedance Zn to a low value. Oscillation 
can commonly occur due to the series LC resonance formed by the stray 
power-supply inductance and stray capacitance from the local supply node to 
an amplifier input. As L increases, Zn becomes sizeable with a small C 
Consequently, the series resistance required to damp the resonance also must 
be large. If we add bypassing, L is decreased and C greatly increased. Both 
effects reduce Zn so that a smaller input-node resistance damps the series 
resonance. 
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i(T) £*■ t 
l\JJ > 50Ω i 

m 

6 cm -
5nH 

10 nF 
ί 

FIG. E6.13 

Example 6.13 Damping Oscillation Through Bypassing 

The circuit of Fig. E6.13 has a source resistance of 50 O shunting the 
relatively high-resistance base input. Cbc = 3pF. The collector supply 
connection is about 6 cm long. 

The inductance is about 60 nH and characteristic impedance is 

*»=Ϋ 
60 nH 
3pF 

= 141ü 

Rs is significantly less and oscillation is likely. If a 10 nF bypass capacitor 
is connected to the collector, a capacitor with 5 nH of parasitic series 
inductance, then 

Z n = J Ä ^ O . T Ü 
VlOnF 

and the series LC resonance is well damped by JRS. 

6.14 Closure 

The dynamic response compensation techniques presented here involve design 
judgment and do not guarantee optimal response. Other techniques will appear 
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later, especially for bandwidth extension. The techniques here provide a 
foundation in compensator circuits and how to design with them. 

Reference 

[1] A. E. Ruehli, "Inductance Calculations in a Complex Integrated Circuit Environ
ment," IBM J. Res. Develop., Sept. 1972. 470ff. 



C H A P T E R 

Frequency-Related 
Impedance Transformations 

7.1 Active Device Behavior above 
Bandwidth 

Active devices such as transistors or op-amps have bandwidth limitations that 
can result in instability or undesirable dynamic response in feedback circuits. 
As gain falls off with frequency, feedback amplifier port resistances change 
with gain and effectively become reactive. These bandwidth-related reactances 
can resonate with other circuit elements. 

Many linear circuits might not appear to involve "high frequencies" or 
"wide bandwidths," but these concepts are relative to the bandwidth limitations 
of the active devices. The frequency range over which bandwidth-limited 
instability occurs lies between the bandwidth /b w and the unity-gain frequency 
fT. The two frequency ranges of interest are 

• low-frequency (If) region, 0 < / < / b w (below bandwidth), 
• high-frequency (hf) region, / b w < / < / T . 

In this chapter, we extend the reduction theorem to the complex-frequency 
domain. We first find ß(s) for BJTs and apply it using the ß transform. This 
leads to some interesting impedance gyrations that can create hf resonances. 
To distinguish between the low-frequency (quasistatic) ß of Chapters 2-4 and 
a frequency-dependent ß, we denote 

low-frequency ß = ß0 

For BJTs, current-gain bandwidth is denoted by / ß and unity-current-gain 
frequency b y / T . They are related by 

fr = ßofß (7.1) 

290 

7 
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We take some liberty with the symbol fT and let it more generally denote the 
unity-gain frequency (or gain-bandwidth product) of any active device. The 
interpretation of/T depends on the kind of device: For BJTs, it is the frequency 
at which ß is unity; for voltage-gain amplifiers, it is a unity-voltage-gain 
frequency. 

For a BJT with/T = 300 MHz and ßQ = 100, high-frequency behavior occurs 
between fß =fT/ß0 and / T , or in the range from 3 MHz to 300 MHz. For power 
BJTs,/ß can be as low as several hundred kilohertz. The open-loop bandwidth 
of typical op-amps is less than 100 Hz, and unity-gain frequency is 1 MHz. 
This range of rather low frequencies is the op-amp hf region. 

7.2 Derivation of Bipolar-Junction 
Transistor High-Frequency Model 

We now return to the hybrid-π BJT model of Fig. 2.2b shown without Ομ in 
Fig. 7.1a and with "ohmic" base and emitter resistances in (b). In actual 
transistors, CM is distributed across r'hi but here it is shown connected entirely 
to the internal base node b'. This model is valid for both the If and hf regions. 
We develop the hf model equations using Fig. 7.1a. 

The idea of the hf model is that as the BJT input-signal frequency increases 
above 1/r^C^, a decreasing proportion of Ih flows through r^ as the reactance 
of CL decreases. Since 

Z=r„ 
1 

sr„C„ + l 
(7.2) 

decreases with frequency, Vbe also decreases, resulting in decreased collector 
current. Consequently, ß also decreases with frequency. The break frequency 

bo-

Äe=k φ%. 
- O c 

e 

(a) 

FIG. 7.1 Simplified hybrid-7r BJT model (a) used to derive the hf model and (b) a more complete 
hybrid-7T model. 
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of ß is ωβ = Ι/τβ, where 

= r„C„ 

The frequency-dependent form of β is IJ Ib or 

ß(s) = ß0[ = — 

and 

j8(i) + l = (j80+l) 
$α0τ τ+1 

(7.3) 

(7.4) 

where 

7/3 = ßoTT (7.5) 

The Bode plot of ß(s) +1 is shown in Fig. 7.2. In the If region, the transistor 
model does not require reactive elements (as we assumed in Chapters 2-4). 
In the hf region, ß rolls off with frequency, and above fT the device has 
essentially lost its gain (though power gain under the right circuit conditions 
takes place up to the unity-power-gain frequency /MAX)· Other significant 
factors not accounted for in this model (such as base transit time) cause its 
error to increase as fT is approached. The model predicts less phase shift in 
ß than actually occurs due to other transistor delays, yet it is accurate enough 
to be quite useful. 

A simplified model, valid only for the hf region, can be derived from (7.3) 
by letting ß o ^ 0 0 · Then 

lim ß(s) = ßM = — (7.6) 

The expressions for β from (7.3) and (7.6) can now be used in circuit analysis. 

ΙΙ/Κ/«)+ιΙΓ 

1 

^ 

~~fs 
tr~ 
V 

1 

h 
► 

FIG. 7.2 Bode plot of ||/3(s)+l||. 
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7.3 Impedance Transformations in the 
High-Frequency Region 

The ß transform, as applied to nonreactive BJT circuits in Chapter 2, can be 
generalized using ß(s) in reactive circuits. The impedance at the base node 
due to impedance ZE at the emitter node is 

Zb = [ß(s) + l]ZE 

and, from the emitter, the impedance in the base circuit is 

z = ß(s) + l 

(7.7) 

(7.8) 

The corresponding circuits are shown in Fig. 7.3, from which we can derive 
Zb and verify (7.7). Applying KCL to the emitter node, we obtain 

y y -y y. 
o ■ o y i y be 

ZE ZTT rm 

( Ke = Vi - V0.) Solving for Zb gives 

Ζ , ^ Ζ ^ + Ζρ 1 + 

Above fß, Ζπ becomes negligible, and 

Zb = Z F ( l + | s ) = z 
E \ sr„C„ + l} 

1 

(7.9) 

(7.10) 

(7.11) 
sr„CJZEß0+l/ZEß0 

Because fT = ß0fß from (7.1), Zb can be rewritten as a continued fraction, 

+ 
Vbe 

,Λ Zb: 

ZE 

1 0 

+ 
hze=> 

1 o— 

— i h — 

—H H — 

ζπ 

i 
ZB 

(a) (b) 

FIG. 7.3 Emitter-follower equivalent circuits for (a) Zb and (b) Ze 
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ZE 

r, _...v
 ZE 

Z B = > Ï7V 

o —̂  >— 

βθΖΕ 

FIG. 7.4 Base node equivalent circuit with emitter impedance ZE. 

which makes the topology explicit in equation form: 

1 
= zF+- 1 1 

T T = r m C 7 r (7.12) 

ZE/srT / 3 0 Z E 

The corresponding circuit topology is shown in Fig. 7.4. Here ßQZE is the If 
contribution to Zb , ZE/ srT is the hf contribution, and the series ZE is common 
to both. Below fß, ZE/srT approaches an open circuit so that Zb is consistent 
with the If model. In the hf region, ZE/srT dominates Zb; dividing ZE by s 
gyrates the impedance of ZE by -90° so that 

R-+C 
C-*-R 
L-*R 

For the three cases of ZE (R, L, and C), the transformed impedances are 
shown in Fig. 7.5. Since this analysis is linear, combinations of the three 
elements in ZE can be individually transformed to produce the transformed ZE. 

RE 

o—vvV 
RE 

(a) 

=F < J M E C E ^ = 

-a0CE 

(b) 

LE 

^ λ^Ε 

(c) 

FIG. 7.5 Zb for ZE equal to (a) RE, (b) CE, and (c) LE. 
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- ττ J 
~*E Ί 
i m 1 

i l 
CE 

FIG. E7.1 

Example 7.1 Shunt RC- Loaded CC Amplifier 

A CC has a shunt RC load for which JRE = 4 7 0 O and C E = lOpF. The 
BJT has a ß0 = 150 and/ T = 300 MHz at iE = 10 mA (typical of a 2N3904). 
What is Zb? 

The combination of Figs. 7.5a, b is shown in Fig. E7.1. To find the 
element values, we calculate r T = l/27r/T = 531 ps and a0 = 0.993 = 1. 
Then rr/Rh= 1.13 pF and - r T / C E =-53 .1 Ω. Furthermore, /30JRE = 
70.5 kO and - a o C E = - 1 0 p F . A hf equivalent circuit omits /30/£E. 
Whether Z^ is negligible depends on the other elements in the circuit. 
If base reactance creates a resonance with the emitter impedance near 
fß, then Zw is probably significant. For this circuit, re = 2.6fì and Cn = 
rT/re = 204 pF. 

A similar circuit derivation for Ze, based on Fig. 7.3b, results in 

Z ^ + ZB 
e 1 + ^ / ( 5 ^ ^ + 1) 

Again approximating Z^ = 0, we obtain the continued fraction 

1 
ze; 1 

-+-
1 

(7.13) 

(7.14) 

ZB STTZB + ZB/ßQ 

The toplogy is shown in Fig. 7.6 and is the dual of Fig. 7.4. Below fß9 STTZB 

approaches a short circuit and becomes the If model. The hf contribution of 
srTZB gyrates Ze by +90° so that 

R^L 

L^-R 

C^R 

The three cases of ZB are worked out in Fig. 7.7. 
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FIG. 7.6 Emitter node equivalent circuit with base impedance ZB 

i-B 

, τ τ Λ Β 

ΛΒ< cR=t: 
i l 
cB -aaL o^B" 

(a) (b) (c) 

FIG. 7.7 Ze for ZB equal to (a) KB, (b) CB, and (c) i,B. 

LB 
T T 

These expressions for Zb and Ze are valid from de t o / T . A simpler model, 
applicable only in the hf region, is derived by using (7.6). The topologies of 
Figs. 7.4 and 7.6 reduce to those shown in Figs. 7.8 and 7.9. To derive these 
hf models, we assume 

/8„-»oo, Z„ = 0 (7.15) 
Then 

Zb(hf) = Z E ( l + - ^ - ) 

z B Ze(hf) = 
1 + 1/STT 

(7.16) 

(7.17) 

o 

o 

ZE 

ZE 
5TT 

RE 

RE 

=£cE 
CE 

^ = - C E 

(a) (b) (c) (d) 

FIG. 7.8 Zb(hf) for ZE equal to (a) ZE, (b) RE, (c) CE, and (d) LE. 

μΕ 

LE 
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zB srTZB 

(a) 

"KB ^ τ τ / ? Β 

(b) (c) 

- L B . LB. 

(d) 

FIG. 7.9 Ze(hf) for ZB equal to (a) ZB, (b) KB, (c) CB, and (d) LB. 

The hf models are based on removal of the break frequency of β +1 (in Fig. 
7.2) a t /ß so that ß(s) rolls off from infinity at the origin. The expression for 
ß +1 becomes 

1 S T T + 1 
jß h f + l= — + 1 = — E (7.18) 

This expression has a pole at the origin which breaks a t / T . 

7.4 Reactance Chart Representation of 
ß-Gyrated Circuits 

The two representations of hf circuits used thus far, equations and circuit 
diagrams, are supplemented by a graphic representation using the reactance 
chart. The reactance plots of some of the impedances of Figs. 7.8 and 7.9 are 
shown in Figs. 7.10 and 7.11, respectively. The break frequencies of these plots 

iogl|zb| 

* R L 
I 

iogl|zb|| 

LE 
ττ 

/ τ lQg/ 
(a) 

/ τ 1 οδ/ 
(b) 

FIG. 7.10 Reactance plots of Zb for ZE equal to (a) RE and (b) LE. 
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logllZellt 

TTKR/T 

(a) 

log/ 

logllZell 

τ τ 

CB 

l 

" Ί ^ 
/ τ log/ 

(b) 

FIG. 7.11 Reactance plots of Ze for ZB equal to (a) RB and (b) CB 

are / T , and the nonzero slopes are ±1 in the hf region. Above fT the impedance 
gyration stops since ß(s) + l stops rolling off with frequency. 

Two of the six cases shown in Figs. 7.8 and 7.9 involve negative resistances. 
Since the reactance chart has a log-log scale, and the logarithm of negative 
numbers is undefined, it might appear that reactance-chart representation of 
ß-gyrated impedances has limited use. Fortunately, this is not so. The equation 
for Zb when ZE = l/sCE can be reformulated as 

Z b ( C E ) = ^ -
s rECE 

(7.19) 

For the other case, of Ze(LB), 

ZC(LB) = 
s2rTLB 

5 T T + 1 
(7.20) 

These equations can be plotted on a reactance chart and are shown in Fig. 
7.12. Below/T, the plots are of rTCE with a slope of - 2 and TTLB with a slope 
of +2. Above / T , the plots are of CE and LB. 

logic i ! ^ T c E 
logllZe 

log/ 
TT^BI 

l o g / 

(a) (b) 

FIG. 7.12 Reactance plots of (a) Zh(CE) and (b) Ze(LB). 
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logllzjl 

(a) 

log/ 

(b) 

FIG. 7.13 Reactance plots of (a) series and (b) parallel LC circuits. 

7.5 Reactance Chart Stability Criteria 
for Resonances 

The two common resonant circuits are the series and parallel LC circuits 
shown in Fig. 7.13. We define the intersection of the L and C plots as the 
resonant point, at which 

1 
/ n = 2 77 V L C 

and the characteristic impedance of the resonance is 

Zn - V I 

(7.21) 

(7.22) 

Zn is the reactance of each resonating element at the resonant point. 
For all of these reactance plots, asymptotic approximations are used. Exact 

plots require that a vertical asymptote at fn be approached on each side by a 
curve tending to ±oo. For a series resonance, Zs = 0, which is at —oo on the 
reactance chart. For a parallel resonance, Zp-»oo, which is at +oo on the 
reactance chart. 

A characteristic feature of resonance is a ±2 change of slope on the chart: 
+2 for a parallel and - 2 for a series resonance. In the case of LC circuits, 
this is a change from ±1 to Tl . For the cases in Fig. 7.12, however, a change 
from ±2 to zero or zero to ±2 also cause resonances and the potential for 
oscillation if not sufficiently damped. 
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The amount of damping of an RLC resonance is characterized by the 
damping ratio ζ. For parallel resonances, this is 

Z 
parallel resonance ζ = —r (7.23) 

2/v 
and for series resonances, it is 

series resonance ζ = (7.24) 

For critical damping, ζ = 1. Then Rp = ZJ2 and Rs = 2Zn. In both cases, critical 
damping is achieved by a resistance equal to the combined reactances of the 
L and C at resonance. 

An estimate can therefore be made on the reactance plot as to how well 
a resonance is damped. For a parallel resonance, the parallel resistance must 
be below the LC resonant point to be well damped, for series resonance, it 
must be above r. 

7.6 Emitter-Follower Reactance Plot 
Stability Analysis 

CC stages are commonly used to drive capacitive loads such as transmission 
lines. The high current gain of the CC configuration allows it to supply the 
high transient currents required to quickly charge the capacitive load. When 
capacitive loading is combined with base resistance, a hf resonance can occur. 

Figure 7.14 shows a CC amplifier with its hf and general equivalent circuits 
of the emitter node. The resulting reactance plot for the hf circuit is shown in 
Fig. 7.15. Ordinarily, we would combine the parallel Rs and Cs before plotting. 
Here, sections a and b of the hf circuit are plotted separately because the 
elements within them are interdependent. Section a of ZE is resistive up to fT 

and is capacitive with value CB above fT. Section b is inductive up to fT, 
above which it is resistive with value RB. On the reactance chart, RB and CB 

have been chosen so that RBCB = τβ ; they intersect at fß. CE is much greater 
than CB, and it intersects the plot for section b at resonant point r. In Fig. 
7.15, this is a parallel resonance; a resistance less than the impedance at r, 
Zn , is required to damp it. The plot of the impedance from section a is resistive 
and less than Zn at fn ; it damps the resonance. Since this resistance decreases 
as CB increases, then increasing base capacitance tends to stabilize a capaci-
tively loaded emitter-follower. 

From the reactance plot of Fig. 7.15, we can see what effect changes in 
the values of circuit elements have. For section a, increasing CB causes the 
resistive segment of the a plot to move downward and thus provides more 
damping at r. At the same time, the diagonal line representing CB moves to 
the left. The break frequency does not move but remains constant at fT, so 
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(a) 

Z e W) 

(b) 

(c) 

FIG. 7.14 Common-collector (a), hf model (b), and general emitter node equivalent circuit (c) 
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FIG. 7.15 Reactance plot of Fig. 7.14 with RBCB= rT. 
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curve a moves downward as CB increases. Similarly, an increase in RB increases 
the inductance below fT in curve b while break frequency fT remains fixed. 
That is, JRBTT always intersects RB a t / T . Increasing RB moves curve b upward. 

From reactance chart analysis, we can observe that a decrease in CE or 
an increase in RB or CB tends to stabilize the circuit because Zn increases 
relative to the damping resistance. CE has a range in which instability can 
occur. As CE increases, its plot moves to the left, and r moves with it and 
downward until it intersects curve a zXfß. Then l/sCE = rT/CB a t /3 , and r is 
eliminated because impedance gyration does not occur below fß. This is also 
true above fT. If CE decreases until it crosses RB a t / T , r vanishes. In addition, 
transistor gain above fT may be insufficient to sustain oscillation anyway. Since 
the reactance plots are asymptotic approximations, hf effects extend somewhat 
above and below the hf region. 

This analysis assumes that CB« CE and rT/CB« RB. More generally, as 
CB increases, two effects occur: its /3-gyrated resistance, rT/CB, decreases 
(increasing damping), and CB also adds to CE, decreasing Zn. Adequate 
damping can occur only when CE dominates. If CE becomes negligible relative 
to CB, then the resonance cannot be damped better than £ = 0.5. (See Section 
7.7.) For maximum circuit speed, a minimum CB is desirable to minimize the 
base input time constant. 

7.7. Emitter-Fol lower High-Frequency 
Equivalent Circuit Resonance 
Analysis 

An explanation of the CC stage based on the hf equivalent circuit topology 
(Fig. 7.14b) is that RB is gyrated at the emitter to become inductive with value 
rTRB. CE forms a parallel resonant circuit with rTRB. As RB increases or CE 

decreases, Zn increases, and the resonance can be damped by higher values 
of shunt resistance. Although RB itself provides damping, it is not small enough 
to be adequate. From (7.23), ignoring CB, 

ÌVK 7 Γ (7-25) 

In the hf region, RBCE> τ τ so that ζ<\\ the resonance is underdamped. ζ 
could be increased by decreasing RB or CE. (Also, a slower transistor, with 
increased rT, increases ζ.) As RBCE approaches τβ9 however, Ζπ becomes 
significant and adds further damping. Also, as RBCE approaches rT, Zn 

approaches RB and is damped by it. 
The addition of CB damps the resonance because CB is gyrated at the 

emitter to a resistance of TT/CB. This resistance can be set as low as needed 
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by increasing CB. The damping ratio is then 

Zn , V T T R B / ( C B + C ^ ) TT+RBCB 
ζ = ττ^ (7.26) 

2K 2 ( T T / C B ) | | K B 2 V T T K B ( C B + C E ) 

An acceptable value of £ can now be obtained by adjusting CB. The value of 
CB can be found directly for a given £ by solving (7.26) for CB : 

G -(£)[ (2£2-1) + 2£ λ /£ 2 + V^->] y1 i \ , ^ / *2 , ^ Ε j (7.27) 

(Only one root of CB is possible for CB> 0.) This simplifies, for RBCB » rT, to 

(7.28) ^ ( - v ^ f ) · R»C- ^ τ 

Furthermore, if CE » CB, then 

C»^2£\r^> RBCB»rT, CE»CB (7.29) 

An alternative compensation technique is to adjust RB for a desired ζ. 
Increasing RB increases Zn so that rT/ CB more effectively damps the resonance. 
When RB= rß/CB, no value of CE can cause a resonance with TTRB. 

Example 7.2 CC Stabilization Using Shunt Base RL 

The CC of Fig. E7.2, using a 2N3904 BJT, is to be stabilized with CB, 
if necessary, so that £ > V2/2 for an MFA response. 

The transistor parameters are τ τ = 531 ps and a0 s 1. The hf resonance 
is at 

/„= 1 
2W(531ps)( lkf t ) (10pF) 

= 69.1 MHz 

+Vcc 

T cB 

= 150 
: 300 MHz 

10 mA 
r Φ rpF 

~VEE 

FIG. E7.2 
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and 

Zn - V(531 ps)(l kfì)/(10 pF) - 230 il 

The resonant frequency lies within the hf range of 2 MHz to 300 MHz. 
Without CB, from (7.26), ζ = 0.115 (Mp = 0.7), a very underdamped 
resonance. The SPICE simulation uses a BJT model with 

.MODEL BJT1 NPN (BF= 150 TF = 531 ps) 

and results in Mp = 0.65 and ζ = 0.136. This greater damping is partly 
attributable to RB/ β0 and Zn. 

To achieve the desired ζ, substitute into (7.27) and solve for CB to 
get 3.2 pF. Then RBCB = 32 ns » rT. If the approximate formulas for CB 

are used, (7.28) yields 2.9 pF, and (7.29) yields 3.3 pF. The conditions 
for (7.29) are met fairly well, and the approximations are valid for the 
accuracy required for parts selection. 

Example 7.3 CC Amplifier Series R Compensation 

To eliminate hf resonance from the CC of Example 7.2, RB could be 
increased instead of increasing CB. Let CB = CM = 5 pF, and the desired 
damping is critical (ζ= 1). When (7.28) is solved for RB, it is 

„..«wo (El) 
C B 

For the example, RB must be greater than 1.27 kO; an additional 270 Ω 
is needed. 

This example illustrates why the addition of a small (10 Ω to 1 kil) 
series base resistor sometimes damps an oscillating BJT. The addition 
of RB might, however, damp a series LC resonance with the collector 
circuit parasitic inductance instead. With hf resonance analysis, one 
possible cause of oscillation can be assessed from circuit element 
parameters. 

7.8 Emitter-Follower High-Frequency 
Compensation 

The hf BJT model is adequate for analyzing hf resonances but not for determin
ing optimal compensation schemes since they involve both If and hf regions. 
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The approximation of ζ in Section 7.7 ignored Ζπ, ß 0 / C B , and RB/ßQ. These 
additional elements cause further damping so that the actual ζ is greater than 
(7.26) predicts. If we use the general model instead, the emitter impedance of 
Fig. 7.14c, when derived without CE, is 

Z = - ^ ^ ^ (730) 
e ß0+l (sa0TT+l)(sRBCB+l) 

This result is obtained by substituting ZB into (7.14) or by dividing ZB by 
ß{s)+\ from (7.4). If RBCB = τβ, then the zero is cancelled, and Ze simplifies 
to 

Z e k c — = jJT\\sa0TT+l) (731) 

Under this condition, no CE can cause a resonance with a resistive ZB. 
From the equivalent circuit of Fig. 7.14c, the series RL and RC branches 

have the form of Example 6.1. This is a constant-resistance network with 
resistance RB/ßQ when the elements have the relationships 

^B _ Jj_ _ /Rß T T 
ß~C~ Vß0CR j80 CB V 0OCB 

or RBCB=rß. In view of RB/ß0 || RB = RB/(ß0+ 1), 

1 [ Ä B / ( ) 8 O + 1 ) ] ( 1 / 5 C B ) 

(7.32) 

\ i ß o + i / 5CB ,RB/(iß0+l) + l/5CB 

^ Β 1 

ß0+l s(RBCB/(ß0+1)) + 1 

The pole time constant can be expressed as 

^ R C R TO 

(7.33) 

ißo+1 ißo+1 
= « 0 Τ Τ 

and (7.33) is equivalent to (7.31). 
The condition RBCB = rß achieves a resistive base or emitter impedance 

out to nea r / T . This eliminates hf resonances but does not always result in 
maximum circuit speed (minimum risetime or maximum bandwidth). It is 
feasible for CC amplifiers when CE varies greatly or is unknown. The zero at 
fß can introduce phase-lead out to l/RBCB if hf peaking is needed. For 
maximum circuit speed, RBCB is set so that the hf resonance is damped to 
the desired extent. In this case, RBCB< τβ. The hf model equations in Section 
7.7 give easy estimates for element values when CE and τ τ are within known 
bounds. 
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Example 7.4 Power Amplifier CC Output Stage 

Figure E7.4a shows a typical amplifier bipolar CC output stage. As a 
symmetrical class AB amplifier, only the top or bottom half is active for 
most of the output voltage range (except around zero). For analysis, 
assume that only the upper transistor is conducting. Figure E7.4b shows 
the simplified equivalent circuit, with Z L = l/sCE. The emitter-node hf 
circuit is shown in Fig. E7.4c with reactance plots in (d) for negligible 
RB. RE causes a +1 slope change in the CE plot at Rl{. Here it is assumed 
that this zero is above the resonant frequency. The intersection of rTRB 

and CE is the resonant point r. 

*B 

> 

<b I*« 
Π7 

(a) (b) 

[ττ*Β 

X 
^ c F 

(c) (d) 

FIG. E7.4 
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RB is set by the preceding driver stage. No hf resonance can occur 
if it is large enough to cause fn<fß, or RBCE> β0τβ, as shown in Fig. 
E7.4d. For unconditional stability, 

or 
fn<fß =» y/RBTTCE>ß0rT 

1 
Rtì> 

(o>ß/ßo) ' CE 

Alternatively, a sufficiently small RB places the resonance outside 
the hf region. Or the series REi if large enough, causes RECE<rn and 
damps the series resonance. (Both series and parallel resonant modes 
are damped under the same conditions. Any zeros of the series resonance 
are poles of the parallel resonance.) Depending on re of the BJT, Zv 

may provide adequate series damping, 

7.9 Emitter-Follower Resonance 
Analysis from the Base Circuit 

The CC stage analyses of Sections 7.6 and 7.7 were performed at the emitter 
node. The analysis from the base node illustrates the plotting of negative 
impedances. Figure 7.16 shows the hf equivalent base-circuit impedance and 

Zyfhf) 

i l 

T T C E 

(a) 

logllzb| |t CB >TTCE 

FIG. 7.16 Zb(hf) equivalent circuit of Fig. 7.14 (a) and reactance plot (b). 
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reactance plots of RB, CB, and the section marked rTCE. The plot of this 
circuit section is the same kind as in Fig. 7.12a and has a value of rTCE in 
the hf region. Above fT, the curve becomes capacitive with the value of CE. 
At resonance point r, the slope of rTCE intersects RB with a slope change from 
- 2 to zero indicating a resonance. Unlike the emitter-node analysis, this is a 
series resonance (because the change in slope across r is positive). 

CB damps the resonance by intersecting RB at a lower frequency than/ n . 
Then Zb rolls off at this intersection along CB at a - 1 slope. When CB intersects 
rTCE, the slope changes from - 1 to - 2 , a change of - 1 . Therefore, no slope 
change greater than ±1 occurs, and the resonance at r is damped. If RB or 
CB increases, the break frequency 1/ RBCB decreases, and damping is increased. 
This result is consistent with the analysis from the emitter node. 

From Fig. 7.16a and (7.19), 

Zb(hf) -m (ÄBI ICB) 

5TT+1 
s2[TTKB(CB+CE)] + s(rT+flBCB) + l = * B - 2r π , „ , r, ή ■ ■/ _ , » ^ x ■ , ( 7 · 3 4 ) 

From this, 

ò rT+RBCB 
i = 2^ = l7^RB(CB+CE) ( 7"3 5 ) 

This is the same as (7.26), as it must be. 

7.10 Emitter-Follower Compensation 
with a Base Series RC 

The rTCE section of Fig. 7.16a can be all-pass compensated by the addition 
of a series RC branch with positive corresponding element values. The two 
branches null each other, leaving an open circuit. This leaves CE shunting RB 

and CB, a nonresonant circuit. This compensation technique is shown in 
Fig. 7.17. The compensation conditions are 

C = a0CE, R=^~ (7.36) 

The reactance chart in Fig. 7.17c shows how this works. A t / T , both the RC 
curve and the TTCE curves break. The RC curve rolls off until fT, where it 
becomes flat with value R. This curve dominates Zb below fT. At / T , the rTCE 

curve breaks to CE and dominates as the reactance of CE falls below that of 
R. The curve for C remains unbroken when C = CE. The result is that 
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o * 

Zb(/i /)=» < 

O ' 

1 · « 

T C 

> | 

, I 
i l 
C E 

T T C E 

(b) 

FIG. 7.17 Series RC base compensation for CE (a), equivalent base circuit (b), and reactance 
plot (c). 

Since compensating components have tolerances, an exact cancellation 
between the two series RC branches does not occur. The effect can be seen 
on the reactance chart, however. Below/T, C is the stabilizing influence since 
it causes Zb to roll off without a resonant change in slope. The resonance at 
r is damped when C intersects RB at a frequency below fn. The condition for 
this is 

RtìC>y/rTCERB (7.37) 
or 

«·© > T T (7.37a) 
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For unconditional damping (independent of CE), then RBC<rß. When R 
and C are set to cancel rTCE, their values depend only on τ τ and CE. This 
leaves RB free to be set to insure adequate damping under variation of τ τ 

and CE. 

7.11 Bipolar-Junction Transistor 
Amplifier with Base Inductance 

The dual of the circuit with emitter capacitance and base resistance is one 
with base inductance and emitter resistance, shown in Figs. 7.18a,b with 
reactance chart in (c). From the base, the emitter resistance gyrates -90° and 
produces capacitance r T / R E , which series resonates with LB. As shown, RE 

is not large enough to damp it. The circuit can be stabilized in the following 
ways: 

1. Decrease RE until fn<fß. For this, 

JLBTB 

V RP 

LßTB^ 0 n ^ LB 
> β0τΎ^ RE<-^- - r · —E 

n^ ~ B n ßoTT ßo 
(7.38) 

This extreme measure eleminates any hf resonance but slows the circuit more 
than necessary. 

(a) (b) 

logllzjlf I t 

RE 

L_L 
/n h 
(c) 

l o g / 

FIG. 7.18 Resonance due to base inductance: ac circuit (a), equivalent circuit with Zb (b), and 
reactance plot of Zb (c). 
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2. Decrease LB until fn > / T . Then L B /R E < rT or LB < RETT. This approach 
also eliminates hf resonance by moving the resonance outside the high end of 
the hf region. If LB is parasitic, this might not be possible. 

3. Increase LB until fn<fß. Then, from method 1, 

L R >-
R* 

Mß/ßo 
(7.39) 

4. Either increase or decrease RE until hf resonance is eliminated or 
sufficient damping occurs. 

5. Add a series L in the emitter. It is gyrated -90° at the base and provides 
series damping resistance. 

This last approach is the dual of shunt CB damping. 
In the CB stage of cascode amplifiers, base inductance combines with 

emitter capacitance (Fig. 7.19). CE is the output capacitance, mainly CM of 
the CE transistor. A t / n , LB crosses TTCE with a —3 slope change. By using 
the hf model, we can derive Z b : 

_ / * T T + 1 \ 

' WTTCJ 
sLu 

5 L B ( 5 T T + 1 ) 

S 3 T T L B C E + S T T + 1 
(7.40) 

JT~ 
■CE 

(a) 

T T C E 

(b) 

logllzjlt k t T C E 

/n / T l o g / 

(c) 

FIG. 7.19 Cascode CB stage ac circuit (a), base node equivalent circuit (b), and reactance plot 
of Zb (c). 
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This circuit can be stabilized several ways: 

1. Decrease either LB or CE until LB crosses rTCE above fT. Then , / n > / T . 
2. Increase either LB or CE until fn<fß ; then damp LBCE with a series RE. 
3. Shunt LB with C B > CE and damp LBCB with a series RB. 
4. Add a series emitter resistance RE> LB/rT; then # E + r T C E crosses LB 

above/T . 

Combinations of these techniques are also possible. Method 1 or 3 achieves 
maximum speed. 

7.12 The Effect of r'b on Stability 

We now return to the BJT model of Fig. 7.1b and examine the effect of r'h on 
stability. A more accurate model would distribute CM across r'h. This distributed-
parameter RC is approximately modeled with segmented lumped-parameter 
CM and r'h. The base resistance can be divided into several resistances with 
portions of ϋμ connected between them. But the two extreme cases are to 
connect CM to either the internal node (as shown) or to the (external) base 
terminal node. Actual transistor performance lies within a range bounded by 
the behavior of these extremes. 

For circuits in which RB« r'h, then r'h appears as r'brT from the emitter and 
can resonate with external emitter capacitance CE. Since r'h is inaccessible, a 
stabilizing C cannot be shunted across the b' node. If CM is internal, it helps 
damp r'hrT, whereas an external CM does not. If the internal CM is insufficient, 
an additional base resistance RB will increase the total base resistance so that 

(ri+RJC^Tp 

If adding RB is infeasible and if r'e is not enough damping, then RE can be 
added in series with the emitter. This could, however, slow the response. A 
shunt RC, having a time constant of rT, added in series with the emitter forms 
an all-pass network with the base impedance and preserves speed (Fig. 7.20). 

rTrb 
"-wv*-1 

(a) 

X Jrt 
(b) 

FIG. 7.20 Parallel RC compensation network in series with emitter: (a) equivalent circuit and 
(b) resulting impedance. 
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7.13 Field-Effect Transistor 
High-Frequency Analysis 

As stated in the introduction, the BJT hf model can be generalized to apply 
to other kinds of active devices. If the BJT to FET terminal mapping, (4.6), 
is used, then the major difference between the BJT and FET models is Ζπ. 
The FET model is configured as a source-follower in Fig. 7.21. The expression 
for Zg is derived from the corresponding BJT expression for Zb. By applying 
rm = rjß09 we obtain 

Ζ^Ζπ + ΖΛ 1+-
1 

s(rJß0)C„ + l/ß0_ 

Let /30^oo. Then for a fixed rm, Ζπ^> l/sC„ and 

1 / 1 
Zb = — + Z E ( l + -

sC„ \ srmC„ 
\ srmCJ 

By analogy, C„ = CGS and ZE = ZS. Substituting yields 

+ Z J 1 + \ srmCcs) 5 r m Q s / 

and also, for the source impedance, 

Z G + l / s C G S 
zs = 1 + 1/ 

(7.41) 

(7.42) 

(7.43) 

(7.44) 

CG D is analogous to CM, and the time constant rmCGS is the τ τ of a FET. The 
BJT equivalent circuits can be applied to FETs with these BJT to FET 
correspondences. 

FIG. 7.21 FET model in source-follower configuration. 
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7.14 Output Impedance of a Feedback 
Amplifier 

Finally, we extend hf modeling to amplifiers having a dominant single-pole 
response. For an amplifier with an open-loop voltage gain of 

G = 
K 

s r b w + l 
(7.45) 

where l/rbw is the small-signal open-loop bandwidth. In the If region, the 
open-loop output resistance rout is reduced by the feedback by 1 + GH. The 
resulting closed-loop output impedance is 

Zout(cl) = 
S T b w + l 

\ + GH \ + KH s(rb w/( l + K//)) + l 

where KH is constant. This equation can be expressed as 

1 
Zout(cl)=-

1 
-+-

1 

(7.46) 

(7.47) 

JKH) + {r0JKH) 

In continued-fraction form, the corresponding topology of Zout(cl) is explicit 
(Fig. 7.22a). The If closed-loop resistance, rout/(l + KH), gyrates +90° at the 

Zout(cl) : 

rout KH 

KH 

Z0ut(hf): 

(b) 

Tbw 
out I KH 

log 11 z, 

FIG. 7.22 Dominant single-pole feedback amplifier output impedance: (a) equivalent circuit, 
(b) hf equivalent circuit, and (c) reactance plot of Zout(cl). 
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open-loop bandwidth to appear inductive out to the unity-gain frequency, 

/ b w( l + K/f) 

Above this unity-gain frequency, Zout(cl) reverts to rout. By analogy, fbw 

corresponds to the Β5Ύ fß, the unity-gain frequency t o / T , and KH to ß0. The 
simplified hf equivalent output is derived by letting KH -*oo as / - » 0 , with 
resulting output impedance corresponding to Ze(RB). When rout is generalized 
to Zo u t , the corresponding BJT models readily apply. The hf equivalent circuit 
of Zout(cl), as with the BJT model, is only valid above/b w. 

Example 7.5 Feedback Amplifier Output Resonance 

The amplifier of Fig. E7.5 has a dc gain of -200 and a pole at 1 Ms"1 

(rbw = 1 /^s). It has an output resistance of 1 kfi and a load capacitance 
of 1 nF. 

The loop gain KH = 100 a n d / T ^ 15.9 MHz. Then the gyrated resist
ance is (10 ns)(l kfl) = 10 μ,Η and Zn = 100 Ω. For a parallel resonance, 
ζ = Zn/2ro u t= 100 0 / 2 k i l = 0.05. Then Mp = 0.85. The simulated circuit 
Mp = 0.71, indicating that the hf model estimate of ζ is low. The amplifier 
simulations for loop gains of 10, 100, and 1000 are tabulated as follows: 

KH 1000 100 10 

Mp(SPICE) 
L 
Zn 
rouJ KH 

ζ 
Mr 

ζ 
MP 

0.87 
1/xH 

31.6 Ω 
i n 
0.0158 
0.95 

0.0316 
0.91 

0.71 
10/xH 

100 Ω 
10Ω 

0.050 
0.85 

0.10 
0.73 

0.25 
100 μΗ 
316Ω 
100 Ω 

0.158 = Zn/2rou t = 
0.60 

0.316= ì/y/ÌCH 
0.35 

=>(r0JKH)/2Zn 

l k Q n T 7 _ u . r 
-200 1 n F - r - CL 

«IT —■— /^_ 

5(1 ^S)+ 1 

FIG. E7.5 
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This table reveals that the predicted ζ using either pure parallel or series 
resonance is always low and that the error increases as KH decreases. 
If rouJ KH and the load capacitance CL are included in the model (as 
in Fig. 7.22a), then the expression for Zout(cl) is 

*-"»-te)f — ■■- — (E1) S T b w + l 

' M r b w / ( l + X/ / ) ] + l}(sro u tCL+l) 

and 

ζ-7Μ (Ε2) 

With this more accurate ζ (the lower entry in the table), the agreement 
with simulation results is much better in the corresponding Mp values. 
The resonant Zout(cl) of (El) has the same form as (7.30), from which 
analogies can be made. 

Even with the more exact ζ, the error grows with decreasing KH. 
This is due to the growing error in the asymptotic approximations of the 
impedance plot. For KH = 10, the error in Mp is quite apparent (40%); 
but for KH = 100, it is much reduced (3%). In this example also, the 
resonant frequency is near the center of the hf range, thus reducing error 
due to linear approximation. Near either /b w o r / T , this error becomes 
large; the approximate calculations of ζ should be used only as a 
worst-case lower bound. 

7.15 Closure 

By deriving the complex-frequency expression for β from the BJT hybrid-^ 
model, we can write the β-dependent impedance transformations at base and 
emitter nodes in a general form. When these impedances are represented 
graphically on a reactance chart, the effects of circuit element variations on 
circuit behavior, especially hf resonances, becomes evident. The frequency-
dependent β transform is also applicable to FETs and single-pole feedback 
amplifiers. They show the same impedance gyrations as the BJT, so the BJT 
results can be easily extended to them also. 
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Wideband Amplification 

Some amplifiers are performance-limited mainly by speed. Oscilloscope ver
tical amplifiers, pulse and function generator output amplifiers, and video and 
nuclear signal-processing amplifiers are often speed-limited. Fast amplifiers 
are usually open-loop limited-gain stages, such as those analyzed at low 
frequency in Chapters 2-4, with one or two transistors per stage. New tech
niques have increased the speed of op-amp circuits, but the fastest amplifiers 
consist of limited-gain stages. For the fastest speed, these amplifiers are 
integrated to reduce parasitic reactances. We first examine the strategy of 
amplifier design before analyzing various bandwidth extension techniques. 

8.1 Multiple-Stage Response 
Characteristics 

The speed of an amplifier can be expressed by its response to a step input. 
For a single-pole amplifier with pole ρ = 1/τ9 the response to a unit step input 
can be characterized by its risetime. A single-pole amplifier has a transfer 
function of the form 

A(s) = K·—[— (8.1) 
s/p + 1 

with pole at -p. The pole is also at the bandwidth, so 
single-pole wbw = p 

From (5.137), the single-pole risetime is 
2 2 035 

tr = r\n(9) = 2.2r = — = -r- (8.2) 
P Jbw 

318 
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The unit step response is 

Jt) = K(l-e-pt) (8.3) 

Equations (8.1) and (8.2) assume a linear amplifier (or that small-signal 
analysis is valid). Large-signal amplifier behavior occurs when a signal quantity 
reaches the limit of its linear range. What often results is signal slewing, in 
which signal change is rate-limited and characterized by its slew rate. The 
maximum slew rate of a signal is determined by its maximum instantaneous 
slope and amplitude. The full-power bandwidth fBW of an amplifier is related 
to the maximum slew rate of a sinusoid that spans the dynamic range of the 
amplifier. Differentiating the sinusoid and solving for the maximum value, we 
get 

maximum slew rate = — ( Vm sin ωΒνν0 
dt 

= w B W V m 

The sinusoid changes over its full range in the slewing time: 

2Vm 0.32 
7B 

(8.4) 

(8.5) 

When/b w = / B W , islew is nearly the same as the risetime in (8.2). A more general 
comparison of large- and small-signal risetime is derived by finding the time 
it takes to slew from 10% to 90% of its final value. This time is 

. (0.8)2 Vm _ 
slewing tr = = —— 

026 
7 B W 

(8.6) 

When an amplifier operates with some slewing, the bandwidth lies between 
/BW and fhw where always / B w</bw 

Another quantity that characterizes speed is time delay td, defined as the 
time that the response takes to a unit step input to reach half of its final value. 
It is found by setting t>step of (8.3) to 0.5 and solving for t: 

t ,^ In 2 0.69 0.11 
rd = r ln (2 )= = = — 

P P Aw 
(8.7) 

Delay time is useful for measuring the propagation delay of linear logic circuits, 
such as ECL logic gates. 

Fast amplifiers usually consist of several cascaded gain stages. An amplifier 
with n single-pole stages with poles at —p has a transfer function of the form 

A(s) = K- 1 
(s/p + ΐ Γ 

(8.8) 

The unit step response of A(s) is 

«-stage vstep = i T 1 { A(s) · ̂ } = Kp" ( 1 - e~pt Σ ^ j ) (8.9) 
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Calculation of the risetime from (8.9) is not easy. A simpler alternative is to 
derive expressions for the bandwidth, as we derived (5.153). The bandwidth 
of a single-pole amplifier is the pole frequency, or 

single-pole wbw = p (8.10) 

The magnitude at bandwidth of a single-pole stage with dc gain of K is found 
by setting ω t o p : 

\\A{jp)\\ = K- 1 K-^z (8.11) 
V2 Αω/ρ)2+\ 

An n-stage amplifier with single-pole stages has a transfer function of the form 

«-stage Λ(5) = X · - — ! - — (8.12) 
(s/p + l) 

When the magnitude of A(jw) has rolled off to that of a single-pole stage, as 
in (8.11), this is the n-stage bandwidth: 

w^=K\i«/PY+xr^K-T2 ( 8 · 1 3 ) 

Solving (8.13) fora> = a>bw, we express it in terms of/? by defining the bandwidth 
reduction factor Ξ as 

E(n) = ( ^ = Vï^r^i (8.14) 
P 

Fast amplifiers usually have stages with quadratic pole factors in their 
transfer functions. The same kind of derivation of Ξ(η) assumes an n-stage 
amplifier transfer function of the form 

Ms) = K · * (8.15) 
(s Tn + 2£rns + l) 

Setting the magnitude of A(s) to that of a single-pole amplifier at bandwidth 
results in the expression 

\\A(jco)\\ = K.(- 2 I -λ =K-j= (8.16) 
\ ( 1 - τ η ω ) +(2ζτηω) / V2 

Since the pole factor of (8.15) does not contain /?, the bandwidth is related to 
the single-pole stage by ωη, as in (5.153) and Section 5.12. Solving for ω in 
terms of ωη, we express the result as 

Ζ(η)= — =(1-2ζ2 + ̂ 4ζ4 + 4ζ2 + 2ι/")ί/2 (8.17) 

For n critically damped stages, 

Ξ(Μ) = Ν / 2 1 / 2 " - 1 ; ζ=1, critically damped stages (8.18) 
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A one-stage critically damped amplifier has a Ξ of 0.64, and for four stages 
it is about 0.3. For MFED stages (ζ = V3/2), with n = 1, Ξ = 0.786; with n = 4, 
Ξ = 0.4. When the number of stages increases to 10, Ξ = 0.25. For MFED 
response, n stages have the approximate Ξ of 

— MFED 1 
0.786 (8.19) 

With these developments, we return to consider the risetime of multistage 
amplifiers. The transfer function magnitude for a general amplifier of n poles 
is of the form 

\\Mjo>)\\ = 
K K 

[1 + ω 2 Σ ί (1 /ρ?) + ω 4 Σ ί Σ / 1 / Ρ Ϊ ρ ' ) + · · · ] 1 / 2 0 + ω2Σ,· τ?)1/2 

(8.20) 

where 1//?, = τ,. The higher-order terms in ω are negligible for widely separated 
poles at much higher frequencies. The sum of time constants in the ω2 term 
can be regarded as an equivalent single-pole time constant of 

^Ψ^ (8.21) 

From (8.2), an approximate risetime is therefore 

t^2.2T = 2.2^YJT2, = yJYJ(2.2ri)2=yJYJt2
ri (8.22) 

In other words, the approximate risetime of a multipole amplifier is the square 
root of the sum of the squares of the risetimes of the individual stages. For n 
identical stages, risetime degrades by approximately Vn that of a single stage. 

Example 8.1 Instrument System Risetime 

A 100 MHz oscilloscope has a probe with a 2 ns risetime. The total 
risetime is found by first calculating the risetime of the oscilloscope. 
According to (8.2), 

0.35 ^ c 

' r "I^ = 3 - 5 n s 

Then the total risetime is approximately 

/ ,W(3 .5ns ) 2 + (2ns)2 = 4ns 

An accompanying approximation to bandwidth can also be made since τ 
of (8.21) is an equivalent single-pole time constant. From (8.10) we conclude 
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that 

For n repeated poles, bandwidth, like risetime, degrades approximately by Vn. 

.· Pi 

8.2 Amplifier Stage Gain Optimization 

As the number of amplifier stages increases, the bandwidth is reduced. For a 
fast-amplifier design strategy, therefore, the number of stages should be minim
ized. However, most amplifier designs also require a given overall gain. Reduc
ing the stage count demands increased gain per stage. Amplifier stages have 
a gain-bandwidth product/T, affected mainly by the active device. An increase 
of stage gain decreases stage bandwidth. An optimum stage gain A,(s) that 
maximizes amplifier bandwidth wbw for a given amplifier gain A(s) is derived 
by first noting that 

(übw = E-(ol (8.24) 

where ω, is the single-stage bandwidth. Then the gain-bandwidth product of 
the amplifier is expressed in relation to its stages as 

Αχ/η'ω^ = Αχ{Έ'ωλ) (8.25) 

assuming the n stages have the same gain, 

Α, = Αι/η (8.26) 

Solving (8.25) for ωονν yields 

ω^ = ΑλΆ-χ/η'Έ{η)'ωλ (8.27) 

The optimum number of stages is found by differentiating (8.27) with respect 
to n to maximize bandwidth: 

- f ûibw = A, · ωχ - - ρ [ Ξ ( π ) · A"17"] (8.28) 
an an 

For single-pole stages, Ξ is substituted from (8.14). Ξ can be expressed 
differently by noting that 

2./. = ,.»<»/. = £ ( ! Ξ ^ 3 1 + ! » 2 (8.29) 
k\ n 

Then 
1/2 

S ( B ) - ( ^ ) ' = V E 2 „ - ' ' (8.30) 
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Substituting for Ξ in (8.28), the right side becomes 

d Arwr-^-(A-i/n'Vh^2n-]/2) 
an 

= A, · ω,ν^ϊ/Α^" ( - Λ rT3/2 + A - 1 / n · n 1 / 2 ^ ' ^ A (8.31 

To find the optimum number of stages nopt, set the derivative to zero and 
solve. Then 

nopt = 2\nA (8.32) 

The optimum stage gain is 

optimum Aì = Aì/n^ = Aì/2ìnA = eì/2 = yfe~= 1.65 (8.33) 

This is not a large voltage or current gain. In practice, the optimum gain is 
somewhat larger than this value, usually around 2 to 3, due to bandwidth loss 
from interstage coupling. 

Multistage amplifier frequency-response magnitude approaches a gaussian 
(probability function) as the number of stages increase. This gaussian response 
is quickly approached in practice by a few stages. It is derived by first rewriting 
(8.13) in terms of ωονν from (8.14). Since p = ωονν/Ξ, then (8.13) becomes 

I W » l l = r , . . / . . ^ ■ / ■ _ l U , 1 . / 2 (8-34) [(a>/a>bJ2(2l/n-l)+l] 

Next, as M->OO in (8.29), 

In 0 
2 1 / n - l ^ , n^oo (8.35) 

n 
Substituting this into (8.34), we get 

K_ K 
[1 + (ω/ωι)2(1η 2/n)T/2 " [1 + (2/ η)(ω/ω,)2(1η 2/2)] 

||A(jftj)|| is of exponential form since 

Ι Ι Λ ( » Ι Ι - Γ 1 , , . . , . . χ2„ ~ / M V I n / 2 - r i . (*>/„ΛΪΜ/Μ ^2πMo/o^^«/2 <8·36) 

So as n -> oo, 

| | Λ ( » | | = Χ·^-( ω / ω«) 2 ( 1 η 2 / 2 ) , η^οο (8.37) 

This ex form of ||Λ|| is the gaussian response function. 
The maximum achievable bandwidth of an amplifier with a gaussian 

response is derived based on the unity-power-gain frequency /MAX · If Mil of 
(8.37) is a power gain, then it can be expressed in decibel scaling as 

| | A ( > ) | | d B = l O l o g K - l o ( ^ ) ( l o g e ) ( j 0 = \\A(0)\\dB-c(ß (8.38) 
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where c reduces to 

c = 51og2=1.51 

The maximum bandwidth is achieved when ||A|| passes through /MAX at unity 
gain (OdB). (From (8.38), 

M ( 0 ) | | d B - c ( ^ y = 0 (8.39) 

Solving for c and substituting it into (8.38), we get 

\\MdB=\\M0)\U[l--j—) (8.40) 
\ / MAX/ 

The bandwidth is the frequency at which ||A||dB has rolled oflf by - 3 dB: 

M U - M(0)||dB = -3 = \\A(0)\\J--f- ) (8.41) 
\ / M A X / 

The solution of (8.41) f o r / is the bandwidth/bw and is 

Aw /MAX λ / M A / Λ λ | | 
(8.42) M(o)||dB 

Example 8.2 Oscilloscope Vertical Amplifier 

A wideband oscilloscope has a vertical deflection sensitivity of 2 V/cm 
at the CRT and a deflection plate termination resistance of 350 Ω. The 
input sensitivity is 50 mV/div into 100 fl from the source when terminated 
by the 50 il scope input. The power gain is 

i. w ,,. i / (2V/div)2/350n \ 
| | A ( 0 ) l l d B ^ 0 1 o g ( ( 5

(
0 m ; / d ^ / i o o n ) ^ 2 6 . 6 d B 

The /MAX is 2 GHz. The maximum /b w is, from (8.42), 

4, / b w = 2GHzA/^||5_ = 6 7 2MH2 

The actual bandwidth of the amplifier (without the CRT) is 550 MHz. 
The use of maximum bandwidth as a performance index can be taken 
as the ratio of actual to maximum theoretical bandwidth, or 

550 MHz 
s 82% 

672 MHz 

That is, 82% of the maximum achievable bandwidth is realized in the 
vertical amplifier, within 18% of the theoretical limit. 
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8.3 Pole Determination by Circuit 
Inspection 

With increased circuit complexity, the number of reactive elements increases 
and makes derivation of the transfer function more difficult. At some com
plexity threshold (which varies among engineers), the urge to simulate the 
circuit by computer overwhelms the desire to achieve an intuitive understanding 
of it. Even for complexity that requires simulation, it is necessary to know 
what to simulate. Until circuit design is computerized, the choice of numeric 
values of circuit elements must be based on estimation techniques and qualita
tive reasoning. 

Most circuits can be decomposed into modules with well-defined interfaces. 
Intrastage behavior is relatively free of interaction with other stages. Interaction 
among modules can be considered apart from interaction within modules. The 
dynamic behavior of each circuit module can thus be determined individually, 
reducing the complexity of analysis. 

A technique described by Cochrun and Grabel [6] and streamlined by 
Rosenstark [7] makes estimation of pole locations in active RC circuits simpler 
than solving the circuit for the transfer function. The degree of the characteristic 
equation (the transfer function denominator set to zero) equals the number 
of poles and the number of reactive circuit elements. Each capacitor in an RC 
circuit is associated with a pole. The characteristic equation, in a normalized 
transfer function can be written as 

D(5) = a„5" + an_15n"1 + · · - + ^ 5 + 1 = 0 (8.43) 

The technique enables determination of the an from inspection of the circuit. 
The coefficients, in terms of circuit elements, are found as follows. The equation 
for al is 

n 

α, = Σ «.(open) · C, = £ T,(open) (8.44) 
i = l 

As a procedure, (8.44) is 

0. ax procedure 
1. Order the C by numbering them. 
2. For each C, beginning with C\, find the equivalent resistance across 

its terminals with all other C open. This is #,(open). Multiply Rf(open) by 
C for T,(open). 

3. Sum the r,(open) to obtain α,. 

This procedure is expedited by writing the time constants in the first column 
of a table beginning with r,(open) in the top row and T„(open) in the bottom 
row. 
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Next, for a multicapacitor circuit, a2 is needed and is 
n — 1 n 

Α 2 = Σ Σ Ki(open) · Q · Rj(Q shorted) · C, 

n — \ n 

= Σ Σ Ti(open) · Tj(Q shorted) (8.45) 
i = l 7 = 1+1 

The procedure for a2 continues the table by filling in the second column and 
then using the r,(open) from the first column. All C not shorted are open 
when R is being found. 

0. a2 procedure 
1. For each Cf, do the following: 

a. Short C,. For each C after C, (in the order they were numbered in 
the ax procedure), find the terminal R for C (C,). Multiply this 
Rj(Q shorted) by C, for TJ(Q shorted). 

b. Multiply the TjiQ shorted) by r,(open). 
2. Add the time-constant products from step lb to obtain a2. 

Each entry in the first column of the table from the αλ procedure will have 
n - i entries in the second column for each C,. 

For a3, three summations are made, extending the a2 procedure. For the 
third column, two capacitors are shorted at a time (indices i and j), and k is 
indexed: 

n—2 n — 1 n 

« 3 = Σ Σ Σ Äi(open)· Cr Rj(Qshorted) · Cj-Rk(Ci9Cj shorted) · Ck 
i = l j = i+l j = i+l 

(8.46) 

A way to keep the indexing straight is to base the entire procedure around 
the time-constant table. This Rosenstark table for three capacitances is shown 
in Fig. 8.1. The column numbering is for the i index. The procedure amounts 

a\ 

Tj (open) 

τ2 (open) 

τ3 (open) 

<h 

τ2 (Q shorted) 

τ3 (Q shorted) 

τ3 (p2 shorted) 

a3 

r3(Çi,C2 shorted) 

FIG. 8.1 Rosenstark table for a circuit with three capacitances. The time-constants are based on 
open-circuit resistances, except as indicated. 
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to filling in the table and then, for al9 summing the τ, in column 1; for a2, 
summing the products of r in column 2 with τ from column 1; for a3, summing 
the products of τ in column 3 with τ from columns 2 and 1. The summation 
always involves the r of a column multiplied by the τ of the columns to the 
left. When a r is found, the capacitors indexed in the columns to the left are 
shorted. 

Active devices can change the resistance at a capacitor, for example, due 
to the Miller effect, and must be taken into account when finding equivalent 
resistances. 

Example 8.3 Op-Amp Circuit Poles from the 
Cochrun-Grabel Method 

The op-amp circuit of Fig. 6.4b can be analyzed using the Cochrun-
Grabel method. The Rosenstark table is 

ax a2 

(Ä, || RS)Q 

(Rc+Rf)Cc 

(Rc+Rt)Cc 

The ordering of capacitors, as shown in the table is C(, Cc. This ordering 
is arbitrary. The ax column is filled in, beginning at the Cf row, by finding 
the open-circuit resistance across the terminals of C,. Since an active 
device, the op-amp, is involved, we must first determine its effect on 
resistance. The V_ input is a virtual ground for the ideal op-amp. Knowing 
this, the Ci terminals have across them jR, \R& because V{ has zero 
resistance. The time constant for the first entry, C, row, ax column, is 
complete. For the Cc row, ax column, we examine Cf. Rc is in series 
with the Cc terminal and goes to ground. From the other terminal, we 
determine that the V0 node has a resistance of Rf to Rc. Thus, the total 
resistance across Cc is Rc+ Rf. The second entry is complete. 

We now begin with the a2 column. We short C, (from the first column) 
and determine resistance across Cc. Again this is i?c-fi?f. The table is 
complete. The an are now found from the table. The sum of the first 
column is 

a^iRiWRJQ + iRc+RJCç 

Then a2 is found from the second column by multiplying its entries by 
the first column and adding them. Since there is only one, no addition 
is needed here, and 

a2 = (Äc + Äf)Cc-(Äi| |Äe)Cl-
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The characteristic equation is 

a2s2 + üyS-l· 1 = 0 

This quadratic equation is easily solved by noting that the ax terms are 
the a2 factors, and the poles are therefore 

- 1 - 1 
^ " ( K l l Ä j c y P2~(Rc+Rf)Cc 

This result agrees with that of the reactance chart method shown in 
Fig. 6.4c. 

Example 8.4 BJT Amplifier Poles from the 
Cochrurv-Grabel Method 

The poles of the BJT amplifier of Fig. E8.4a are found by the Cochrun-
Grabel method using a Rosenstark table (Fig. E8.4b) to obtain the 
characteristic equation. The third-degree equation can be solved by 
computer or approximated by a lower-degree equation that retains an 
approximation of the dominant poles. 

We begin with R of Cn in the first column. With all the other C 
open, the resistance is found by the steps in Figs. E8.4c-e. In (c), the 
equivalent circuit is Nortonized to (d). Then the substitution theorem is 
applied and two branches combined to produce (e). The resistance is 

R = r ( K E + * B + r ; ) ( E 1 ) 

U + RE/rm) 

This has the form of Miller's theorem, in which K = /?E/rm- Then R7r = 
54.8 Ω, and the resulting time constant is 28.9 ns. 

For CM, the equivalent circuit is shown in Fig. E8.4f. Applying the 
β transform to RP gives Fig. E8.4g. The resistance at the b' node to 
ground is 

Äb. = (r{,+ ÄB)||(i8 + l ) ( r e +R E ) (E2) 

The collector current source is controlled by Vbc. From the base 
loop in Fig. E8.4g, 
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At the collector, 

V c = - R L - - ^ = « a - - ^ r - Vb. = -KVb. (E4) 
rm re~t~ **E 

Current injected into the b' node causes the voltage across b'c to change 
by 1 + VJ Vh'- 1 + K. This Miller effect causes the voltage across the 
injecting current source to be larger by 1 + K times. This makes the 
effective resistance 1 + K times larger also. 

We next change the Norton circuit of the collector loop to a Thévenin 
source as shown in Fig. E8.4h using (E4). The voltage across Rb is now 
(1 + K) Vb<, making Rb appear (14- K) times larger. This Miller resistance 
is in series with RL. Thus the resistance we seek is 

^ K + ABÎlUiS + lKre + JlEjl l + a · - ^ — 1 + Ä L (E5) 

Substituting circuit values gives Ι?μ =6.57 kÜ and τ = 19.7 ns. 
The time constant for ai due to CL is RLCL = 22.0 ns. For the a2 

column, the first capacitance C^ is shorted, and JR across b'c is again 
determined. With Cn shorted, Vb.e = 0, and the transistor current source 
is nulled. This simplifies the resistance to 

Κμ(Cw shorted) = K + KB) || R E + Ä L (E6) 

which is 1.18 kü. The time constant is 6.30 ns. Next, C„ remains shorted 
as we find the resistance across CL. It is JRL, and τ = 22.0 ns. The last 
entry in the a2 column is found by shorting Ομ and finding the resistance 
across CL. The collector current source is now across the b'e branch, 
and the substitution theorem reduces it to rm. Since rm \\ Γπ = Γ^, 

ÄL(CM shorted) = ÄL II (re + KE) || ( r b +Ä B ) (E7) 

This resistance is 160 Ω and r = 0,479 ns. 
The final entry, for a3, is the resistance across CL with Cn and CM 

shorted. It is 

ÄL(CW, CM shorted) = K + ÄB) || RE \\ RL (E8) 

This value is 155 kfì and r = 3.41 ns. The table is complete. 
We now find the an as follows: 

a, = (28.9 + 19.7 + 22.0) ns = 70.6 ns 

a2 = [(6.30)(28.9) + (22.0)(28.9) + (0.479)(19.7)] ns2 = 827 ns2 

a3 = (3.41)(6.30)(28.9) ns3 = 621 ns3 
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ΙΙίΩ b 100 Ω b 

1 kto<rn ZÎZ 

ö! = 70.6 ns 

(a) 

CK 

cß 

CL 

a\ 

28.9 

19.7 

22.0 

a2 

6.30 

22.0 

0.479 

a2 = 827 ns2 

03 

3.41 

Û3 =621 ns3 

(b) 

vWWWW 

(C) 

fr'O 

rm l*B+rb + # E | 

FIG. E8.4 
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b'O-

eO-

^RB + r'h+RE 

, *E 

(e) 

(f) 

(g) (h) 

FIG. E8.4 (continued) 

The characteristic equation is therefore 

(621 ns3)s3 + (827 ns2)s2 + (70.6 ns)s +1=0 

This equation was solved by computer with real roots at 
-2.83 MHz, 11.6 MHz, 198 MHz 

A SPICE simulation shows a damped response due to the dominant real 
pole with magnitude roll-off of -3 dB at 2.7 MHz. The two slowest poles 
combine to yield an approximate bandwidth of 2.75 MHz. 
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If a computer is not used to solve the characteristic equation for the 
poles, some approximations can be made by ignoring higher-degree 
terms. By dropping the s3 term, we find two poles at 2.85 MHz and 
10.7 MHz. By dropping the quadratic term also, we find the single pole 
at 2.25 MHz, a 16% error. This error is acceptable for many pole estimates 
and leads to a simplified version of the Cochrun-Grabel approach; 
instead of building a table, we build only the first column. That is, we 
sum the open-circuit time constants for each capacitor and invert it for 
the radian pole frequency. The hard work is in finding Rn and # μ , but 
we have done that already, and (El) and (E5) can be used for BJT 
analysis (and with the BJT-to-FET transform, for FETs) generally. 

The fT specified by transistor manufacturers is defined as the frequency 
at which β is unity with the collector ac-shorted to the emitter. Then CM shunts 
Cn. This implies that 

manufacturer's fT = ~ , τΎ= ^ ( ( 1 ^ + C J = r^C^ (8.47) 
2πττ 

The manufacturer's fT for the transistor in this example is 300 MHz and β0 = 99. 
In (7.1) and (7.2), fT is defined with C^ = 0 in (8.47) to make the resulting 
theory simpler. This should cause no problem if the manufacturer's fT and Ομ 

(given as Cob) values are used to compute fß and fT as defined here. In most 
cases, fT is close enough already. In this example, the error is 0.6%. 

The Cochrun-Grabel method only produces poles. One technique for 
determining zeros [7] begins by first writing the nodal equations of the circuit. 
A flow graph is especially helpful here. Those transmittances that lead from 
input to output are examined for evidence of zeros. 

Pole estimation is often applied to interstage coupling, to the pole formed 
by the load resistance of a CE or CB stage and the following CE stage input 
(Fig. 8.2a). The input impedance of the loading BJT stage Zx has branches 
through CM and Z^. 

Consider first the branch involving C^. The circuit is idealized in Fig. 8.2b 
to eliminate the effect of the Z^ path. The BJT is represented by a transconduct-
ance amplifier. Its output current, representing collector current, is shown 
flowing into the amplifier with value Gm Vx = VJRm. The input current to the 
amplifier flows into C^ and is 

V -V V V 
I^T7~?r = sC^-vo) = -f^ (8.48) 

Solving this KCL equation for V0, substituting it into the first expression for 
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(T )^ %r* =rc* (T)/c2 <*L + JT°~^ 

(a) (b) 

ΛΤν+ 1 

■<r,+ i)cM dpg Χ__Γ*Ε 

(e) 

Z i ! 

(d) 

FIG. 8.2 CE amplifier with hybrid-7r BJT model (a), an idealized BJTmodelasatransconductance 
amplifier (b), equivalent input impedance of a CE (c), and simplified equivalent input circuit (d). 

/i, and solving for VJ It, we get 

1 
Z;„ =- RL RL 

s[l + (RJRJ]^ [1 + ( Ä L / Ä J ] 5(XV+1)C^ X v +1 
(8.49) 

Besides the Miller capacitance, RL is reduced by X v + 1 . For large voltage 
gain, this branch presents a nearly capacitive impedance. 

The impedance through Ζπ is 

Ζ ^ = (/30+1)(Γε+ΚΕ) 
sa0TT(RE/(re+RE)) + l 

(8.50) 

For RE » re and a0 = 1, Zi7r is the hf Zb(/?E) of Fig. 7.8b. If the series-peaking 
ω η « ω τ , we can ignore the zero in (8.50). The result is a shunt RC with Rx 

shunting τβ/R-X = TT/RE. R: is large and usually presents negligible shunting. 
Consequently, Zl7T reduces to r T / R E . It shunts Ζ·ιμ so that 

Ζΐ = Ζΐ μ | |ΖΪ 7 Γ (8.51) 

When the branches are combined, the resultant Zx of Fig. 8.2c results. This 
simplifies, under these assumptions, to Fig. 8.2d. Unless the transistor is very 
fast (low rt) or RE is small (not much larger than re or less), the only significant 
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capacitance is the Miller capacitance. Therefore, 

Z\ 
1 

s ( K v + l ) C / K E » r e , 0 o » l , / « / T , K v +1 
= 0 (8.52) 

Another assumption of (8.52) is that the capacitance loading RL from the stage 
following it is negligible. If not, shunt capacitance across RL further reduces 
the impedance in series with CM, making (8.52) a better approximation. 

A more exacting estimate is based on Zx of the network of Fig. 8.2c. Let 
the elements be designated more generally as R{ in series with Cx shunting 
R2 in series with C2. Then, 

Zi = 
(sRiC^V^^+l) 

[siC^^msiR^RJiC^l^ + l] 
(8.53) 

When the particular element values of Fig. 8.2c are substituted, the zeros are 
at frequencies of 1/ττ and 1/ÄLCM ; the poles are at the origin, and l / ( /? ,+ 
K2)(Ci || C2) (where || is a math operator not a topological designator). The 
capacitance Cx + C2 dominates Z-x until 1/R^C^. The second pole causes Zx to 
appear capacitive out to fT. 

8.4 Inductive Peaking 

Interstage coupling often degrades bandwidth due to parasitic reactances. For 
example, collector output capacitance shunts the input base capacitance of 
the next stage in Fig. 8.3. The load resistor R is shunted by C = Cl o u t+ C2m· 
An unwanted pole is created at 1/ RC. 

The addition of an inductor can extend the bandwidth by creating a series 
or parallel resonant circuit with a peak in the frequency or transient responses; 
hence the technique name of inductive peaking. Figure 8.4 shows series peaking 
circuits. The transfer function is not changed by exchanging R and C In both 
cases, L is in series with C The transfer function for series peaking has a 

-r-C2ir ( T ) / c l y C l o u t - r -

m m 
C- Qout + ^2in 

FIG. 8.3 Output node of a typical CE or CB stage, with its output capacitance Clout and that 
of the next stage C2in. 
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(a) (b) 

FIG. 8.4 Series inductive peaking has the same effect whether R and C are at the input or the 
output side of L. 

quadratic pole factor: 

/ i 

1 
s2LC + sRC + \ 

(8.54) 

This has a familiar quadratic-pole response, as described in Section 5.12. The 
basic parameters are 

1 1 
ILC 

1!L 
RC lyfa 

R 
:2Zn - V I (8.55) 

Usually, R is chosen to set the gain, and C is parasitic. This leaves L as the 
design parameter. For a desired f, 

L = -
R2C 
*ζ2 (8.56) 

Since L is in a (the s2 coefficient) only, the poles move with increasing L as 
shown in Fig. 8.5a. It is worth noting that if R were varied instead, the pole 
locus would be as shown in Fig. 8.5b, and for C, as in (c). When the poles 
become complex as L increases, pole radius ωη shrinks, and ζ decreases. The 
most desirable pole locations for a wideband amplifier are in a range slightly 
off the real axis, near the critically damped pole location -21RC. Here, ωη is 
maximum and ζ in a range that gives a desired response. 

For variation in R, ωη remains constant as ζ changes proportionally. 
Variation in C causes the most trouble. While ζ varies with the square-root 

Ck 

RC 

(a) (b) (c) 

FIG. 8.5 Series-peaking root loci for increasing L (a), R (b), and C (c). 

JO) 
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of C, ωη varies inversely. Consequently, since C is usually parasitic, control 
over its range of values is least, and though response peaking (in time or 
frequency) is not so much affected by AC, the risetime and bandwidth are. 
Causes for C, such as transistor process parameters and circuit-board layout, 
are significant in control of pole radius. 

It is interesting to determine how much improvement in bandwidth series 
peaking can offer. To measure this, we compare bandwidth improvement with 
the uncompensated RC circuit of Fig. 8.3 by expanding the meaning of the 
bandwidth reduction factor Ξ to include bandwidth extension. Both definitions 
of Ξ in Section 8.2 are useful here and are separately denoted as 

ωη p (Ì/RC) 

Ξη compares bandwidth with respect to pole radius; Ξρ compares it to the 
uncompensated RC circuit. 

In the time domain, we have used ίτωη to express relative risetime. Com
parison against the risetime of the RC circuit also offers an improvement 
measurement. The risetime improvement factor is 

(8.58) 
tr(RC) 2.2RC 

All of these performance indicators are combined with those already derived 
in Section 5.12 in a series-peaking summary table: 

1.00 

0.866 

0.707 

0.500 

R2C 
4 

R2C 
3 

R2C 
2 

R2C 

ω η 

21 RC 

ÌJ3/RC 

IA1/RC 

\/RC 

ωη 

0.644 

0.786 

1.000 

1.272 

P 

1.288 

1.361 

1.414 

1.272 

Mp'\ fO) 

0 

0.433 

4.32 

16.3 

ιΓωη 

3.36 

2.73 

2.15 

1.64 

2.2RC 

0.765 

0.717 

0.692 

0.746 

crit. damping 

MFED 

M FA 

φ = 60° 

For £ = 0.5, the poles are at a 60° angle and a = l/RC, the same as the 
single-pole case. From Fig. 8.5, at critical damping, both poles are at -21 RC 
and have twice the pole radius of a single-pole RC circuit. As L varies, 

(t)-fc) (2ζ) =» Ερ = 2ζΞη (8.59) 

By adding L for series peaking, we improve the bandwidth by 36% and the 
risetime by 28% (ζ=1). This is a significant improvement caused by the 
addition of one component, but greater improvement is possible. 
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47oa</?L 1 C„ >200Ω 

(a) 

:(*v+i)CM+g 

(b) 

FIG. E8.5 

Example 8.5 Series Peaking 

An amplifier stage (Fig. E8.5a) output is loaded by the input impedance 
of a CE stage. The transistors both have rT = 500ps and βο=100. The 
output capacitance of the BJT across Jcl is negligible. A MFED response 
is desired. 

The first step is to find the input impedance Z\ of the loading stage. 
The emitter branch hf capacitance is 500 ps/20 Ω or 25 pF. The voltage 
gain is about 

£ = = 1 0 
RE 

and the collector capacitance is 11(3 pF) = 33 pF. Because RB is so small, 
TT/RE is significant. The series collector resistance <20Ω. The capaci
tance in series with L is thus 

Ci = 2 5 p F + 3 3 p F = 5 8 p F 

The uncompensated bandwidth is 

1 1 
/bw(uncomp) = 

and risetime is 

ITTRC 27r(470O)(58pF) 

0.35 

5.8 MHz 

ir = 2 .2#C=60ns or i r s - ~ ^ = 60ns 
Aw 
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From the table, for MFED response, 

, * 2 C . J470f ì ) 2 (58pF) ^ 
L=~r=—Ì—=43μΗ 

The value of R = RL assumes negligible series resistance in Z-{. Each path 
in Zj has about 20 Ω. From (8.53), Zx becomes resistive at 1 / # L Q or 
265 MHz. This is about 50 times larger than /b w (uncomp), and the 
assumption that Z-x is purely capacitive over the frequency range of 
interest is valid. 

The compensated bandwidth (from the table) is 1.36 times higher, 
or 7.9 MHz, and the risetime is 43 ns. The series resonance is at fn~ 
10 MHz. 

An alternative to series peaking is shunt peaking (Fig. 8.6). The addition 
of L in series with R places it in parallel with C and creates a parallel 
resonance. For a step of input current, most of it charges C at first because 
current does not change instantaneously in an inductor. Consequently, C 
charges faster and response speed increases. 

The transfer function of the shunt peaking circuit of Fig. 8.6 is 

V0_ s(L/R) + l 
L s2LC + sRC + 1 

(8.60) 

The addition of a zero over series peaking improves response speed but also 
peaks the response more. To compare shunt with series peaking, we need 
formulas for the performance parameters of a two-pole, one-zero circuit. We 
now digress to derive them generally. Then we apply them to shunt peaking. 

The two-pole, one-zero transfer function can be generally expressed in 
terms of τη = \/ωη and Q as 

sQrn+l 
V T n + ( r n / Q ) s + l 

(8.61) 

FIG. 8.6 Shunt inductive peaking. L and C form a parallel resonance whereas the load resistor 
R damps it. 
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In narrow-band amplifier terminology, 

ç= 
u 

(8.62) 

This quantity describes the amount of peaking and occurs frequently in 
resonant circuit equations. The time constant of the zero of (8.61) is 

■ =Qrn => Q -® (8.63) 

Bandwidth is found in the usual way by setting the magnitude of (8.61) 
to \/\fl. The general result is 

^l-W2+2Q2+^(l-^+2Q2) (obw = ω 

The overshoot Mp from [9] is expressed in ζ as 

-i 

+ 1 

2ζ Mp = — · exp 
LTT^F (τ-

t 
270° 

ΛΨΥ-Μ cos £ - t a n 

(8.64) 

(8.65) 

The unit step response for ζ > 1 is 

1 
t>step(0 = l -

2i>/ l - f : • e 
ζω»'ύη(ωηί^ £2 + cos-1£ + tan" l J — ■m) 

(8.66) 

The 10% and 90% times are found by numerical computer solution for shunt 
peaking as ίΓωη. This is a convenient representation since ωηί acts as the 
independent variable in (8.66). 

For ζ = 1, the poles are repeated, and the step response is 

Vstep\C=l = [(f- l)pr- l ]e- + l (8.67) 

This function also has no closed-form solution and is numerically solved by 
computer. 

We now apply these general results to shunt peaking and (8.60), where 
the zero is 

1 1 0 / 
rz L/R 

and the repeated poles have a frequency of 

(8.68) 

2ρ=Ίκ = ω" (8.69) 
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It then follows that, when ζ=1, 

Pj_ 
z 2 

(8.70) 

and (8.66) reduces to 

shunt peaking ustep = {-\ωηί-\) e-a>n' + l (8.71) 

The values of ίτωη are numerically computed from this equation. 
A table similar to that for series peaking can now be constructed for shunt 

peaking: 

<, 

1.00 
0.866 
0.707 
0.500 

V 

0.500 
0.577 
0.707 
1.000 

ωη 

0.786 
1.086 
1.554 
2.279 

P 

1.572 
1.881 
2.198 
2.279 

ivip< v / o ; 

0 
0.620 
6.70 

29.8 

/ r t u n 

3.071 
2.319 
1.559 
0.940 

2.2RC 

0.699 
0.609 
0.502 
0.428 

crit. damping 
φ = 30° 
</>=45° 
0 = 60° 

Shunt peaking is faster than series peaking for the same pole parameters but 
is less damped in response. It achieves an 88% increase in bandwidth over the 
RC circuit and 39% decrease in risetime for a MFED pole response. These 
comparisons can be misleading, however. A pole angle of, say, 30° is not an 
MFED response because of the zero. The values of ζ for MFED and MFA 
responses must be derived as in Section 5.10. For a MFED response, ζ = 0.881, 
and for MFA, ζ = 0.777. These values are somewhat higher than those without 
the zero. 

Greater speed improvement can be achieved by using a T coil. This is a 
transformer (Fig. 8.7a) with controlled coupling and a common connection at 
c. An equivalent circuit is shown in (b) where the polarity of coupling deter
mines the polarity of the mutual inductance — M to terminal c. With the 
coupling as shown, 

L=L.dh = {Lx + M) + (L2 + M) = Lx + L2 + 2M (8.72) 

The addition of —M in the equivalent circuit produces the correct self-

-M 

c 

(a) 

FIG. 8.7 Coupled inductors forming a T coil (a), with mutual inductance M and equivalent 
circuit (b). 
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inductances: 

1.Δ0 = {Ιχ + Μ)-Μ = 1Χί Lhc=(L2+M)-M = L2 (8.73) 

If terminals a and b are shorted, the inductance from a and b to c is 

L^C = (L^M) || (L2+M)-M (8.74) 

If we make the mutual inductance signed, the coupling coefficient is always 
positive: 

M 
k = 

4UL2 
(8.75) 

The use of the T coil for bandwidth extension has resulted in the general 
form of the bridged T-coil circuit (Fig. 8.8). The coil is terminated in R but 
the load is connected to the center-tap. A general load, 

ZL = s L s + # s + — r (8.76) 

(or series RLC) is similar to the input impedance of BJT stages. At dc, the 
input impedance of the T coil is R. Because of the bridging capacitor CB, at 
high frequencies it is also R. For a given ZL and by proper choice of Ll5 L2, 
M, and CB, Zin = R and is independent of frequency. When the circuit of Fig. 
8.8 is solved, the design equations that result are 

^ i = ^ ( l + ^ ) ( t f + Ks) 2 -KKsC L -L s (8.77) 

L 2 = T : ( 1 + ^) ( Ä + jRs)2_Ls (8,78) 

M = ^[R2 - Rl~(R + Ks)2) + Ls (8.79) 

c-=#(i+f)2 <8·8»> 
In addition to these design equations, the equivalent inductor element values 
of Fig. 8.8b are 

RC 
Li + M=^(R-Rs)-Ls (8.81) 

RC 
L2+M=-^(R + RS)-LS (8.82) 

L=R2CL-2LS (8.83) 

The transfer function has two poles at 
f2 4Γ , . 4£ p^-m.±j^c^ ( 8 · 8 4 ) 
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FIG. 8.8 Bridged T coil with RLC load (a), and equivalent circuit (b). 

The form of transfer function is the same as for series peaking but with twice 
the speed improvement! For MFED response, (obw/p = 2.72, nearly three times 
better than the original RC circuit. The greatest improvement is 2.83 for a 
MFA response. 

For Z L = l/sCL, the transfer function for the load is 

I, 
1 

Ϊ ( Ϊ Τ Ϊ ) " ' « * · + Ι · ^ + 1 

l / / c - l \ 2 

= - h — K L , L = R2CL, LX = L2 = 
4\fc+l/ 

(8.85) 

2(fc + l) 

As k increases, the pole angle decreases for complex poles. With perfect 
coupling, k = 1, and the s2 term in (8.85) is zero, leaving a single-pole response 
but with twice the bandwidth of a simple RC circuit. This is a simpler, 
lower-performance T-coil circuit with no bridging capacitance and with Lx = 
4L2. MFED response is achieved when k = | , a relatively loose coupling, not 
hard to implement. Then CB= CL/12, Lx = 3L2, and L= R2CL. A balanced T 
coil (Lx = L2) that meets the conditions of (8.85) has no coupling between the 
coils, CB = CL/4, and the pole angle is 60°. Lx > L2 is necessary to meet these 
conditions with a capacitive load. 

Even greater bandwidth improvement is possible by taking advantage of 
the constant-resistance input of the T-coil circuit. Series peaking can be 
cascaded in front of the T coil, as shown in Fig. 8.9. The input and output 
capacitances of Fig. 8.3 are separated and become part of different peaking 
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m 
FIG. 8.9 T-coil peaking preceded by series peaking, with capacitive load. 

circuits. Since the interstage coupling satisfies the requirement for series peak
ing, the bandwidth improvement of each circuit remains unchanged. Thus the 
total improvement is the product of the individual improvement factors. 

Amplifiers with bandwidths under 100 MHz usually have tapped 
solenoidal coils wound on a plastic bobbin. The magnetic path is through air 
and plastic. For higher frequencies, a common T coil is made of a bifilar-wound 
loop of magnetic wire. The two wires are twisted together and then formed 
into a loop. Or, circuit-board traces can be spiraled on opposite sides of the 
board and connected at the center via plated-through holes. Two traces can 
be run next to each other to form coupled inductors. For very high-speed 
circuits, IC bonding wires have even been used to form T coils. 

An inductive peaking circuit used in ICs, sometimes referred to as "emitter 
peaking," realizes a shunt inductance by the high-frequency gyration of a BJT 
base resistor. The emitter appears inductive. (See Chapter 7.) In Fig. 8.10, the 
adjustment of RB adjusts the emitter inductance RBrT. 

- J — % 

FIG. 8.10 Emitter peaking: Qx provides an inductance in series with the load resistor in its hf 
region, creating a shunt peaking compensator. No actual inductor is required, making the technique 
attractive for IC design. 
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Example 8.6 T-Coil Compensation 

Example 8.5 is T-coil compensated. The T-coil formulas of (8.77)-(8.80) 
are applied directly. The loading is CL = 58pF, and Rs = L^ = 0. Also, 
R = RL = 470n. For MFED response, ζ = 0.866. The results are 

L, = L 2 = 4 . 3 / A H , Μ = 2.1μΗ, CB = 4.8pF 

From (8.75), the coupling of the inductors is k = 0.5. This is loose coupling 
and is easily accomplished. The bandwidth is now 15.8 MHz and risetime 
approximately 22 ns. 

8.5 Source-Follower Compensation 

CS stages are often used at the input to instrument amplifiers to provide 
minimal resistive loading. But unlike their BJT counterpart (the CC), FET 
CGS is typically much smaller than C^ of BJTs. Consequently, the Ζπ term of 
(7.10) cannot be ignored, as in (7.11) for the BJT. The transformation for 
FETs is made in (7.43). When the effect of CGD is included, it is 

^bb-(=ir) sC{ 
(8.86) 

where r T = /*mCGS. The equivalent circuit is shown in Fig. 8.11a and is trans
formed using the substitution theorem from (b) to (c). For a capacitive load, 
Vj drives a capacitive divider that causes an input voltage step to immediately 
rise to a fraction of the step amplitude 

CGS 

CGS + Cs 

and then continues exponentially, due to rm, to the input step value. The 
transfer function of Fig. 8.11 is 

V0_ s r m C G S +l _ S T T + 1 
Vi srm(CG S+Cs) + l s ( r T +r m C s ) + l 

Since the pole is less than the zero, the response is that of a phase-lag circuit 
(Fig. 5.15a), and the initial response step is p/z with a time constant of 
rm(CGS+Cs). The response can be compensated by adding a phase-lead circuit 
at another stage in the amplifier. 

A second anomaly of the CS is its input impedance. From (8.86), the 
gyrating factor can be expressed in topological form as 

ZS(S-^)=ZS. ' _ (8.88) 
\ srT } s 1 - 1 / ( J T T + 1 ) 
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Q J S 

— I f — 
+ VGS -

\ U 

C G D - ^ 

-GS 

(a) 

rm\±J \L)rm 

m /77 
(b) 

x 
I 

m 

T* 

X 
(c) 

FIG. 8.11 A source-follower (CS) equivalent circuit (a), reduced to (b), then to (c) by the 
substitution theorem and Norton to Thévenin conversion of the current source. The Vj source 
driving rm is separate from the input Vj source but has the same output. With no input impedance, 
rm could be made to shunt CGS instead. 

Substituting Z L = 1/sCs, Zg reduces to 

Z g sCn \sCGS sCs || V Cs sCj) (8.89) 

A more useful form, with the same topology as that of Section 7.3, is derived 
by expressing (8.89) as 

Z. = - 1 

1 
sCaD 

( 

U CGS || CS)J I \ 

5 ( C O S + C S ) T T + C { 

1 

?) 

1 ^GS"I" ^ S 

^GS || CS S(CGS || CS)J 
(8.90) 

This topology is shown in Fig. 8.12 and is compensated by the method of 
Section 7.10, that of shunting the gate with a series RC, which produces a 
purely capacitive input. The values of the compensating elements are derived 
from the expression for Zg from (8.90). 
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-friCQiS+Cs) 
Cosila 

(Cos Iks) 

(a) (b) 

FIG. 8.12 Equivalent hf gate impedance (a) and its equivalent circuit (b), similar to BJT hf base 
impedance. For FETs, Cas is too large to ignore, and the values of elements in (b) are consequently 
different. 

A source-follower is usually used to prevent loading of a high-impedance 
source. If the source impedance is resistive, then it forms an uncompensated 
voltage divider with Zg. This can be compensated by introducing a shunt RC 
in series with the input (Fig. 8.13). It forms a compensated divider with Zg, 
resulting in a resistive input. 

The last CS problem we consider is distortion due to large-signal effects. 
When a large-amplitude square-wave is applied to the compensated CS, CGS 

and rm both change significantly between levels. If Cx of Fig. 8.13 is adjusted 
for compensation of the positive transition, then for the negative transition, 
rm and CGS increase causing rT to increase. An increase of CGS increases the 
step fraction, causing negative overshoot, or undershoot. 

The transfer function is also affected. Both pole and zero decrease, but 
with significant Cs , the pole decreases less. Consequently, p/z decreases, 
causing the compensator to overcorrect and produce undershoot. FETs with 
large CGS have reduced undershoot, and if they also have a large rT, undershoot 
error diminishes more quickly. Similarly, FETs with large pinch-off voltages 
have less rm variation with VGS. 

FIG. 8.13 A hf-compensated FET input buffer amplifier. The series RC at the gate makes the 
input appear capacitive. C,, Rx, and R2 form a compensated divider with the input capacitance. 
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Example 8.7 CD Input Buffer Compensation 

A source-follower has a transconductance of 50 mS (rm = 200 Ω), CGS = 
6 pF, and CGD = 2 pF. Manufacturer's data sheets give capacitances as 

Ciss = C c S + ^ G D 9 Crss = C G D 

With a load capacitance of C s = 1 0 p F , a series RC shunting the gate 
compensates the FET input. To calculate its values, rT is needed: 

TT=rmCGS== 1.2 ns 

Then, from Fig. 8.12, 

/ C G S + C S \ 

'm\cG,\\cJ i ^ . J ^ ' =85311 =» 820Ω, 

C = C0s II Cs = 3.75 pF =Φ 3.9 pF 

The input now is a shunt RC, where Cg= C + CGD = 5.9pF and 
R2 = 1 Mil. To compensate this pole, a shunt RC is placed in series with 
the input (as in Fig. 8.13). For applications in which the input comes 
from a probe or passive attenuator, the compensating RC is in the probe 
body so that the probe itself contains the top part of the voltage divider. 
For a 10 Mil input, 

« , = 9MO, c , = ^ = ^ = 0.66pF 

If no probe precedes the input, then to avoid dc gain error due to the 
divider, its attenuation must be near unity, and R} must be small relative 
to 1 ΜΩ. For large JR,, Ct is an extremely small capacitance. The Rx 

resistor probably has more parasitic shunt capacitance than C,. As a 
consequence, practical values of capacitors make it infeasible to try to 
compensate the input divider. That is why, for example, oscilloscope 
vertical inputs are marked with labelings such as 1 ΜΩ, 22 pF. 

The circuit of Fig. 8.14 is an alternative approach to CD compensation. 
It has two signal paths: the main path through the FET and a compensation 
path through the CB BJT. The FET path transfer function is given by (8.87) 
whereas for the compensation path, C forms a divider with Z77/()ß + l). The 
BJT-path voltage gain is 

V i " Û t o ' [ s r m F E T {C G S +Cs) + l][ire(CT + C) + l] 

The paths add to produce the total transfer function. Since both paths share 
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+VDD 

FIG. 8.14 Alternative CS compensator with a CB current source, compensated when C = Cs 

the pole with time constant, 

r mFET(CGS" ' " ^ S ) = TTFET"'" ^ I T I F E T C S 

then if the BJT time constant 

re(C7r + C) = TTBJT+'*eC 

(8.92) 

(8.93) 

is much smaller than (8.92), its pole can be ignored and the transfer functions 
of the paths added: 

^ 2 
Vi 

s(TT F E T+a0rm F E TC) + l 
lrT+reC^O 5 ( T T F E T + r m F E T C S ) + 1 

For flat response, the time constants are equated and 

aQC = CS =$ C = CS, OL0=\ 

(8.94) 

(8.95) 

For step inputs with fast edges, the voltage differentiation of C can cause 
currents that exceed IE and drive the BJT into cutoff. 

8.6 Emitter Compensation 

An impedance in series with the emitter (or source) of CB and CE (or CG 
and CS) amplifiers creates series feedback (see Section 3.12) and can improve 
speed. Compensation networks can be connected to the emitter node that 
correct for speed limitations at the collector. Figure 8.15 shows a CB stage 
with capacitive output loading. A series RC is placed in parallel with RE to 
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FIG. 8.15 A lf-compensated CB. The series RC across RE creates a zero in the transfer function 
that cancels the output pole. 

provide correction. In the If region (or for ττ^·οο), the transfer function is 

RL s(RE+R)C + l 
r e +f l E ( iÄ L C L +l)[s(Ä + r e | |Ä E )C + l] 

(8.96) 

For compensated response, the zero cancels the collector pole at frequency 
1/ RLCL, leaving a much higher-frequency pole. For a flat frequency response, 
the compensating elements must have the values 

R — RL — RE, C — CL 

and for bandwidth extension, 

(R-l·re\\RE)C«RL·CL· 

(8.97) 

(8.98) 

For r e« R and RE, then R« RL. 
Compensation of CE (or CS) amplifiers is similar. In Fig. 8.16, a similar 

network is connected to the emitter resulting in negative (8.96). In both cases, 
we have ignored transistor reactances, and the resulting equations are useful 
for amplifiers for which the output pole is well below fß. 

Analysis involving the hf region uses the hybrid-^ BJT model (and its 
extension to FETs). The CB stage has the advantage over the CE of no Miller 
effect. However, Z^ forms an uncompensated voltage divider with RE, requir
ing an additional shunt CE around RE for compensation. At the output, Ομ 

contributes to CL. 
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FIG. 8.16 Equivalent circuit of a CE with emitter-network compensator, similar to the CB in 
Fig. 8.15. 

The CE suffers from the Miller effect, the cause of its dominant pole. Also, 
the input impedance is a hf-gyrated emitter impedance. Networks in the emitter 
circuit that compensate for output poles have the side-effect of creating input 
anomalies. To design a fast amplifier with CE input, the Miller effect must be 
minimized and input impedance controlled. The Miller effect is essentially 
eliminated by following the CE with a CB (making it a cascode) or operating 
the CE as a shunt-feedback amplifier. We shall first study the input side of 
the CE by assuming a cascode configuration. This simplifies analysis and 
allows us to ignore Ομ for a while and regard the CE as a transadmittance 
amplifier. 

The transresistance approach (now generalized to the transimpedance 
approach) applies in the hf region, using the hf BJT model of Fig. 7.8. CE 
output current is ß(s)Ib. The transadmittance (Fig. 8.16) is 

Io = ß(s)Ib_ß(s) 
Vi 

ß(s) 
Vi Zb [j8(*) + l]ZE 

a(s)YE = 1 
S T T + 1 

(8.99) 

Because of a(s), the emitter network admittance YE must have a ( S T T + 1 ) 
factor to cancel hf effects. A simple compensation is to let ZE be a shunt RC: 

R, 
sRFCF + l 

Then, 

The response is flat when 

Vi \RJ 
sRECE+l 

ST-r+1 

(8.100) 

(8.101) 

RECE— τ τ (8.102) 
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In the hf region, the input impedance of the CE is 

a . W ( I ) + 1 ] 2 e . ( ^ i ) ( _ i _ ) 
When (8.102) holds, 

1 1 
s(rT/RE) sCb 

(8.103) 

(8.104) 

The input is a capacitance of value Ch = r T / RE. 
In the base circuit, Cb forms a pole with the base node resistance. A more 

complete hf model includes rh and CM at the internal (b') base node (Fig. 
8.17a). A general expression for the transadmittance is 

I I I V 
-Ό -*o -*e r e 

1 (8.105) 
Vi Je Ve Vt (j8 + l ) Z E + Ä s s [ t f s | | 03 + l)ZE]CM + l 

where ß is ßhf = l/srT and 

When emitter compensation is added, that is, (8.100) and (8.102) are applied, 

RE 
ZF = 

and the transadmittance reduces to 

1 

S T T + 1 

1 
Vi RE S Ä S [ ( T T / Ä E ) + C J + 1 

In the If region, for I{ = VJ RB, 

RB 

lf ° RJ{ßQ+\) + rQ + RE 

(8.106) 

(8.107) 

(8.108) 

\*Λ \*A 

α « 4 

ΖΕ h 

(a) (b) 

FIG. 8.17 CE transresistance amplifier with internal C^ (a); CE current amplifier with external 
CM (b). 
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The hf model has a0 = 1 and re = 0. The If current gain is then 

Κ>=^ (8.109) 

High-speed amplifiers are usually analyzed in terms of current gain because 
the input variable to a stage is usually a current. For example, the cascode 
CB has a current input. The input to a CE is usually the collector of another 
transistor, modeled as a current source. The Thévenin voltage source input of 
Fig. 8.17a is changed to a Norton equivalent input by setting 

Then (8.107) is used to express current gain as 

Io h K-t (8.110) 
/i VJRB sRs[(rT/RE) + C^+\ 

Both (8.105) and (8.110) are approximate because the path to the output 
through C^ is ignored. It introduces a RHP zero at 1/ΚΕϋμ. This frequency 
is usually much higher than the others and can be ignored. The passive path 
through CM causes an output response to occur sooner than the inverted 
response of the active path. This passive path current is the cause of preshoot 
in the output step response. Instead of rising, the step first dips negative (Fig. 
8.18). 

The effect of r'b and Ομ is to degrade speed. Without them, the time 
constant of the pole in (8.110) is at 

RB^=KrrT (8.111) 

Given Kx by design choice, there is an optimum value of RB that minimizes 
the pole time constant, which can be written in terms of Kx. By multiplying 
out the pole time constant in (8.110) and setting its derivative to zero, we get 

The optimum RB is 

Au τ τ + Λ Β Ο Μ + ^ ^ + ^ Μ ) = 0 (8.112) 

optimum i ? B = J ^ - ^ (8.113) 

Preshoot 

FIG. 8.18 Waveform with preshoot, caused by a RHP zero. 
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For this value of RB, the current-gain pole has a time constant of 

Mi+2Vü) (8ii4) 
A CE with a If voltage gain of Kv has an effective Ομ of K v +1 due to the 
Miller effect. The optimum RB and pole time constant are modified by multiply
ing CM by K v + 1 . 

If CM is located at the external base node (on the outside of rb), as in Fig. 
8.17b, the current gain is 

'" K> (8.115) 
I, s2(/CiTTRBCM) + s[RB(TT/AE+CM)+ri)TT/JRE] + l 

Î 
[RsC^ + K-Ml + rURs)] 

Again, the RHP zero has been ignored. The CE input now consists of two 
cascaded RC integrators. The minimum ζ is 

m i n £ = W l + - 2 - = - r ! - (8.116) 
V RB Κλττ 

Pole separation is typically not significant enough to approximate the response 
by a dominant single pole since fast amplifiers have values of RB not very 
different from rb. Consequently, the rb term in (8.115) cannot be ignored. The 
value of RB at maximum pole radius occurs when the poles are repeated and 
ζ = 1. This results in a fourth-degree equation in RB. We can approximate the 
optimum RB by assuming independence of the time constants of the RC 
integrators. Then fastest response occurs when their time constants are equal, 
or 

RBC. = r'b(^J (8.117) 

Solving for RB gives 

optimum RB = J 'χ'*τΤ}° (8.118) 

Interestingly, (8.118) is the same as (8.113). Whether CM is largely internal or 
external to the base does not strongly affect the optimum RB value. 

8.7 Cascode Compensation of the 
Common Base Stage 

We now turn attention to the cascode CB. Above fß of the CB transistor, base 
resistance is gyrated at the emitter to an inductance which resonates with the 
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output capacitance of the CE. This shunt RLC forms a parallel resonance with 

1RS C 2 V RBCn 
(8.119) 

where RB is the CB base resistance and C0 the CE output capacitance shunting 
the input to the CB. For a BJT with fT = 300 MHz, C0 = 3 pF and RB = 100 Ω, 
ζ = 0.665 or a pole angle of 48°. With a transistor twice as fast, the pole angle 
is about 60°. This resonance can cause oscillation because C0 is due largely 
to Ομ of the CE and is connected to the base. The CE provides the gain that 
causes oscillation. 

This resonance can be damped by adding resistor Rs in series with the 
emitter of the CB, isolating it from C0. The series damping required for M FED 
response is 77 Ω. Typically, r'e is 1 Ω, far less than the resistance required. A 
series resistance damps the resonance but also creates an uncompensated 
voltage divider with the CB gyrated base impedance. In addition, it causes 
voltage gain at the collector of the CE and the Miller effect. The CB transfer 
function is 

/ o 1 (8.120) 
/i S2{TTRBC0[1 + (RS/ RB)]} + S(TT+ RsC0) + l 

The pole radius ωη is reduced by 

^ S + ^B 

Compensation in the CB emitter is shown in Fig. 8.19a as a shunt RC. The 
hf equivalent emitter circuit (Fig. 8.19b) has a shunt RL due to the gyrated 

(a) 

M 
τ τ /? Β 

x 
=Fcs 

(b) 

FIG. 8.19 Cascode CB compensation of Ze with shunt RC (a) and hf equivalent circuit (b), in 
which an all-pass network is formed, resulting in a resistive emitter equivalent input impedance. 
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RB. We encountered this network before (Fig. 7.20). When 

the hf model yields 

/, j=a(s)Ie = 1 
S2(TTRBC0) + S(TT+RSC0) + 1 

(8.121) 

(8.122) 

C0 forms a current divider with the emitter branch; Je is calculated from the 
divider formula. This compensation maintains the pole radius the same as the 
uncompensated CB. For design, the value of Cs is determined by (8.121). Rs 

is expressed in ζ from (8.120) as 

(8.123) 

For Rs = RB, the network of Fig. 8.19b forms an all-pass constant resistance 
of RB. The poles are then located at - 1 /R B C 0 and - l / r T . 

An estimation of C0 is required to use (8.123). Current in Ομ of the CE 
is input current to the base. The resulting collector current is larger by the If 
current gain. In effect, current in CM results in a total current of K-x +1. Thus, 
the effective capacitance of CM is (/Ci+1)CM. (This result suggests a form of 
Miller's theorem for current amplifiers.) 

A CB compensation scheme proposed by John Addis is shown in Fig. 
8.20. A series RC is added at the base. Base bias current is ideally supplied 
from a current source or from a large resistor connected to the collector supply. 
The emitter impedance is 

ZF = 
RB+\/sCB_rT(sRBCB+\) 

/3(s) + l ( S T T + 1 ) ( C B ) 

ZE shunts C0. The current gain of the CB is 

1 
lx S2(TTRBC0) + S[TT(1 + C0/CB)] + 1 

(8.124) 

(8.125) 

(fi' 
FIG. 8.20 Alternative CB compensation using base series RC, with no reduction in pole radius. 
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The pole radius is not reduced by this technique, but control of ζ is more 
limited: 

* 2 V RBC0 2VKBC2
B ^uncomp 2 V RBCi (8.126) 

The appearance of C0 in both terms indicates a minimum ζ dependent on C0. 
Because of the unavoidable base spreading resistance, r{,, # B is partly con
strained in value by the BJT. The design value of CB is found by solving (8.126): 

C R = -
C0 

2 £ / V r T / K B C 0 - l 4f/£uncomp-

The lower bound on ζ is that 

£> b u n 

(8.127) 

(8.128) 

We have yet one other pole in the cascode requiring compensation. At 
the output, the CB transistor output capacitance forms a pole with the load 
resistance. This pole can be compensated by peaking the CE. The CE is already 
compensated by (8.102); output compensation thus requires a more compli
cated emitter network. The strategy is to cancel the output pole with a zero. 
Poles of the emitter network impedance are zeros of the cascode transfer 
function. The network of Fig. 8.21 meets the requirements. Its impedance is 

^ „ sRC +1 
E E s2(#ECE/?C) + s ( K E C E + # E C + KC) + l 

(8.129) 

Input impedance compensation requires one of the poles of ZE to be at τ τ . 
For pole-zero cancellation of the output pole, with time constant rL, the other 
pole of ZE must be at —l/rL. Therefore, the denominator of (8.129) is con
strained to be of the form 

(srT+ 1 ) (ST L + 1) = S2TTTL+S(TT+ rL) + 1 (8.130) 

-ft 
CE4= 

/77 

FIG. 8.21 Cascode output pole compensation at the CE emitter. 
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The zero must lie between rT and rL. The network acts as a phase-lead 
compensator, shifting the load pole to the higher frequency at 1/ RC The 
cascode transimpedance with ZE compensation is 

Vo 1 

~ 7 ~ = _ J R L ' Kr r i ^ W + ^ i ^ T ^ i ^ O + l ( 8 · 1 3 1 ) 

For design, RE, KÌ9 rT, and TL are given. We can choose RC based on the 
desired damping ratio without affecting the pole radius: 

RC = 2CyiK^i-KiTT (8.132) 

With RC determined and RE constrained by K„ the coefficients of (8.129) 
and (8.130) are equated and yield 

CE= JTT^ (8.133) 
RERC 

„ ττ+rL-RC - TTTJRC 
C=— — (8.134) 

Since RC is known from (8.132), R is easily found once C is known. Note 
that with R and C added, the value of CE is different from that given by (8.102). 

Example 8.8 Cascode Dynamic Response Compensation 

The cascode amplifier of Fig. E8.8 is to have approximately M FA 
response and a transresistance of 1 kfl with maximum bandwidth. The 
transistors have fT = 600 MHz, CfX = 2 pF, and r'h = 50 il . The input cur
rent source terminates in a 100 Ω base resistor RB. The output has 5 pF 
of load capacitance. 

To analyze and compensate this amplifier, we begin with some 
transistor calculations: 

rT = - - — = 265ps 
2π / τ 

Co 2= C M 2 + C L = 2 p F + 5 p F = 7 pF 

Since RB is given, the optimum RE or Kx can be determined from (8.118) 
by solving for RE: 

optimum ΑΕ = ( - ^ Τ Γ ) r'h = 663 Ü => 68 Ω 

Then KX = RJRE=\A1. With RE, RL can be found: 

Rm = ̂  = Yj=RLKi => l*L = ~ r = 680O =Φ 680Ω 
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+Vfcc 

x 
I 
m 5 pF 

= ? C E 

Π7 

•Vo 

FIG. E8.8 

The output pole is at 
1 

A = 
1 1 

27TTL 2TTRLCO2 27r(4.76nsec) 
33.4 MHz 

To maximize bandwidth, compensation of rL is required. We proceed to 
compensate for both rL and the input impedance of the CE. For MFA 
response (and assuming a single pole-pair), f = V2/2 = 0.707. Also, 

KiTT = 390ps 

Applying (8.132), we find the series RC compensator in the emitter 
circuit to have a time constant of 

RC = 2fVKiTTTL- Κ,τΎ = ( 1.414)V (390 ps)(4.76 ns) - 390 ps = 1.54 ns 

Continuing with (8.133), we obtain 

C E 
ÄFÄC = 12.0pF => 12 pF 

and from (8.134), 

. r T + r L - R C - T T T L / J R C _ Λ ^ _ ^ 
C - j T = 3 9 . 2 p F ^ 3 9 p F 
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With C known, R can be found from previous calculation: 

1 54 ns 
Κ = ^ Γ ^ = 39.3Ω =» 39Ω 

39 pF 

From series compensation, the new pole is at I/ITTRC = 104 MHz. 
The CB base spreading resistance of 50 Ω may require compensation. 

At the emitter it forms a shunt RLC circuit with €μ1 with 

Tn = VrTriCM l = 163 ps => 978 MHz 

and 

= I / ττ 
2Vr£CI £ l 

= 0.814 => 36° 

Since this resonance has a high £ relative to MFA and has fn at nearly 
1 GHz, this pole is not likely to affect the response much and is not 
compensated. 

With RE now known, we can calculate the CE input time constant. 
The uncompensated time constant, with only RB in the emitter circuit, 
is approximated as 

uncomp η = (ÄB + 'ί> + ÄE) ( CM + -^Η = (218 Ω)(5.9 pF) = 1.29 ns 

This corresponds to a frequency of 124 MHz. The compensated rx is 

comp Tt = (Rn + ri)(^+~^J ==S$5 ps => 180 MHz 

The series RE and (rT/RE) is replaced by r T / R E alone, and the speed 
increases. The uncompensated bandwidth is calculated by single-pole 
approximation of the time constant, from (8.21): 

uncomp r = >/T? + TCB+TL = >/(1.29 ns)2 + (163 ps)2+ (4.76 ns)2 

= 4.93 ns => 32.3 MHz 

With compensation, 

compr = V/(885ps)2 + (163ps)2 + (1.54ns)2-1.78 ns => 89 MHz 

Shunt or series inductive peaking at the output could increase the band
width above 100 MHz. 

The choice of ζ = VÏ/2 leads to MFA response for only one pole-pair. 
However, in this circuit, the CB pole and CE input pole also influences 
pole angle. The combination is not exactly MFA but is slightly overpeaked 
from MFA due to the additional poles. 
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The value of C^ is not given in manufacturer's data sheets. Since Ομ 

depends on VBC, its value cannot be specified except at a given voltage. The 
typical value is at VBC = 0V and is Cjc(0) or Cj0. Then C^ is the junction 
capacitance CJc: 

JC [i-(vBC/^c)r (8.135) 

where (f>c is the barrier potential and m depends on the junction grading. 
Typically, 

φ€ = 0.75 V, m =0.5 

For linearly graded junctions, m = 0.33. The SPICE parameters corresponding 
to these quantities are 

Q JO CJC, </>c VJC(PC), m MJC(MC) 

For a normal-mode NPN, VBC is negative, and the subtraction in (8.135) is 
the addition of a positive voltage ratio. With the typical values, at 5 V reverse 
bias a junction has one-third of the capacitance it has at zero volts. 

8.8 Compensation Network Synthesis 

The emitter compensation network of Fig. 8.21 was chosen because its imped
ance provided the poles and zero required for compensation. In general, 
compensation requirements are known in terms of poles and zeros whereas 
the topology and equations for element values are unknown. The compensation 
of hf-gyrated impedances was simplified (in Chapter 7) by deriving the 
equivalent circuits and noting that all-pass networks could be formed with 
them. Because of the need for compensation networks, we now examine a few 
common synthesis techniques. 

One compensation technique is to make a reactive network with impedance 
Z resistive and thus independent of frequency. Another compensating imped
ance Zc is added in series or parallel with Z (Fig. 8.22). 

(a) 

I - 1 

I—J 
(b) 

Zc 

FIG. 8.22 All-pass (resistive input) compensation of network of impedance Z, with compensating 
network of impedance Zc in series (a) or parallel (b). 
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(a) (b) 

FIG. 8.23 Examples of resistive input networks when LC = R2 

For the networks in Fig. 8.23, Zx = R when 

LC = R2 (8.136) 

A shunt RL, such as an emitter-gyrated base resistance, is compensated by 
adding in series a shunt RC (Fig. 8.24). Then, from (8.136), 

R = RB, C=^~ (8.137) 

This creates a resistive voltage divider at the emitter. If the load is capacitive, 
C is made larger to compensate the divider. Then Z of the network from the 
emitter must still be equivalent to a shunt RC satisfying (8.136). 

More generally, a shunt RC can similarly be compensated by adding a 
shunt RL in series with it. Or a series LC can be compensated by the two 
resistors shunting each of them (Fig. 8.23a). In these cases, Z, = R when (8.136) 
is satisfied. 

A series RC, such as a base-gyrated emitter resistance, can be compensated 
by shunting it with a series RL, as in Fig. 8.23b. The input of a CC with 
significant C^ at the internal base node and resistance in the collector supply 
return line forms a series RC that can compensate the series RL of the base. 
Since base R and L are both parasitic (r'h contributes to R and lead inductance 
to L), they can be made to appear resistive at b'. Adjustment of the collector 
and base resistance and series base inductance makes it is possible to satisfy 
(8.136). For r'h = 100 Ω, Lb = 10 nH, and Cl·L=3 pF, the impedance at b' toward 
b is resistive and is 100 Ω when the collector resistance is 100 Ω and 20 nH is 
added to the base circuit. This added inductance might be from the inductive 
peaking of the previous stage. 

FIG. 8.24 Output impedance 
compensation of a CC with 
base resistance. 
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R> c =r: 3L 

Z{: 

FIG. 8.25 A more complicated all-pass network. 

More complicated networks are also possible, such as in Fig. 8.25. Here, 
the conditions for a resistive input of Zx = R are 

LC = LCC=R2 (8.138) 

This network is a compensated shunt RLC, or a shunt RC in which the 
capacitor has parasitic inductance. This is typical of electrolytic capacitors, 
which have resonant frequencies around 1 MHz, or for higher frequencies, 
any capacitors with leads. A monolithic multilayer ceramic capacitor has about 
5 nH of inductance with leads of a length needed for insertion into circuit-board 
holes. Leadless "chip" capacitors are sometimes required for good high-
frequency bypass or decoupling of the power supply terminals of active devices. 

Two other common networks are shown in Figs. 8.26, the bridge-T, and 
8.27, the lattice or bridge. A special case of the bridge-T is applied in T-coil 
compensators. The input is Zx = R when 

Z,,Zh = Ä 2 = > - ? = 1 
Vi ZJR + Ì 

(8.139) 

Za and Zb must be dual reactances (or reciprocal impedances)-, if Za is capacitive, 
Zb must be inductive. 

< 

Π 
Za 

p ■ 
Zb 

La 

r p 
+ v0 -

R 

d b 

Zb 

FIG. 8.26 Bridge-T network. The input 
impedance is resistive when Z.dZh= R2. 

FIG. 8.27 Lattice or bridge network. 
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The lattice network has the same resistive-input conditions but a different 
transfer function: 

Two general methods are easy to apply to the synthesis of passive networks 
with a given Z(s): 

1. Partial-fraction synthesis, for factored poles or zeros 
2. Continued-fraction synthesis: network topology explicit 

Partial-fraction synthesis is based on parti al-fraction expansion of Z(s). This 
requires factoring the denominator. If the numerator is easier to factor, expand 
Y(s) = 1/Z(s) instead. Various network topologies can result, however, and 
other design considerations could constrain the choice of topology. 

Example 8.9 Partial-Fraction Network Synthesis 

A network with the following Z(s) is described: 

Z = R- —^ - (El) 
(S1Ï + 1XST2+1) 

Z can be written as 

Z = — — + — — (E2) 
sr} 4-1 sr2 + 1 

When (El) is partial-fraction expanded, A and B are 

A = R(lLZll\ B = R(llZll) 
\ T I - T 2 / \T2-TJ 

A and B are resistances. Equation (E2) can be written as 

Z~s(Ti/A) + l/A + s(r2/B)+l/B~l/SÌTì/A) 

Z has the form of two shunt RCs in series. 

J+1/S(T2/B) 

Continued-fraction synthesis produces a continued-fraction form of Z. 
A desirable feature of continued-fraction impedances is that the topology is 
explicit in the form of the expression. The general procedure is to invert 
rational expressions that are less than unity and to divide by synthetic division. 
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Example 8.10 Continued-Fraction Network Synthesis 

An impedance of the form of Example 8.9 is 

sc+1 
as2+bs + \ z = R- _2t . . . , (ED 

R is first multiplied to the numerator in s and the fraction inverted: 
1 

/as2+bs +1\ 
\ sRc + R ) 

The fraction is now greater than unity and can be divided to become 
1 

(JL\ (bc-~a\ i 
\ Ä c / \ Re2 / sRc + R 

Z = . 2 , , — (E2) 

z = ~l—x 77 \ ; (E3) 

c2--frc + q\ 

The remainder is divided by sRc + Λ and then inverted. Division is carried 
out once again, and the final continued fraction results: 

Z = / a\ (bc-a\ 1 ( E 4 ) 

\c"-bc + a/ \c"-bc + a/ 

The terms in the denominator of Z are admittances. The capacitance 
a/ Re is in parallel with resistance 

"(ώ) 
and with the series RL, where the resistance is 

R( 2 I ^ )~Rs \c -bc + a/ 

and the inductance is cRs. 

Continued fractions represent shunt topologies, and partial fractions 
represent series topologies. In continued-fraction expansion, divisions are 
executed the usual way, beginning with the highest power in s. If, instead, 
division begins with the lowest power, the divisor grows in powers of s. The 
remainder is then a power of s higher than that of the dividend. This approach 
does not produce the circuit topology of the desired network but can be useful 
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in approximating a network by truncating the quotient. No s2 term represents 
a circuit element, but it can be transformed into an equivalent network with 
negative element values. (See Section 7.3.) 

Example 8.11 Differentiator 

The circuit of Fig. E8.11a is a differentiator with resistive input and 
output, suitable for transmission-line coupling. The circuit is analyzed 
by transforming it to Fig. E8.11b, using the T-coil theory of Section 8.4. 
This topology is recognized as an approximate bridge-T when RL~ R 
and the coupled inductors approach being an ideal transformer. Then 
Lx = L2~ 0, and Za = sM, where M is the mutual inductance of L, and 
L2, and Z b = 1/sC. Applying (8.139), we obtain 

1 sRC 
ZJR + l sRC + 1 (El) 
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and Zj = jR. The circuit differentiates to a frequency of Ì/RC. A 50 ii 
transmission line can drive the differentiator and be terminated properly 
when R = 50Ù. For wideband differentiation to 100 MHz, RC = 
1/2TT(100 M H Z ) = 1.59 ns. Then C = 31.8pF and M must be the pulse 
transformer magnetizing inductance: 

R2 
M= 7 9 6 n H 

The output-terminating resistance can be the characteristic impedance 
of another transmission line. In other words, the differentiator can be 
inserted into a transmission line without causing discontinuity. For 
example, high-speed differentiation of a ramp can be performed by 
driving a 50 Ù coaxial cable into a 50 Ω test section wherein the differen
tiator has been built. This section then terminates in the 50 il input of 
an oscilloscope vertical amplifier. 

8.9 Differential-Amplifier 
Compensation 

The two-transistor diff-amp in Fig. 8.28 has a voltage divider formed by R 
and Ze of the other transistor. This divider can be compensated by shunting 
R with a compensating C. The approach is the same for both Π (Fig. 8.28a) 
and T-section (b) emitter networks, since they are equivalent. We want to 
compensate 

Ζπ + ΖΒ re | / Z B \ / STß + l 
e ß(s) + l *α0ττ+1 \ / 3 0 + l / W o T T + l 

Below fT, the first term is approximately re. In the hf region, ZB is gyrated. 
The situation is similar to that of the CB of the cascode (in Section 8.7). For 
ZB = RB, the resistive network of Fig. 8.23a is formed. To present a resistance 
to the emitter of the other BJT, the compensator time-constant is 

RC=ΙΨ =* c=Ί? (8142) 

In practice, significant stray capacitance is often present at the emitter (or 
current source) node(s). The circuit is then represented by Fig. 8.19, in which 
C0 is the stray capacitance. The results of Section 8.7 for the cascode can be 
applied. From (8.119), increasing C0 decreases £, causing the circuit to be less 
damped. 

Transistor compensation techniques apply to differential as well as single-
ended amplifiers. For balanced differential amplifiers, the shared networks 

(8.141) 
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(a) 

(b) 

FIG. 8.28 BJT diff-amp compensation in emitter circuit with C, with Π (a) or T (b) biasing 
network. The two circuits are equivalent. 

between sides experience twice the drive of a single-ended network. When 
gain is involved, their effective impedances are halved. 

8.10 Shunt-Feedback Amplifier Design 

In Sections 4.15-4.17, we analyzed the frequency-independent shunt-feedback 
amplifier and derived the closed-loop transresistance, (4.90). A shunt-feedback 
topology was also considered in Section 6.8 with capacitive Zf. The general 
topology, shown in Fig. 6.22, has a transimpedance given by (6.47). 

A wideband realization of a shunt-feedback amplifier is the BJT amplifier 
represented in Fig. 8.29 with frequency-dependent β and general impedances. 
This amplifier is equivalent to the general topology in Fig. 6.22a but is explicit 
in ß(s) so that we can analyze its behavior in the hf region. Assuming a general 
ß(s) at first, we find the transimpedance by solving the flow graph of Fig. 
8.29b. (This flow graph is a generalized form of Fig. 4.26b.) 

Vo = z Ζλ-βΖ, 
Ix ^ Z H - Z Ì + OS + D Z L 

(8.143) 

The first term in the numerator represents the passive noninverting path to 
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Zf 
I I 

(a) 
m 

ß(ZfIIZL) 

τ Z L 

Zf + Zi 

(b) 

(c) 

FIG. 8.29 A general equivalent circuit of a shunt-feedback amplifier in ß(s) (a), its flow graph 
(b), and its simplification using the BJT hf model, where ß->oo and Z^ = 0, (c). 

the output, and the second term represents the active path through the BJT. 
The input impedance is derived after (4.100): 

^ II ^ r ^ 
7 = ———- — Z Z , n 1 + Gtf ' 

Similarly, following (4.102), 

zf+zL 
Zf+Zi + ()3 + l)ZL 

/Z f +ZA Zr+Zi 
Zf+Zj + ^ + DZL 

(8.144) 

(8.145) 

The hf BJT model has Ζπ = 0. If Z„ is not Z,, then it is a shunt contributor 
to it, and when set to zero causes Z, to be zero. The hf approximation of ß(s) 
is 1/STT. Making these hf approximations to Fig. 8.29b, we solve the hf flow 
graph of Fig. 8.29c for the hf transimpedance, which is 

Zr 

hf STT(1 + Zf/ZL) + 1 
= - Z , II ahfZf (8.146) 
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+vcc 

ir* 

FIG. 8.30 Typical single-BJT shunt-feedback stage with load and feedback capacitances. 

Zin is trivially zero, and the hf output impedance is 

srTZf (V0M)|hf 
Zout(hf) = srT(l + Zf/ZL) + l 

(8.147) 

These general results are applied to a less general single-BJT shunt-
feedback amplifier, shown in Fig. 8.30, where 

Zf— Rr 
1 Rr ZL=RL I sCf sRfCf+ 1 ' 

Substituting into (8.146) and simplifying gives 

#, 1 
sCL s# L C L + l 

I, s^TRriCr+CJ + slMl + Rr/RJ + RrQi + l 

(8.148) 

(8.149) 

Before analyzing this transimpedance, we can easily obtain from (8.147) the 
expression for output impedance: 

^out — ~ 
STTRf 

^out s^rRriQ+CJ + slTril + Rr/RJ + RrCfl + l 

1 -{*ΛΜ$ srTRr \s(Cr+CL) 

This impedance is represented topologically in Fig. 8.31 as a shunt RLC. 

(8.150) 

TTRf 

FIG. 8.31 Equivalent output impedance of shunt-feedback amplifier. 
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From (8.149), the complex pole-pair damping ratio is 

b _rT(l + Rr/RL) + RfQ 
2^ 2VrTfl f(Cf+CL) 

(8.151) 

The desired response is set by choosing ζ and solving for the element that is 
free to be varied. For a given transistor, rT is fixed, and the required gain for 
the stage is also determined by the amplifier design strategy. This sets Rf. 
Biasing constrains RL, and Cf is partly determined by CM of the BJT. This 
leaves CL; its minimum is determined by the capacitive loading of the next 
stage. The best design insight is gained from the loci of poles when various 
elements are allowed to vary parametrically. The loci are determined by 
extending the technique of Section 5.11. 

The pole locus is described by geometric equations in the real and 
imaginary s coordinates, σ and ω. The two basic equations are (5.156) and 
(5.158). Starting first with Rf as parameter, substitute into (5.156a) from (8.149): 

b TT(l + Rr/RL) + RfQ 
σ = ~^Γ=~~^>—p m M r \ (8.152) 

2a 2rTRr(Cr+CL) 
Solving for R{, we obtain 

-rTRL 
f~ ττ+RL·Q+2ττRL·(Q+CL·)σ 

Equation (5.158) leads to 

2 , 2 1 1 τT+RL·Q+2τTRL·(Cf+CL·)σ 
a TTRr(Q+CL) TT/*L(Cf+CL) 

Simplifying the right side and collecting σ terms on the left side yields 

2 / 2 2σ\ TT+RLQ 
ω 2 + / 2 + _ \ T L ^ Γ ( 8 1 5 5) 

Completing the square in σ by adding \/τ\ to both sides, we obtain 

ω2 + 
/ 1 \ 2 rT+RLQ 1 (\ I RLCL-rT \2

 2 / 

\ τ τ / TTR^CÇ+CJ ΤΤ \ τ τ V /?L(Cf+CL)/ 

This equation describes a circular locus centered at cr0 = —1/ with a 
radius of ωΓ. Unlike previous loci, the circle does not contain the origin but 
is offset to the left, as shown in Fig. 8.32. In practice, usually, 

RLCL»TT 

and cor simplifies to 

= = - / C L RLCL»TT (8.157) 

At Rf=0, the poles are at -oo and -ωτ. As Rf increases, they move together 
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Rf increasing 

FIG. 8.32 Root locus of shunt-feedback stage poles when R{ varies. The circle does not contain 
the origin. 

and become complex, following the circular locus with decreasing σ. At the 
σ axis they split; as #f-»oò, one goes to zero and the other to 

TT/f lL+Cf 

rT(Cf+CL) 
(8.158) 

The locus equation for parameter rT is derived similarly to that for Rr. It 
is also circular, centered at - 1 / RfCf with 

The condition of (8.159) is required to keep ωΓ real. When RL is replaced by 
a current source, (8.159) simplifies to 

1 / C L P 
RrCrV Cr+CL' 

•oo (8.160) 

At rT = 0, the poles are at — 1/ RfCf and —oo. As rT increases, the poles move 
together (Fig. 8.33). The low-frequency pole actually increases in frequency 
with a slower transistor. The poles form a circular locus with σ decreasing 
until they separate along the σ axis. At rT-»oo, one pole is at the origin and 
the other is at 

1 
(Ä f | |Ä L )(C f +C L ) 

(8.161) 

The locus of CL is derived similarly and has the same form as before. The 
center of the circle is in the RHP at 

a° = lc;]Kfc f -TT(i + Är/KL)(cL/cf) (8'162) 
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ττ increasing 

(ÄfIIÄL)(Cf+CL) 

FIG. 8.33 Root locus of shunt-feedback stage when rT varies. 

with 

1 
ωΓ- RrQ-Ml + Rr/RJiCJQ) 

4 ^ f C f - T T ( l + Äf/^L)(CL/Cf) + rT(CL/Cf)2 

rT 

Often it is the case that 

0-3 CL« Cf, RfCr»TT 

and Zf dominates the response. The locus for CL simplifies to 

1 
σ0 = V Cf / JlrCf ' V TT/?fCf 

(8.163) 

(8.164) 

(8.165) 

For LHP poles, ωΓ> σ0, and (8.165) satisfies this condition for typical values. 
The locus for Cf would also be useful but cannot be put in a form similar 

to the previous parameters. When r'b is taken into account, the transimpedance 
gains a pole, and the denominator is cubic. The effect of r'h is to slightly 
undamp the amplifier. Under the conditions of (8.164), 

b 1 
— = — = constant 
2a 2rT 

Variation in Rf or Cf moves the poles along the vertical locus. An increase in 
Cf or Rf reduces pole angle, though pole radius is also reduced somewhat. 
When CL = 0 and RL^oo, the poles are located at - l / / ? f C f and -ωτ. 

The astute observer will recognize that Zout (Fig. 8.31) is similar to what 
would be expected of emitter impedance due to a gyrated shunt RC in the 
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FIG. 8.34 A general configuration-independent BJT amplifier. Which of the three configurations 
is determined by which node is considered ground. 

base. The coincidence is not accidental. Bruce Hofer has observed that the 
topology of the shunt-feedback amplifier and emitter-follower are identical. 
Figure 8.34 shows a general BJT circuit with impedances shunting each BJT 
terminal pair. Which of the three configurations (CE, CB, or CC) is represented 
depends on where ground is placed, as shown. Since ground is an arbitrary 
0 V reference node, the port impedance of V0 is the same for CC and CE. For 
the CC, Zf is a shunt base impedance; for the shunt-feedback CE, the output 
port is the same, except in relation to ground. Since port impedances are 
independent of grounding conventions, Zout is the same. 

This observation also applies to inverting and noninverting op-amp 
configurations; their topology is identical. In the case of the noninverting 
op-amp, the input signal is added (in series) with the amplifier. 

8.11 Shunt-Feedback Cascode and 
Darlington Amplifiers 

The unavoidable presence of ϋμ in the shunt-feedback amplifier has led to a 
minimization of parasitic feedback capacitance by use of a cascode amplifier 
as the forward path G (Fig. 8.35a). This involves the additional factor a2 of 
the CB. The flow graph (Fig. 8.35b) reduces to a transimpedance of 

Y=-Ä f /{s 3 [ r T 1 T T C Ä f (C f +C L )] 

+ S2[TTITT2(1 + Rf/RL) + rTi Rt(Cf+ CL)] 

+ 5[rT1(l + Rf//?L) + RrCf] + l} (8.166) 

An additional pole due to a2(s) results in a cubic denominator. For 

RrCf»TTI,TT2 (8.167) 
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-a2ft(ZfIIZL) 

(b) 

FIG. 8.35 Shunt-feedback cascode amplifier (a), and hf flow graph (b). 

the denominator of (8.166) can be factored approximately to yield 

Vo^_ Rr 
V, (5,RfCf+l)(52[TT1TT2(l + CL/Cf)] + 5[TT1(l + CL/Cf)] + l) 

(8.168) 

In the complex pole factor, rT2 is present only in a and not b. This results in 
a constant ωη locus for rT2 and a vertical (constant a) pole locus (Fig. 5.13, 
case 3) for the other parameters. 

A transresistance amplifier Rm with load capacitance but with no Rf is 
shown in Fig. 8.36. The voltage gain for a general load impedance ZL is 

v 0 _ _ / z L \ - g * m c f + i 
V, \RJ *ZLCf+l 

For Z L = l / s C L , 

^ 2 
V: "5Äm(Cf+CL) 

(8.169) 

(8.170) 

This result has a familiar RHP zero. Equation (8.170) can be visualized as an 
uncompensated voltage divider in which the upper impedance is a shunt RC 
consisting of Cf and -Rm(l + VQ/ V\), and the lower impedance is due to CL. 
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ττ =FCL 

m 

Zi ι 
X CL » ♦ & 

(b) 

FIG. 8.36 Transconductance amplifier with load capacitance and only capacitive feedback (a); 
its input impedance (b) has a resistive component. 

The input impedance is 

z = *L l 
in /, sCr(l-VJVÒ 

(8.171) 

and has the form of a Miller capacitance. After substitution of (8.170) and 
simplification, we obtain 

Zi"=l~ <ΛΓΛ\ II ̂ ί ι + τ ^ ) ( 8 · ΐ 7 2 ) 

ls(Cf\\ CL)J II \ CJ 
The equivalent input network is shown in Fig. 8.36b. This is a surprising result 
because the input has a shunt resistance, but the actual circuit has only a 
capacitive connection to the input node. This circuit models CE amplifiers 
with significant CM and load capacitance. 

Example 8.12 
Capacitances 

CE with Load and Shunt-Feedback 

In Fig. E8.12, the BJT amplifier has an input impedance determined by 
(8.172). Assume that the transistor has a — 1 and re = 0. Then the trans-
resistance of the BJT is approximately JRE, or 1 kil. The base input 
impedance is infinite and can be ignored. The analysis applies to the If 
region and is not due to hf effects. 

An intuitive explanation begins by noting that the path through Cf 

directly presents a capacitance of the series combination of Cf and CL, 
or 0.9 pF, to the input. Second, if a 1 V step is applied to the input, it 
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Ci Φ 
1 pF i— τ̂ 

/ ? E < l k Q 

FIG. E8.12 

generates 1 mA of collector current. This current divides between C{ and 
CL since they form a capacitive current divider. For C f = l p F and 
CL = 9pF, 0.9 mA flows through CL whereas 0.1 m A flows out of the 
input. This component of current corresponds to the resistive path in 
Fig. 8.36b. The resistance is 

0.1mA = 10ka 

Now let us check this result using (8.172). The series combination 
of capacitances follows immediately. The resistance should be 

«-(·♦£)■ 
and the two solutions agree. 

l k i l (l+^U 
\ l p F / 

10 kÜ 

The amplifier of Fig. 8.36 is now modified to conform to a BJT shunt-
feedback circuit (Fig. 8.37) for the hf region. For a general output impedance 
ZL, the voltage gain is 

sßQ 
Vi s(ß + l)Cr+l/ZL 

Substituting ßM = 1/STT and Z L = l/sCL, we get 

V, \Cf /sTT( l + CL/Cf) + l 

(8.173) 

(8.174) 

To avoid CM, the amplifier can be made a cascode. Then Fig. 8.37 is modified 
by multiplying a2 of the CB to the current source. This leads to a complex 



8.11 Shunt-Feedback Cascode Amplifier / 377 

FIG. 8.37 A hf model of a shunt-feedback BJT stage with only capacitive feedback and capacitive 
input coupling. 

pole-pair in the voltage gain: 

Vi \Cj 
1 

s ττ ιτΤ2(1 + CL/Cf) + srT1(l + CL/Cf) + 1 
(8.175) 

The response can be designed in the usual way for complex pole-pairs. The 
damping ratio is 

-WRK - ) 
(8.176) 

Comparing this with the ζ for a single-BJT shunt-feedback amplifier, (8.151), 
we find that Cf has the opposite effect of damping the response. In this circuit, 
increasing Cf undamps it. 

Finally, the idea of isolating Zf from stray capacitance can be extended 
to the Darlington configuration. Bruce Hofer has analyzed this circuit as shown 
in Fig. 8.38. The transimpedance has a cubic denominator and a zero at ω τ ι . 
If we again assume a dominant time constant of # fCf , the approximate 

FIG. 8.38 Darlington shunt-feedback amplifier. 
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transimpedance is 

Rç(srTl + l) 
h (sRfQ+l){s2rTìrT2[l + (C^+ CL)/ Q] + srTX[l + (C^/ Q)] + l} 

(8.177) 

The complex pole-pair has the same radius as the shunt-feedback cascode but 
has a different expression for ζ. Since CL appears only in a, its root locus has 
a constant pole radius whereas the other parameters have a constant-« locus. 
Therefore, CL is the component of choice for adjustment of response. 

8.12 Closure 

Several elemental amplifiers have been analyzed and design formulas have 
been derived. Fast amplifiers consist of several of these stages in cascade. 
Various combinations are used in fast amplifier designs, such as the diff-amp 
in cascade with a differential shunt-feedback amplifier (Fig. 8.39). We shall 
continue development of the fast-amplifier repertoire later, adding more pre
cise, yet fast, amplifier stages. 

+v 

-L 
* L l 1 ►ÄL2 

Kfi: 

-fr 
Q> 

φ' 
■vW-

►*f2 

i-ύ yr-\ 

m 

FIG. 8.39 CE diff-amp driving a differential shunt-feedback amplifier. 



References / 379 

References 

[1] M. S. Ghausi, Principles and Design of Linear Active Circuits, McGraw-Hill, 1965. 

[2] Carl Battjes, Bruce Hofer, and John Addis, Amplifier Frequency and Transient 
Response (AFTR) course notes, Tektronix, Inc., Beaverton, Oregon. 

[3] E. M. Cherry and D. E. Hooper, Amplifying Devices and Low-Pass Amplifier Design, 
Wiley, 1968. 

[4] Arpad Barna, High-Speed Pulse Circuits, Wiley-Interscience, 1970. 

[5] Ernst H. Nordholt, Design of High-Performance Negative-Feedback Amplifiers, 
Elsevier, 1983. 

[6] Basil L. Cochrun and Arvin Grabel, "A Method for the Determination of the 
Transfer Function of Electronic Circuits," IEEE Trans. Circuit Theory, Vol. CT-20, 
No. 1, Jan. 1973. pp. 16-20. 

[7] Sol Rosenstark, Feedback Amplifier Principles, Macmillan, 1986. pp. 67-77. 

[8] A. M. Davis, "Analyze active-network responses without complex manipulations," 
EDN, 20 Feb. 1979. pp. 109-112. 

[9] Roberto Saucedo and Earl Schiring, Introduction to Continuous and Digital Control 
Systems, Macmillan, 1968. pp. 273, 275. 



C H A P T E R 

Precision Amplification 

In the 1960s, speed limited oscilloscope performance as designers sought to 
extend bandwidth "from dc to daylight." But speed is not the only performance 
criterion. In audio, bandwidth that is much beyond human hearing degrades 
performance due to increased noise; the important measure of performance 
is fidelity, the precise reproduction of the input signal. In this looser sense, 
precision means ideal analog signal processing. 

9.1 Causes of Degradation in Precision 

For amplification, any effect beyond scaling of the input quantity adds error 
to the scaling function and degrades precision. The output quantity for 
amplification can be expressed as 

oc 

^ o u t = L^ 0/Xjn + ^noise (9.1) 
i = 0 

where, ideally, 
Xout = kXin = (ax + £)Xin (9.2) 

and k is the exact scaling coefficient. Basic causes of error are scaling inaccuracy 
ε and nonlinear terms of Xin in (9.1), called distortion. Any contribution to 
Xout that is not caused by Xin is noise. Noise generated by the circuit itself is 
intrinsic; noise from other electrical activity (electromagnetic interference, or 
EMI) that interferes with circuit activity is extrinsic. A special case of error is 
the constant term a0, called offset error, due to bias element inaccuracy, static 
thermal effects, or even noise. 

9 

380 
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Heat causes noise and distortion. Thermal effects due to the ambient 
temperature of the circuit environment (or thermal drift) cause offset error 
and affect dynamic circuit parameters. Changes in power dissipation with 
signal variation cause self-heating of elements whose dynamic parameters 
change with temperature and cause dynamic thermal effects, or thermals. 

Bandwidth limitations also degrade precision by failing to scale all 
frequency components of Xin equally (due to magnitude roll-off) and by 
shifting them relative to each other in time (nonlinear group delay). This 
causes Xout(t) to have a different waveshape from Xin(t), and functional 
accuracy is degraded. A fundamental trade-off occurs between accuracy and 
bandwidth due to the finite gain-bandwidth product (/T) of active devices. 
Greater accuracy requires more settling time, resulting in a lower effective 
bandwidth. This also applies to feedback amplifiers, in which accuracy is 
related to loop gain. As loop gain decreases with frequency, loop accuracy 
degrades. Therefore, larger bandwidth is sometimes necessary to achieve 
low-frequency accuracy. 

9.2 Intrinsic Noise 

Intrinsic noise is generated by the components of a circuit. We now examine 
three mechanisms that generate noise. 

Noise is characterized in the frequency domain by its spectral density, or 
power spectrum. This is the Fourier transform of its autocorrelation function, 

r+co 
Κχχ(τ)= x(t)-x(t + r)dt (9.3) 

J —oo 

For random functions, the greater the time separation of two points on the 
waveform, the more likely they are to be independent. When r = 0, the points 
coincide and Rxx{0) is maximum. For continuous x(t), the closer two points 
are chosen in time, the more likely they are related in amplitude and tend to 
reinforce, resulting in larger Rxx. 

The rms noise voltage or current xn is related to its noise spectral density 
xn by 

xl= Π x\f)df (9.4) 
J -OO 

where the expected value of xn (or the average xn) is zero. For a limited 
frequency band of &f=fh-f, the limits of integration in (9.4) are the band 
limits. 

Thermal noise arises due to the random motion of particles. Thermal energy 
is kinetic, and particles move in random paths as they collide. From statistical 
thermodynamics, the average kinetic energy in any one direction per particle 
is proportional to kT, the same kT as in the diode v-i relation, where 

k = Boltzmann's constant = 1.38 x 10~23 J /K 
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and T is absolute temperature in degrees Kelvin. At Γ = 300Κ (27°C), kT = 
4.14 x IO-21 J. This kind of noise occurs in electrical circuits because the thermal 
vibration of ions in a crystalline lattice causes them to collide with free electrons 
and exchange energy. This is manifested at the macro level as resistance. With 
no electric field applied, the lattice is at thermal equilibrium, and the average 
current is zero. But the instantaneous voltage fluctuates about zero and pro
duces an rms voltage across the resistance of 

rms thermal vn = j4kTR(Af) (9.5) 

where Δ/ is the frequency band in which the noise occurs. A resistance model 
that accounts for thermal noise is shown in Fig. 9.1a. Thermal noise is broad
band and has a flat spectral density. 

With an applied field, average current is due to the average motion of the 
electrons. Since current is the aggregate motion of many charged particles, it 
also fluctuates randomly, as does pressure in gaseous systems. This noise due 
to current is shot noise. Fluctuation in the instantaneous current has an rms 
value of 

rms shot /„ = V2g/(A/) (9.6) 

where q = 1.60 x 1(T19 C (the charge of an electron), and / is the average 
current. Shot noise has a flat spectral density up to optical frequencies. A 
shot-noise current source is modeled in Fig. 9.1b. 

Both thermal and shot noise vary by the square-root of the bandwidth. 
Manufacturers usually specify noise by its spectral density, or 
noise/Vfrequency, in units of V/vTlz or A / V H Z . The bandwidth Δ/ is that of 
an ideal bandpass filter, not an actual circuit. The noise equivalent bandwidth 
Af is consequently different from any actual bandwidth. For a single-pole 
bandwidth of / b w , the noise equivalent bandwidth is 

Jo l + (///bw)2 = ( f ) / b w S L 5 7 / b w 

where the integrand is the square of the single-pole transfer function. 

vn = V4k77W) i„ = V2?/CA/) Ô J Q / 

(a) (b) 

FIG. 9.1 Thermal noise model of R (a); shot noise model of / (b). 
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The total noise due to multiple sources is combined according to the rms 
summation formula 

Xrms = ^ Z * r m s ( 0 (9.7) 

where the xrms(i) are independent (or more generally, uncorrelated) rms noises. 
A BJT noise model has three noise sources (Fig. 9.2), with spectral noise 

densities: 

vnb = thermal noise of base resistance, r'b = y/4kTr'b 

fnb = shot noise due to base current, IB = ̂ /2qIB 

fnc = shot noise due to collector current, Jc = y/2qlc 

(9.8) 

(9.9) 

(9.10) 

The BJT model can be solved for output noise voltage due to the BJT alone, 
with a shorted input (so that Rs = 0) and open output (so that #L-»oo). We 
ignore CM. The BJT output noise voltage density vno has three terms correspond
ing to the three noise sources just listed: 

2 ΛΓ / / „ \ \ 2 

Vic = (fn cr0)2 + < \ι^Μ'λτ^ο)'+^Α (9ΐι) 
î 

noise voltage-
gain2 

where rh7T = r7T\\r'h and p = rjrm. The noise-gain break frequency is at 
\/rb7TC7T\ the noise equivalent bandwidth is at ω = 1.57/r^CV o r / = l/4r'bCv. 
The thermal noise voltage of r'b is attenuated by the divider formed by r'b and 
r^ in the base circuit. 

In the BJT circuit, any external resistance in the input (base-emitter) loop, 
when referred to the base, is rs. It includes r'b and replaces it in (9.11). 

Also, for finite load resistance RL, collector resistance rQ || RL replaces r0 

in (9.11). To avoid calculation of Tncr0, the μ transform (Section 4.1) can be 
applied to refer this noise to the emitter: 

. kT 
^ + 1 ' n c V m II Γο) »nc^rr = in 

μ.»1 qlc 
μ » 1 (9.12) 

b ^ b 

o—Q—vw 

FIG. 9.2 BJT hybrid-τΓ noise model. 
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Combining (9.10) and (9.12), we obtain the emitter shot noise voltage 
density: 

emitter shot vn = yJlqlA ) =kT\ (9.13) 
\qlcj V qlc 

This noise voltage decreases with increasing emitter current until thermal noise 
in r'h dominates. From (9.8) and (9.11), this noise is 

V^ + rs/ 
input thermal vn = \/4kTrs[ —Z!— (9.14) 

The voltage-divider factor can usually be omitted because it is desirable to 
keep rs small to reduce thermal noise. 

Finally, the third noise term is the shot noise of rs. From (9.10) and (9.11), 
this is 

input shot vn = \/2qIBrs (9.15) 

The total noise voltage density is the rms sum of (9.13)-(9.15). 
Since Ic

 = ßoln, the noise terms of (9.13) and (9.15) both vary with 7C. 
An optimum Ic can be found by differentiating the total noise voltage density 
squared and solving for the current when set to zero. It is 

minimum noise Ic^^ß^i — ) (9.16) 
\qrs/ 

The higher rm of FETs produces more noise than BJTs, especially at low 
frequencies (below 10 Hz), except when source resistance is high. Then base 
current causes dominant shot noise in the BJT source resistance. 

Amplifiers have the noise model shown in Fig. 9.3. With a BJT input stage, 
vn is due to collector shot noise in rm and thermal noise in r'h. The shot noise 
in rs, which is external to the amplifier, is accounted for by in · rs. An optimum 
rs contributes equal amounts of shot and thermal noise, or 

y/4kTrs = ^2qIlrs => optimum rs = 2\ — ) (9.17) 
\ql\J 

At a circuit temperature of 300 K (27°C), the thermal noise voltage density 
is 

thermal vn at 300 K = (129 p\/VHzU)jR (9.18) 

FIG. 9.3 Differential amplifier noise model 

file:///ql/J
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and the shot noise current density is 

shot rn at 300 K = (566 x 1 0 1 2 > / Ä / V H Z ) V 7 (9.19) 

Example 9.1 Op-amp Input Noise 

An op-amp has an equivalent input noise voltage density of 20 nV/v^Hz 
and noise current density of 0.1 ρΑ/νΉζ. In the noninverting configur
ation, no resistors are required for a x 1 buffer; the total noise voltage is 
20nV/>/Hz. A x ( - l ) inverting op-amp configuration with 100 kü input 
and feedback resistors has a total equivalent input noise voltage at 300 K 
of 

V(20nV/v^î ) 2 + 2 ( 4 0 J n V / v ^ nV/Jïïi 

or about 3 times (10 dB) as much noise. The input noise gain is that of 
the noninverting configuration, as it also is for offset voltage, because 
the noise is in series with the op-amp input terminals. 

The op-amp bias current also generates shot noise in the resistors, 
which must be included if significant. For 1 nA of bias current, the shot 
noise current is 17.9ίΑ/νΉζ through 100 kil, producing a shot-noise 
voltage of 1.8nV/\/Hz. This is negligible compared with thermal noise 
voltage. If the bias current splits between the input and feedback resistors, 
the shot noise remains unchanged. 

Figure 9.4 shows amplifier noise voltage plotted against rs on a log-log 
plot. The amplifier noise sets a base independent of external resistance. Then 
as rs increases, the thermal noise becomes significant at the thermal noise 

logvn 

Dominant shot noise N 

Dominant thermal noise 

Amplifier 
noise 

tog's 

FIG. 9.4 Noise voltage versus source resistance. 
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corner, where the curve slopes upward with a slope of one-half. Then at the 
shot noise corner, shot-noise voltage dominates and is proportional to rs; the 
slope is unity. The shot noise corner shifts with input current and can lie below 
the thermal noise corner. 

Thermal and shot noise are wideband, or white (just as white light is 
wideband), and are associated with resistance. Another kind of noise, associ
ated with semiconductor surface leakage and conductors in general, is \/f 
noise, also called flicker noise, excess noise, or pink noise. It rolls off to a 
break frequency at the circuit white-noise level. This break frequency is 
typically 1-10 Hz for BJT noise voltage and 10 Hz to 1 kHz for FET noise 
current. FET 1//-noise break frequencies are typically 50 to 100 times higher, 
and that for CMOS is around 100 times higher. 

The \/f noise rolls off at a slope of —\ and breaks at a frequency where 
it intersects white noise. This break or corner frequency, / f , specifies both 
voltage and current \/f noise. For either voltage or current white-noise density 
*nw, 1 / / noise density x n f ( / ) , is 

- _- lu 
■*nf -*-nw"W r 

(9.20) 

From (9.4), the band-limited noise is 

xl = | ' h x2 df= xL · ff · l n ^ f ) (9.21) 

The total noise is the rms sum of white and flicker noise, or 

x n W ^ f + x L = *nwYy+l (9.22) 

Manufacturer's data-sheet noise specifications are based on (9.22). Finally, 
xn, the noise quantity, is found by substituting (9.22) into (9.4) and integrating. 
This results in 

tn = inwy/flniyj + ( / h" / i ) (9-23) 

For dc amplifiers, f\ = 0, but this yields infinite noise in (9.23). A practical 
lower limit is the thermal drift frequency, usually a fraction of a hertz. A 
typical/Î is 10 mHz. Below this, low-frequency noise is indistinguishable from 
drift. 

Now that we have formulas for calculating rms noise, we sometimes are 
interested in what value the peak noise can achieve. The ratio of peak to rms 
values is the crest factor, 

crest factor = — (9.24) 
x 
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For gaussian noise, the probability that |x| exceeds a given crest factor kc is 

, ( | x | > M ™ > - e r f c ( i ) - { \ £ e ^ W „ ( £ ) „ .25 , 

For kc = 1, p = 32%; kc = 2, p = 4.6%; and for kc = 6.6, p = 0.1%. 
A peculiar kind of noise is burst or popcorn noise. It is caused by process-

dependent wafer surface effects and is manifested as random rectangular pulses 
or shifts in dc level, typically below / f , that add (algebraically) to the other 
noises. 

9.3 Extrinsic Noise: Radiation and 
Crosstalk 

Extrinsic noise is due to other electrical activity in the environment of the 
affected circuit. This noise is generally referred to as electromagnetic interference 
(EMI) and can be caused by electromagnetic radiation (far-field), crosstalk 
(near-field), or conduction. Crosstalk can be either magnetic or electric in 
origin because in the near field it is not coupled as an electromagnetic wave. 

Radiated EMI is reduced by shielding the circuit by enclosing it with 
conductive material. The shield presents an impedance discontinuity to an 
incident wave since its characteristic impedance is much below that of a wave 
in free space, 

E 
Zw = —; = 377 Ω in free space (9.26) 

H 
A 1 MHz wave (in air) impinging on a copper sheet has a transmitted electric 
field that is 2 millionths (-114 dB) that of the incident wave; the transmitted 
magnetic field strength is twice the incident field. The characteristic impedance 
of copper is 0.37 mfì ^45°, or nearly zero. 

The wave-induced current in the shield flows at the surface and falls off 
exponentially with penetration depth into the shield material. This depth is 
characterized by a length constant (similar to a time constant) called the 
penetration, or skin depth δ: 

V ωασ ωμσ 
(9.27) 

where μ is permeability and σ is conductivity of the shield material. The 
surface resistance of the shield material is the same as the dc resistance of the 
material with a thickness equal to the skin depth. The surface resistance is 
l/σδ. This resistance is equal to the surface reactance. The surface impedance 
is analogous to the characteristic impedance of a transmission line and is ν)ωμ [ωμ 

Λ45°, σ » ωε (9.28) 
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where ε is the permittivity (dielectric constant). For a good conductor such 
as copper, steel, or aluminum, the condition of (9.28) is easily satisfied. The 
attenuation due to reflection is then 

/ ? = 2 0 . o g ( ^ ) = 2 0 1 o g ( f ^ ) . * w » Z s (9.29) 

Reflection decreases with frequency and permeability but increases with con
ductivity. 

For poor conductors, a significant amount of the wave is transmitted 
through the shield and is attenuated more by absorption than by reflection. 
Absorption is ohmic loss in the shield due to wave-induced eddy currents 
flowing in a resistive material. Absorption increases with shield thickness, 
frequency, permeability, and conductivity. 

Shields cannot be completely closed surfaces because wires, circuit boards, 
and adjustment tools must pass through them. These openings are also 
entrances for interfering waves and act as waveguide apertures. The relevant 
criterion is that openings have maximum lengths (in any dimension) that are 
much less than the wavelength of interfering radiation. Seams along case 
openings and metal slots and holes act as slot antennas. For a maximum slot 
dimension of 

d<^ (9.30) 

where λ is the wavelength, the slot acts as a dipole antenna and passes 
frequencies above the cutoff frequency, 

fc = —Δ, c = speed of light = 3.0 x 108 m/s = 30 cm/ns (9.31) 
2d 

For attenuation of waves above frequency 

7 = 7 (9.32) 

d must be much smaller than λ; d« λ/100 for 60 dB of attenuation at the 
highest frequency of interest. At the slot, the electric field is maximum at the 
center because eddy currents in the shield must go farthest around the slot 
from the center of its maximum length. This creates the largest voltage drop 
from center to center across the slot. A 0.5 m slot has a shielding effectiveness 
of only 5.65 dB at 300 MHz. EMI gaskets and EMI-tight enclosure construction 
techniques provide conductance continuity across slots, thereby maintaining 
shielding effectiveness. 

The near field is the space less than λ/2π from the radiation source. Wave 
impedance Zw depends on the impedance of the source. Electric fields have 
high wave impedance (E is large in (9.26)), and common metal shields are 
conductive enough to reflect them effectively. Magnetic fields have low wave 
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impedance. Consequently, the impedance mismatch with the shield is not as 
great, and reflection as a shielding mechanism is not adequate. Low-frequency 
magnetic shielding is largely absorptive and requires high-permeability shield 
material to divert the field. 

Shield reflection of electric fields in the near field decreases linearly on a 
log-log plot with frequency and distance from the source, whereas magnetic 
field shielding effectiveness increases linearly with frequency and source dis
tance. At low frequencies, electric fields are well shielded by high-conductivity 
shields, but magnetic fields are attenuated less as frequency decreases. 
Therefore, low-frequency magnetic fields, such as those from power-supply 
transformers, commonly cause the most trouble in shielding. 

Near-field interference is often due to coupling between signal conductors 
in a cable or on a circuit board, as shown in Fig. 9.5. In (a), the mutual currents 
flow through parasitic capacitance between the two lines and cause the same 
polarity of voltage at each end of the line. The amount of capacitance increases 
with line length and decreases with spacing. 

For inductive coupling, voltage across the secondary loop resistance is 
due to mutual inductance M between the loops. M depends on the amount 
of shared area of the loops and their proximity. Coupling between parallel 

'IT 

(a) 

Φ 
Π7 

"VA>*/ 
l l M 

m m 
(b) 

FIG. 9.5 Capacitive (a) and inductive (b) crosstalk between two conductors. The voltage is 
inverted at the two ends of the receiving loop for inductive crosstalk. 
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lines causes the source end of the second loop to have the same polarity of 
induced voltage as the primary loop, while at the load end it is inverted from 
that of the primary (Fig. 9.5b). 

The magnitude of coupled noise depends on the rate of change of source 
quantities. For inductive coupling, 1 mA/ns induces 1 mV/nH. For capacitive 
coupling, 1 V/ns causes 1 mA/pF of current. 

To predict the amount of crosstalk, estimation of M and C are required. 
Analytic solutions for crosstalk in Fig. 9.5 are unwieldy. We seek an intuitive 
ability to estimate and that requires simplified approximations. The length of 
the lines must be less than A/4. At 100 MHz this is 75 cm. The spacing of the 
two coupled wires is expressed in distance between wires w and number of 
wire diameters d as w/d, and the separation of the signal lines for each loop 
from a ground plane is h. When separate return lines are used instead of 
ground plane, h is half the separation of signal and return lines (assumed the 
same for both loops). Except for very close spacing, where w/d is close to 
unity, increasing wire diameter does not appreciably increase C and affects 
M even less. 

As length increases but remains under A/10, both C and M increase 
linearly. For w/d = 10 and h/d = 2, C/length = 1 pF/m. For h/w = l, 
M/length =15 nH/m. C increases with h approximately linearly for w/d > 10 
and h < 100. M is more sensitive to h than C because increasing h increases 
loop area. M increases sublinearly with h/w on a log-log plot. More sig
nificantly, both C and M decrease quadratically with w/d, or at -40dB/dec 
of separation. (A 10 times change in w produces a 100 times change in M or 
C.) Also, for length less than A/10, the amount of signal coupled by C or M 
increases linearly with frequency. 

The impedance of free space, 377 il , sets the boundary between which 
kind of crosstalk dominates. High-impedance (>377 Ω) sources have dominant 
electric fields and dominant capacitive crosstalk. For low-impedance (<377 Ω) 
circuits, inductive crosstalk dominates. 

Visual or geometric estimation of crosstalk when wiring a circuit or 
designing a circuit-board layout based on the preceding rules of thumb is often 
both adequate and at the practical limit of what can be reliably estimated. 
The following are general wiring and layout guidelines: 

1. Maximize spacing between signal lines. 
2. Minimize areas between signal lines and their return (ground) paths, 

running the two as close together as possible. When this is too difficult to do 
on a single layer, run a ground line alongside either or both of the source and 
receiving lines. This reduces the relative coupling about five times. Or, add a 
ground plane layer to the board. For long lines, use twisted pair cable. In flat 
cable, ground every other conductor. On an existing board, reduction of 
coupling can be experimentally verified by gluing a ground line of magnet 
wire between coupling traces. 
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3. Run signal lines perpendicular on opposite sides of the board. This 
reduces inductive coupling to intersecting areas formed by line pairs overlap
ping on opposite sides. Capacitive coupling area is reduced to the crosspoints 
of lines on opposite sides. 

4. For high-speed circuits, confine signals to transmission lines or con-
trolled-impedance environments. 

Transmission lines can be as simple as twisted pairs or wires or coaxial 
cable. Twisted pair cable has a characteristic impedance of 

^ 1 2 0 Ω / Λ \ 
(9.33) 

where h is the distance between conductor centers and d the conductor 
diameter. The length per twist, or pitch, does not affect Zn , only the propagation 
delay time, because the line is longer with smaller pitch. For typical wire 
insulation, some values of dielectric constant are give in the following table. 

dielectric material 

air 
teflon 
polyethylene 
polystyrene 
polyvinyl chloride (PVC) 
epoxy resin 
epoxy glass 
Mylar 
Polyurethane 

εΓ 

1.0 
2.1 
2.3 
2.5 
3.5 
3.6 
4.7 
5.0 
7.0 

Typically, Zn is between 50 and 100 Ω. 
Also, wires can be run over a ground plane, with 

J ^ 60 il (Ah\ 138 Ω (Ah\ 
wire-over-ground Zn = —= lnl —-1 = j— logl — I (9.34) 

where ev is the relative permeability (dielectric constant) of the medium 
between wire and ground plane (usually circuit board or air), h is the distance 
between wire and ground plane, and d is wire diameter. For epoxy glass 
boards, er typically is 4.7 (G-10 material), and for air it is 1. An order of 
magnitude increase in h/d results in an increase in Zn of 138 Ω. A typical 
wire-over-ground line (h/d = 1.3) is about 100Ω and has 3.54nH/cm and 
0.315 pF/cm. 

On circuit boards, parallel-plate or microstrip transmission lines can be 
made of the board itself (Fig. 9.6a). With a ground-plane width much greater 
than the signal-line width w and for h < λ / 4 , 

• t - ~ ~ 8 7 Ω i ((5.9i)h\ microstnp Zn = lnl (9.35) 
νεΓ+1.41 \0.&w + d/ 
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FIG. 9.6 Circuit-board transmission lines: microstrip (a) and stripline (b). 

For 1-oz copper board traces, d = 3SA μηι; 2-oz board trace thickness is 
76.2 /im. A 50 Ω line on a 1/16-in.-thick board is 2.62 mm wide (or about 
0.1 in.) using 1-oz copper. 

Propagation delay time is 

tpd = 3.34%/(0.475)εΓ + 0.67 ns/m (9.36) 

Zn of microstrip lines is typically about half that of wire-over-ground lines, 
or 50-100Ω. 

A symmetrical form of microstrip line, or stripline, can be made on a 
multilayer circuit board as shown in Fig. 9.6b, where the signal conductor is 
embedded between two ground planes. For stripline, 

60 Ω / 4ή \ 
stripline Zn = —^ In — —— (9.37) v \ / ^ \(0.677r)w(0.8 + d / w ) / V ; 

and 

fpd = 3 .34v^ns/m (9.38) 

where w / (Ä-d )<0 .35 and d/h<0.25. Striplines typically have the lowest 
Zn , about half that of microstrip line. 

A degenerate case of a microstrip line is parallel, flat conductors of width 
w and thickness d, separated by circuit board material of thickness h. For 
w » h » d, 

Zn^ 
377 
V7r 

(9.39) 
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Finally, if none of these lines can be implemented, traces run side-by-side 
with thickness d, width w, and edge-to-edge spacing h, where w » d, have 

Zn = 
120 Ω / ττ-ft \ 
^ n \ w - f i / / 

(9.40) 

Flat (or ribbon) cables have parallel conductors that can be used as trans
mission lines. Typical flat-cable wire spacing is 0.050 in. with #28AWG stran
ded wire. One manufacturer gives the following specifications for such a cable: 
Zn = 105 Ω, 41.3 pF/m, 558 nH/m, and tpd = 4.49 ns/m. Flat cable with ground 
plane, 0.050 in. spacing, and #28AWG stranded wire has Zn = 65 Ω, 82.0 pF/m, 
558 nH/m, and tpd = 5.58 ns/m. 

9.4 Extrinsic Noise: Conductive 
Interference 

The third cause of EMI is conductive interference. When two circuit loops 
share a common path, usually a ground path (Fig. 9.7a), any impedance in 
that path develops a voltage common to both loops. The most important 
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FIG. 9.7 Grounding a shielded conductor. Ground impedance ZG causes noise voltage drop (a) 
noise current travels in shield (b); ground loop is eliminated (c). 
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general guideline for eliminating these ground loops is to consider the complete 
path of signals. The return path from the load back to the source is usually 
where noise gets into a signal loop. This common ground return node is often 
distributed throughout the subsystem. If it were electrically an ideal node, its 
impedance ZG would be zero. To be ideal, it must also have zero length to 
have zero loop area and thus no magnetic crosstalk among loops. A ground 
plane approaches a zero-length node. 

One of the simplest and most general techniques for preventing ground 
loops is the single-point ground. Separate the return lines for each circuit loop 
and run them back to their respective source grounds. Then, to connect the 
source grounds electrically, run separate lines to a single point where they 
connect, usually at the power supply ground. This technique minimizes external 
signal currents in a given loop ground return by isolating the signal currents 
to their own loops. 

Signal return path isolation is combined with magnetic crosstalk isolation 
by the use of a shielded cable. Any of the transmission lines described 
previously can function as a shielded cable for conductive and crosstalk noise, 
though a constant Zn along the cable is not required. A shielded cable provides 
a separate return path and minimizes loop area. For a coaxial cable, the 
theoretical loop area is zero, and the outer conductor (the shield) provides 
the return path, as in Fig. 9.7b. Here, external ground loop noise has been 
Thévenized. The low shield impedance forms a divider with ZG = RG and noise 
current flows mainly in the shield. Because of the large mutual inductance 
between signal and return conductor in a shielded cable, ac signal current 
returns mainly in the shield. For coaxial cable, M = Ls , the shield inductance. 
Above the shield cutoff frequency, 

Rs. ' Rr, 
ω ς = ^ — - (9.41) 

signal current is in the shield; Rs is the shield resistance and Ls the shield 
inductance. The fraction of shield signal current falls off below (oc to RG/ Ls, 
where it is then a constant, RG/(RG + Rs). These results were obtained by 
solving the circuit of Fig. 9.7b and using asymptotic approximations to the 
frequency response of the shield signal current fraction. Cutoff frequency is 
typically a few kilohertz. 

If we ground the shield at only one end, as in Fig. 9.7c, no external noise 
currents can flow in the shield. Also, no magnetically induced currents can 
flow in the shield because it does not form a closed loop with the external 
ground. This is a kind of single-point ground; the source ground terminal is 
connected to the external ground. For applications in which grounding must 
occur at both ends, a small resistor (1-10 Ω) can be placed from the load 
return side to the external ground. This forces most of the signal current into 
the shield return while achieving a relatively low-resistance path to the main 
ground line or plane. 
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FIG. E9.2 

Example 9.2 Shielded Gable Grounding with Attenuator 

Shield grounding at both ends is required in equipment for safety. 
Instruments often require input attenuators that are connected external 
to the input. The circuit of Fig* E9-2 shows an attenuator, formed by 
resistors R% and R2 inserted between two cables. "Barrel" attenuators 
with BNC connectors at each end are commonly used with 50 Ω cables 
that are terminated in their characteristic impedance by resistors RTl and 
RT2. The voltage i>a at the attenuator ground is the attenuated source 
voltage, and 

^ Rcl\\(Rc2+Z) 
(El) 

The output voltage is taken across the load cable terminator RT2 · R2+RT2 
shunt Rc2 and form the top side of a divider with Z The voltage across 
the top side of this divider is t?0, and attenuation is 

V0_ (R2+RT2)\\RC2 _ Rc2 

υΛ (#2+/?T2)| |Kc2+Z Äc2 + Z ' R2+Rr2»Rc2 (E2) 

Now, if the load cable shield is grounded, Z = 0 in (E2), and va con
tributes to v0 unattenuated. With shield grounding only at the source 
end, Z is infinite, and attenuator error from shield resistance is zero. In 
effect, Z bootstraps v0> and even small values of Z cause large improve
ments in attenuator accuracy, 

A single ground at the source not only eliminates noise currents in 
the shield but preserves attenuator accuracy. Unfortunately, the chassis 
or earth ground of the instrument sensing v0 also must connect to the 
signal ground at its source to minimize its internal noise and provide a 
low-impedance safety ground fault path. 

This problem was solved cleverly in the Hewlett-Packard model 
3571A by letting Z be an inductor with a saturable core. A large power-line 
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current through the inductor due to a grounding error would saturate it, 
reducing its impedance to near zero. Although attenuator error is present 
at dc, shield resistance is subject to the skin effect and increases with 
frequency, causing greatest error in the audio frequency range. In this 
range the inductor has enough impedance to reduce the error significantly 
(by 30 dB in the HP instrument). At higher frequencies, the mutual 
inductance of the cables decreases signal flow through Z, in effect making 
Z large. 

All these configurations are susceptible to capacitive coupling into the 
shield. However, at the low impedances of ground lines («377Ω), magnetic 
coupling dominates. 

Shielded cables are also used in high external field environments to actually 
shield inner conductor(s). The previously described EMI reduction techniques 
used a shielded cable to eliminate ground loops and inductive crosstalk, not 
field radiation. Shielded cable, as a radiation shield, is used to provide a 
continuous shielded surface between a shielded source and shielded load. 
Within this closed shield is the signal loop. The return path is a separate 
conductor within the shield of a two-conductor shielded cable. The advantages 
of connecting the cable shield to only the source shield apply here, but electrical 
isolation from the shield enclosing the load leaves an opening possibly acces
sible to radiation. 

External fields cause noise currents in and voltages on the shield. These 
quantities can couple noise into the signal lines within. For sensitive applica
tions, a second shield is placed around the first to provide additional shielding. 
This shield can be connected to the rest of the shielding while the inner shield 
is connected to the source ground inside. 

Shielding effectiveness depends on the construction of the enclosing outer 
conductor, or sheath. A solid sheath is far better than braided cable but is 
mechanically less flexible. The tighter the braid, the better the shielding. At 
1 MHz, the shielding effectiveness of a solid sheath is about 200 dB better than 
a double-braided cable, which in turn is about 35 dB more effective than 
single-braided cable. The effectiveness of a solid sheath increases with 
frequency whereas braided cable remains constant to around 1 GHz and then 
falls off. 

Shields are connected to the enclosed circuit ground at a single point at 
the source. If the shield is allowed to float, large dv/dt signals can capacitively 
couple into it. Additional stray capacitance couples from the shield into other 
signal nodes. In some cases, these noise paths through the shield are amplifier 
feedback paths that cause instability. 

If the signal and return conductors are not magnetically coupled enough 
to isolate the signal path, their mutual inductance can be increased by placing 
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the two conductors through a ferrite bead or by winding several turns of both 
conductors together (bifilar wound) around a ferrite toroid. The high permea
bility of the ferrite (=2000) forces the signal current to return on the other 
conductor. The signal current going to the load induces a voltage across the 
return line, via the flux linkage of the ferrite magnetic path, that causes an 
equal and opposite current flow in it. Differential-mode currents are passed, 
and common-mode currents are rejected. 

The common-mode rejection of these ferrite transformers offers a second 
useful function, that of filtering. Common-mode noise currents flow in both 
conductors in the same direction. The high inductance due to the ferrite core 
forms a high-frequency filter with the load impedance for common-mode 
signals. The inductance for the signal currents is the transformer leakage 
inductance, usually 1% or less than that for common-mode currents. 

Differential-mode transformers are the basis of EMI power-line filters. 
These filters are commonly used to keep power-line noise out of a system and 
keep system noise from getting onto the power line. A one-stage filter is shown 
in Fig. 9.8, with an X (for across) capacitor across the load for differential-mode 
filtering and two Y capacitors on the line side for common-mode line filtering. 
Another X capacitor on the line side improves differential-mode load-noise 
rejection. Attenuation (or insertion loss) increases with frequency to about 
50 dB of rejection at 1 to 5 MHz. The break frequency increases with current 
rating, so low-frequency rejection is less for high-current filters. 

The design objective of an EMI line filter is to pass frequencies at 50 to 
60 Hz and reject frequencies at which noise is likely to be from 10 kHz to 
100 MHz. The filter is modeled as a two-port network with source and load 
impedances. From the maximum power transfer theorem, the filter load port 
impedance should be equal to the load impedance at line frequencies and be 
much different at noise frequencies. This applies as well to the line port. In 
other words, at noise frequencies the EMI filter is a mismatching network. 

The power line has a low impedance, so a high impedance input at noise 
frequencies is needed: a series inductor input. If the load impedance is high, 
load port mismatch requires a low-impedance output, which is achieved with 

FIG. 9.8 Typical EMI power-line filter. The X capacitor filters differential-mode load noise; Y 
capacitors filter common-mode line noise. 
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a shunt capacitor. If load impedance is low, an additional series inductor is 
added. The X capacitor is large (0.5 μ¥) and shunts high-current differential-
mode pulses from rectifiers and switching logic. 

The mean power-line Zn at 1 MHz is 50 Ω. For 80% of the lines, Zn is 
between 10 and 300 Ω. Below 1 MHz, line impedance falls off at about 
—20 dB/dec to a very low value at line frequency. Differential-mode power-line 
noise cannot propagate far because of wiring and transformer inductance and 
does not radiate far because the opposing currents cancel. The dominant 
power-line noise is common-mode. The Y capacitors at the line input to the 
filter are intended to shunt common-mode noise to ground. Y capacitor size 
is limited for safety reasons to limit safety ground leakage current at line 
frequency. The transformer filters common-mode noise current from the line 
that the Y capacitors do not shunt. 

Since ferrite beads or toroids provide provide the magnetic coupling path 
in filter transformers, the limits of magnetic materials applies to them. As 
frequency increases, signal losses in the magnetic circuit increase. As current 
increases to the point of magnetic saturation, permeability (and mutual induc
tance) decreases. 

We now turn our attention to noise phenomena involving power distribu
tion. Although the analytical models for circuits that we have been using 
assume that the power supply sources are ideal voltage sources, a power-supply 
regulator has a finite output impedance. Worse yet, the wiring required to 
distribute this power to the circuits is inductive and resistive. This impedance 
is part of the circuit to which power is delivered. The power distribution wiring 
is also a means for ground loops and crosstalk. 

Inductive crosstalk due to ac power-supply currents can be reduced by 
reducing the area between the supply and ground lines. This is most easily 
accomplished by running them alongside each other on the same side of the 
circuit board or opposite each other on two sides. Circuit-board layout practice 
is to run lines perpendicular to each other on opposite sides of the board to 
ease interconnection and reduce side-to-side line crosstalk. Therefore, the first 
approach is usually preferred. Another approach, used commonly in digital 
circuits, is to run supply lines in parallel on one side, with regular spacing, 
connected together by a perpendicular line at the edge of the board. Then a 
similar pattern for ground is put on the other side and offset relative to the 
power lines. 

A better, but more expensive, approach is to use commercially available 
laminated bus bars. These are flat bars with tabs at regular spacings for power 
and ground. They have a low, controlled impedance and are dominated by 
the distributed capacitance of the laminations. They not only reduce magnetic 
crosstalk but eliminate parasitic line inductance. If multilayer circuit boards 
are feasible, a similar distribution system can be realized by making the inner 
two layers ground and supply planes. This has the advantages of low-imped
ance conduction planes, a small, enclosed area between the supply and ground 
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FIG. 9.9 A power supply distribution model. 

currents, and the inner planes act as shields between the outer two signal 
layers of the board. 

An ideal voltage source is approached locally at each circuit by reducing 
the Thévenin equivalent impedance of the supply terminals at the location of 
the circuit. This equivalent circuit is shown in Fig. 9.9. The power supply 
regulator has a characteristic shunt RL output impedance (see Example 7.5) 
shunted by an output capacitor Cs to reduce high-frequency impedance. The 
distribution-wiring impedance is in series with the supply impedance. We 
desired a low resistive equivalent impedance at the Vcc terminals. 

Local circuit activity causes current changes on the supply lines that result 
in voltage changes at VCc · A low-impedance path for Δ7 is provided by placing 
a bypass capacitor locally across the supply. The capacitor must be a high-
frequency type, typically a ceramic monolithic multilayer and usually not an 
electrolytic capacitor. A typical 4.7 μ¥ aluminum electrolytic capacitor has a 
series resistance of about 1 Ω and a series resonance around 1 MHz. Most 
leaded (through-hole) ceramic capacitors have about 10 nH of inductance. 
Ceramic chip capacitors have about 5 nH. 

The capacitor must be large enough to present a low-impedance source 
over the frequency range of ac current. At lower frequencies, high-frequency 
capacitors have a capacitive reactance that is too high, due to a practical limit 
on their size. The problem is solved by also shunting the supply with a large 
low-frequency capacitor. The shunt combination results in a wideband low ac 
impedance. 

Both the inductance of the low-frequency capacitor and the noninductance 
of the high-frequency capacitor can cause trouble. The low-frequency capacitor 
inductance can resonate with the high-frequency capacitor, and the high-
frequency capacitor can resonate with the line inductance. These resonant 
modes must be adequately damped to prevent low-level ringing on the supply 
line (Fig. 9.10). The amplitude of this damped sinusoid is less than if no 
bypassing were installed, but the circuit may not be able to reject it adequately. 
Amplifier power-supply rejection decreases with frequency. The characteristic 
impedance of the resonance determines the ring amplitude of the undamped 
supply in Fig. 9.10a. For a step of current from the circuit of i, the voltage 
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(a) (b) 

FIG. 9.10 Resonances from bypassing. Ch resonates (a) with supply inductance and (b) with 
parasitic inductance of C,. 

amplitude is 

This resonance can be damped by inserting resistance in series with the supply 
line or by increasing Ch. In Fig. 9.10b, an electrolytic capacitor has been 
added. A second resonant mode is introduced by the parasitic inductance LÌ9 

resonating with Ch. The series resistance of C, (not shown) is sometimes large 
enough to damp this resonance; otherwise, an external resistor is added in 
series with it. The capacitor Cx alone, without Ch, could produce a voltage 
spike across Lx on the supply with an amplitude greater than if no bypassing 
were present. 

Since several circuits are powered from the same supply, each having 
different supply performance requirements, the technique of decoupling is 
sometimes used as a kind of EMI filter. A noisy circuit, one with large, fast 
current changes, can be isolated from the supply by the decoupling circuit 
shown in Fig. 9.11. An inductor or resistor in series with the line to the circuit 

FIG. 9.11 A power-distribution decoupling model. 
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forms a low-pass filter with the capacitor shunting the circuit. It also filters 
the circuit noise, keeping it out of the supply. The decoupled circuit could be 
an output power driver whereas the other circuits are low-level amplifiers. An 
alternative is to decouple the low-level circuits from a noisy supply. This may 
be necessary if the series impedance of a decoupling network is too large to 
supply adequate current to a noisy, high-current circuit. Laudie Doubrava has 
shown that bypassing and decoupling provide distinct functions; bypassing 
provides a low-impedance supply source for a local circuit, and decoupling 
minimizes supply-coupled interactions among circuits. 

Multiple signal paths occur in amplifiers and must be individually isolated. 
In Fig. 9.12a, a general amplifier with ground-referenced input v-x and load RL 

is connected to a voltage source, + V, with supply-line and ground resistances. 
This circuit has two errors. First, single-point grounding has not been followed. 
Consequently, the voltage drop across RG due to amplifier current ia and load 
current iL adds to v, as noise. Second, the noise voltage, ( A + Ì L X ^ S + ^ G ) , 
appears across the supply terminals of the amplifier because the terminals are 
not bypassed. 

Figure 9.12b shows the corrected circuit. The reference terminal of υ·χ is 
returned to the input reference terminal, the negative supply terminal. Some
times this cannot be done, and a differential amplifier, which has a separate 
negative input terminal from the supply, is required to avoid ground noise at 
the input. The diff-amp inverting input terminal would then be connected to 
the negative terminal of υ-λ. The second error is corrected by bypassing the 
amplifier supply terminals. This has two effects. It keeps signal currents of 
both the amplifier and the load out of RG by shunting them around the external 

(a) (b) 

FIG. 9.12 Bypassing currents for an amplifier. 
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power distribution system and directly to the positive supply terminal. In doing 
so, it minimizes signal voltage changes across the supply terminals. When the 
negative terminal of vt cannot be connected as in Fig. 9.12b, the amplifier 
negative-supply terminal can also be bypassed to the negative terminal of υχ. 
This shorts the noise voltage across RG. 

This general illustration of amplifier grounding can be applied to more 
specific cases. In all cases, it is important first to identify the (complete) current 
paths involved. Then it is possible to determine the effect of these currents 
due to parasitic impedances in the supply paths and how to reroute current 
and sensing loops using isolation, bypassing, and decoupling. In some cases, 
no solution is possible with the existing circuitry, and a different kind of 
amplifier is required for isolation of signal paths. 

9.5 Differential Amplifiers 

The first improvement over an amplifier with a common-ground input is a 
differential input amplifier, or diff-amp. Op-amps are an instance of diff-maps, 
but their gain is too large to be of use without feedback. We usually want an 
amplifier with a fixed gain and nonloading differential input. These finite-gain 
diff-amps can be made from op-amps. A one-op-amp diff-amp is shown in 
Fig. 9.13, where 

υ-χ = υ - χ + - υ · χ - (9.42) 

and 

u0 = Av+t>i+ + i4v_Ui_ (9.43) 

or 

The noninverting gain path has a voltage-divider preceding the op-amp nonin-
verting gain (in the first term). The second term represents the inverting path. 

FIG. 9.13 One-op-amp differential amplifier. 
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For a differential amplifier, Av+ = Av_. Equating gains and simplifying yields 

R, ^2 _ ^ 4 _ A _ 

R~R,~ v " V\+ — v^ 
(9.45) 

Since its inputs are resistances, this diff-amp can operate with common-mode 
input voltages far larger than the op-amp linear input dynamic range. Its main 
disadvantage is the finite input resistance of the noninverting input. In precision 
applications, the resistance of the ground return and input source resistance 
are common causes of gain error. 

Example 9.3 Voltage Supply Current Sensing 

The one-op-amp diff-amp input common-mode range allows it to be used 
to sense the current of a high-voltage supply (Fig. E9.3). A single-supply 
op-amp operated from a 5 V converter is used to measure the current 
out of the 12 V battery that supplies the converter. The battery voltage 
must also be acquired by an A/D converter requiring 2 V input for a 
battery voltage of 12 V. 

The 0.2 Π sense resistor is insignificantly shunted by the two 100 kCt 
input resistors to the op-amp. The battery voltage input to the A/D 
requires a divider attenuation of 6. The noninverting input to the op-amp 
can be used to supply this voltage. This requires that the bottom side of 
the divider be 20 kü . 

For differential current sensing, the op-amp feedback resistor must 
also be 20 kii, according to (9.45). Consequently, the scale of V0 to 
battery current is 40 mV/ A and 2 V corresponds to 50 A. 

12 V 
r 
1 

0.2 Ω 
VSAA 

FIG. E9.3 
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The trade off for a wide common-mode sensing range is reduced 
gain, and even attenuation, from the one-op-amp diff-amp. 

The speed of the one-op-amp diff-amp can be improved by adding a 
second op-amp within its loop, with a closed-loop gain of A'v (Fig. 9.14a). 
The second op-amp increases the loop gain. For op-amps with the same 
open-loop frequency characteristics, the Bode plots of each and their combina
tion are shown in Fig. 9.14b. Although the combined gain-bandwidth is no 
better, more loop gain is available at higher frequencies with the additional 
amplifier. Variations on this theme are shown in Fig. 9.15. [1] An additional 
amplifier can also be placed in the feedback path. 

A conceptually simple two-op-amp diff-amp is shown in Fig. 9.16. 
Amplifier B is an inverting amplifier that sums inputs from ι̂ _ and amplifier 
A, which inverts vi+. The output is 

vAf){ìÒv'+-{iÒv'-
The condition for differential inputs is 

R1=R1 

7?3 R4 

This condition is realized in two ways: 

, = kR3 (R2 = kR3 (R 
[Rt = kR4

 ΟΓ [R 
i = kR2 

3 = kR4 

(9.46) 

(9.47) 

(9.48) 

At Rf 1 
R{ Λ'ν = -jjr + 1 

(a) 

l og / 

FIG. 9.14 Faster diff-amp, using another closed-loop amplifier in the forward path (a). Loop 
gain is increased at high frequencies (b). 
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(a) 

(b) 

FIG. 9.15 One-op-amp diff-amps with an additional amplifier in the forward path. 

The differential gain, where v-x = vi+-Vi-, is 

Vi \RJ 
(9.49) 

This amplifier has no advantage over the basic one-op-amp diff-amp because 
it has similar input impedance and involves two op-amp input error sources 
instead of one. But its noninverting form (Fig. 9.17) has the advantage of high 
(ideally infinite) input impedance. The vt- input is amplified by an op-amp 

o—VW 
Λ^>—i—* 

*4 
JP 

*s 

R3 -vw-
X1 

FIG. 9.16 Two-op-amp diflf-amp with inverting op-amp summing. 
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vi+o 

FIG. 9.17 Two-op-amp diff-amp with noninverting op-amp summing. Both inputs are high-
impedance. 

in the noninverting configuration and then is inverted by the output amplifier. 
The output voltage is 

and the differential-input condition is 

^ 4 ^ 1 

R3 R2 

This results in a voltage gain of 

(9.51) 

v0 R4 Rx 
— = — + 1 = — L + l 
vi R3 R2 

(9.52) 

A useful variation on this diff-amp is to add RG (Fig. 9.18). RG complicates 

η+σ 

Vi -O 

FIG. 9.18 Two-op-amp diff-amp of Fig. 9.17 with the addition of RG, which can set the diff-amp 
gain. 
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the analysis somewhat, but for ideal op-amps, it is across the (virtual) input 
voltage and affects only the differential gain. By straightforward analysis, 

Οο=[(^+1)+(|·Α)]^"[^+Ι(^+1)] 
Solving for the differential input condition, we find 

and the gain is 

Ü2. 
Vi 

R4 _R± 
R3 R2 

/ v i I A 4 RA 

■■ — - + — + 1 
# G ^ 3 

IV (9.53) 

(9.54) 

(9.55) 

A programmable-gain amplifier (PGA) is an amplifier for which the gain can 
be set parametrically to given values. A PGA can be realized with this topology 
with a simple gain-setting strategy. Set the minimum gain and then program 
the additional gain with RG. With RG open, R3 and R4 set the minimum gain. 
With finite RG and R4 already determined, a fixed (nonprogrammable) Rx 

allows RG to change the gain in an additive manner. 
The gain of (9.55) can be found in a simple way by superposition. When 

RG is removed, the gain is that of the amplifier in Fig. 9.17, or (9.50). Since 
v, appears across RG, the current through it (iG) flows through R2 and R4, 
causing the additional gain of 

=ϊτ{-τ) V G \ Λ 3 / ^ G 

iG flows iG flows 
through R2 through R4 

out of RG into RG 

(9.56) 

Then by superposition of gains, 

Vi , Vi 
(9.57) 

which is equal to the gain of (9.55). 
The two-op-amp diff-amp of Fig. 9.19 has the second op-amp in the 

feedback loop, with vi+ inserted there. This odd topology can be analyzed by 
finding Vi. It is the voltage divider attenuation times the output of op-amp B, 
or 

- ( Ϊ Μ ( Ι : + , Κ - ( ! Ϊ ) * Κ (9'58) 
Since op-amp A input error is nulled, vx = Uj_. Solving for v0, we get 

-Am^hH^h- (9.59) 
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Vi -O 

*3 
ΛΛΛτ 

- V A -

«3 
: * 4 

^i+O-

FIG. 9.19 Two-op-amp diff-amp with op-amp B and vi+ input in feedback path. 

The differential-input condition is 

*1 ^ 1 
* 4 

The differential gain is 

v0 R\ — = — + i 
v\ R2 

(9.60) 

(9.61) 

The amplifiers of Figs. 9.16-9.19 input vi+ and υ·χ- into different amplifiers. As 
a result, common-mode rejection (CMR) does not tend to be as good as for 
the single op-amp diff-amp. This is especially true as a function of frequency 
since the signals paths from the two inputs are asymmetric; one input goes 
through two amplifiers, the other through only one. 

9.6 Instrumentation Amplifiers 

An amplifier with programmable gain, high input resistance, and high CMR 
is an instrumentation amplifier (IA). The gain can be set to a given value, or 
programmed, by setting one resistor RG. The most common instance is the 
three-op-amp diff-amp (Fig. 9.20). It has two stages. The input stage is a 
differential amplifier (at both input and output), and the second stage is the 
one-op-amp diff-amp. The differential input voltage vx appears across RG, 
creating a current flow of vj RG in both feedback resistors Rf. The gain of the 
first stage is thus 2Rr/ RG+1. Since the amplifier is symmetric, the center-point 
of RG is a virtual "ground" or null point, and each side behaves as though it 
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FIG. 9.20 Standard instrumentation amplifier topology; the three-op-amp diff-amp. Gain is set 
by RG. 

were connected to RG/2 to the null point at the average input voltage. For the 
second stage to be differential, (9.45) applies, and the total amplifier gain is 

nm-) (9.62) 

The gain of this IA is easily programmed by setting RG, and it is amenable 
for use as a PGA by switching in different values of RG. 

This topology is commonly used as an input amplifier for remotely located 
transducers. Figure 9.21 shows a typical application, in which the transducer 
voltage Vi is connected to the IA inputs via two conductors with resistances 

ò 

"O 

AVv 

* i 

■AMr 

m 
FIG. 9.21 IA input noise rejection with R,. CMR requires balanced R^ 
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Rs+ and Rs_ of generally different values. Common-mode noise vn appears at 
the input, attenuated by different amounts due to Rx. A diff-amp with ideal 
CMR cannot reject differing amounts of noise at the two inputs. An IA has 
an ideally open input so that Rt is infinite and vn unattenuated from the two 
conductors. In effect, vn is retained as purely common-mode. 

Since CMR is a major parameter of the IA, topologies with improved 
differential inputs have been developed. The use of two op-amps in the 
differential input stage involves two sets of differential inputs that must be 
matched for high CMR. A simpler realization of IA inputs uses a single 
differential transistor stage (Fig. 9.22). The differential input voltage is buffered 
by the BJT diff-amp and appears across RG. 

The linearity of this input stage is limited by the variation in dynamic 
emitter resistances with signal current. Furthermore, as gain is changed by 
changing RG, the bandwidth changes since the amplifier has a fixed gain-
bandwidth product. Both of these errors can be minimized by use of feedback 
(Fig. 9.23). The BJT collector voltages are buffered and fed back to the input 
BJT emitters through feedback resistors. (This amplifier is similar to that of 
Fig. 3.14.) These feedback buffers are more linear than emitter-followers and 
more linearly transfer v-x across RG. The output v0 is applied to the input of 
the second stage. 

Both stage and loop gains are affected by RG. The feedback loop gain 
varies inversely with RG since it is part of the feedback path attenuator and 
is within the loop. The stage gain vj υλ is 2Rr/RG and also varies inversely 
with RG. These gains track with changes in RG. When RG is decreased, both 

^EE 

FIG. 9.22 IA input stage. 
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+^CC 

Vi+O—Mr 

T * VW— 

FIG. 9.23 IA input stage with linearizing and 
speed-enhancing local feedback. 

FIG. 9.24 Realization of the feedback buffer 
loops of Fig. 9.23. 

open-loop and closed-loop gains increase the same amount. Consequently, 
the closed-loop dynamic response remains unchanged with gain changes. 

In some IAs, the input transistors are FETs. The rm variations of FETs is 
greater than re variations of BJTs, leading to less linearity and greater advantage 
in a feedback input stage. A clever variation on input-stage buffering is found 
in the PMI AMP-05. One side of the input stage is shown in Fig. 9.24. Input 
FET Qi is in series with BJT Q2 forming a complementary differential pair. 
The output of Q2 is buffered by Q3 with no feedback resistance, fixing the 
closed-loop gain at unity. The stage output is taken from the load resistor 
Of Q3. 

Guarding is a technique for improving dynamic CMR by bootstrapping 
the input cable shield of remote sources. The shield acts as a guard by not 
allowing input signal voltage variation across the cable capacitance. The 
situation can be generalized from Fig. 9.21 by letting R, be differential input 
capacitance Cx. Any capacitive difference between the two sides results in 
asymmetrical RC filter circuits and different dynamic responses. Different 
responses cause a degradation in CMR with frequency. By minimizing Cx 

by guarding, we improve CMR. Guarding is used in the buffer amplifier of 
Fig. 9.25. 

Guarding also bootstraps cable shunt resistance for high input-resistance 
(or low signal-current) applications, in which leakage currents are critical. 
Circuit-board surfaces provide stray leakage paths for current. The inputs to 
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-vW Œ i r ^ ^ 

FIG. 9.25 A guarding technique. The buffer drives the shield, eflfectively reducing shield 
capacitance. 
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Input 
connection u> 

(c) 

FIG. 9.26 Guarding applied to inverting op-amp (a) and noninverting op-amp (b). The circuit-
board layout for guarding against leakage (c), showing part of 8-pin DIP socket and foil pattern 
for unity-gain buflfer. 
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the op-amp circuits of Fig. 9.26 are guarded by enclosing the op-amp IC input 
pins, as shown in 9.26c for a noninverting x l buffer. The board surface is 
bootstrapped at the same voltage as the input pins by the output, which easily 
absorbs leakage into the guard rings. 

Leakage through the board, or bulk leakage, is reduced by about ten times 
by placing guard rings on both sides of the board. For critical applications, 
the through-hole connection on the board is replaced by a polyethylene standoff 
with feedthrough so that no conductor contact of critical nodes is made with 
the board. 

Guarding is commonly used with instrumentation amplifiers. Figure 9.27 
shows three techniques. In (a), the first-stage output common-mode voltage 
is supplied by a balanced divider. A split-gain resistor also has the common-
mode voltage at its center-tap, as in (b), where it is buffered. These two guard 
circuits reduce cable capacitance and leakage due to common-mode voltages. 
In (c), differential guarding bootstraps both common and differential-mode 
voltage variations. 

<L 
^ > 

—ŒZD— \S~ 
(a) (b) 

-Œ 

xl 

►KG 

x l 

(c) 

FIG. 9.27 IA guarding techniques. Shield is driven by common-mode output of first stage (a), 
by buffer amplifier from common-mode input off RG (b), and by differential-mode input across 
RG through buffers. 
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R: V Rf 

-Φ 

/?; Δ Rf 

FIG. 9.28 Current-input IA topology with zero voltage compliance. 

The high input impedance of the IA applies well to precision voltage 
amplification. The IA input stage can also be made into a transresistance 
amplifier for current amplification with the circuit of Fig. 9.28, a differential 
inverting op-amp topology. The transresistance is 2R,. The advantage of this 
circuit over that of an IA with a resistor across its input is that it has no input 
voltage drop (RG = 0) and is well suited for current sources with limited 
compliance. 

9.7 Low-Level Amplification and 
Component Characteristics 

Very small voltage or current signals are low-level signals, small enough so 
that circuit-board and cable leakage, thermal gradients, and thermocouple 
effects are significant. At these levels, random noise and EMI considerations 
are important. Most low-level signal-processing circuits are limited in speed 
as a tradeoff for low-frequency precision. 

High precision requires that circuits use components with low temperature 
coefficients (TCs) to minimize drift of the bias or quiescent operating point. 
For example, a change in op-amp bias current can cause a change in offset 
voltage and output voltage error. This error can be nulled by adjusting the 
offset, but to remain nulled, the bias current must not change. 

High precision also requires minimization of low-level quasistatic thermal 
noise. Two sources of this kind of noise are thermal gradients and thermoelectric 
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effects. A thermal gradient across the two sides of a differential amplifier causes 
junction temperatures to be asymmetric, resulting in offset and gain error. 
These gradients arise from convection currents of air across the circuit board 
or thermal conduction along an IC substrate. They are minimized for a discrete 
circuit by thermally shorting balanced components with a thermally conductive 
path between them. By mounting two transistors on the same metal heat sink, 
their static temperatures track because of the low thermal conductivity of 
metal. The metal acts as the thermal equivalent of a single electrical node 
since it is the same temperature everywhere (or isothermal). The thermal-
electrical analogy is 

temperature T <=> voltage 

thermal power Ρθ <=> current 

thermal resistance Rtì <=> resistance 

The thermal analog of Ohm's law is 

T=PeRe (9.63) 

Analogs also exist between "thermal mass" (mass x specific heat) and capaci
tance, leading to dynamic thermal effects, to be studied later. A heat sink has 
Re = 0, thus minimizing ΔΤ between differential transistor pairs. In some cases, 
a box is built around sensitive circuitry to act as a thermal convection shield. 

For ICs, these techniques cannot be applied. Instead, balanced components 
are placed across symmetric thermal gradients. This requires thermal as well 
as electrical consideration of the IC layout. Alternatively, circuit elements are 
constructed so that balanced pairs receive the same thermal stimulus. For 
example, a two-transistor differential pair can be constructed of two pairs of 
transistors in a square pattern, with parallel devices situated diagonally (Fig. 
9.29). For isotherms along the x axis, A-C and B-D are at the same tem
perature; isotherms along the y axis heat C-B and A-D the same. In each 
case, thermal symmetry is preserved, and the electrical effects are cancelled. 

The effect of diagonal isotherms is minimized if the gradient is linear. A 
gradient with isotherms of slope - 1 heats A and B to the same temperature, 
whereas each of C and D is hotter and colder than A-B. If the average 

Ξ 
(a) (b) 

FIG. 9.29 A BJT diff-amp IC layout for minimizing thermal effects. 
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temperature of C and D is the temperature of A-B, thermal effects are cancelled 
to the extent that the thermal-to-electrical transfer function is linear. The pn 
junction relation shows that it is not for saturation current, IS(T). Therefore, 
close layout is desired to minimize temperature differences among transistors. 

Thermoelectric voltage generation occurs when dissimilar metals are 
joined, as in thermocouples. Thermocouple voltages are generated at solder 
joints and connectors. IC leads are often made of the alloy kovar. A copper-
kovar joint generates 40 μ\/°0, whereas a copper-solder joint (with tin-lead 
solder) generates 1-3 /x,V/°C. A type K (chromel-alumel) thermocouple has 
a room-temperature TC of 39 μ,ν/°0, for comparison. These thermocouple 
joints are compensated by symmetry, by having the same number of them on 
each side of a differential input, and by having them track with temperature. 

Resistors affect performance according to their type: 

resistors 

accuracy 
stability 
TC 
R range 

carbon film 

0.5% 
1%/kh 
500 ppm/°C 
1Ω-150ΜΩ 

metal film 

0.1% 
0.5%/kh 
25-150 ppm/°C 
10Ω-10ΜΩ 

bobbin wirewound 

0.01% 
0.5%/kh 
20 ppm/°C 
0.05 Ω-6 ΜΩ 

Resistor stability is the fractional amount the resistance changes over time, 
usually in units of 1000 hours. Wirewound resistors are constructed in various 
ways. Winding resistance wire on a bobbin results in the highest performance, 
as given in the table. 

Variable resistors (potentiometers and rheostats) are also affected sig
nificantly by temperature and time. 

pots carbon cermet wirewound 

stability ±10%/kh ±3%/kh ±2%/kh 
TC, ppm/°C 400-800 100 50 
R range 100Ω-5ΜΩ 10Ω-2ΜΩ 10Ω-50kΩ 

Contact resistance variation (CRV) as the wiper is moved along the resistive 
element is the main cause of adjustment noise in a variable resistor. CRV is 
typically 1% maximum, but the application determines the extent of the effect. 
As a potentiometer with no wiper current, CRV does not affect circuit operation. 
For rheostats, in which all the current flows in the wiper, the effect is maximum. 
Generally, wirewound pots have the lowest CRV, followed by conductive 
plastic, molded carbon, and cermet. 

Resistors have parasitic capacitance and inductance. The shunt terminal 
capacitance of a \ W carbon resistor is about 0.5 pF. Series inductance is more 
significant, especially in wirewound resistors. Noninductive winds of resistance 
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wire (usually manganin) can reduce inductance. This is significant when power 
resistors are used to sense current in magnetic deflection amplifiers, current-
mode switching power supplies, and motor drives. 

Capacitors also affect circuit precision. Selection of the optimum capacitor 
type for a given application is a small specialty in itself, greatly aided by 
familiarity with manufacturer's specifications. A concise chart giving typical 
capacitor characteristics is appealing, but variations among values on existing 
charts suggest a more general approach. Some general facts about capacitors 
are helpful in design, with emphasis on plastic film capacitors. 

Capacitor plates are either metal foil or a metallized deposition on the 
dielectric film itself. Foil capacitors are larger because the foil is thicker but 
have lower series resistance. They also cost less but can have higher TCs. 

Figure 9.30 shows a general model of a capacitor. Capacitor C has series 
inductance L and series resistance RS9 called equivalent series resistance (ESR) 
on data sheets. Rs is a limiting parameter in power applications, involving 
large ripple currents, and is characterized directly; a 1 mF, 25 V aluminum 
electrolytic has a typical series resistance of 50 mil. 

In small-signal applications, Rs is characterized by its dissipation factor 
(DF) the ratio of RJXC, where Xc is capacitive reactance. Alternative charac
terizations abound. The arctangent of the ratio is the loss angle, and its 
reciprocal is the quality factor. The power factor is the sine of the loss angle. 
Dissipation factor is a function of both temperature and frequency. 

Current leakage, both through the dielectric and across the body of the 
capacitor, is modeled by the parallel resistance Rp. The dielectric resistance 
is expressed by the geometric resistance formula, R = pl/A, where p is resis
tivity, / the length, and A the area. The length is the dielectric thickness, and 

FIG. 9.30 Capacitor model with ESR Rs, leakage resistance Rp, and parasitic series inductance L. 
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A is plate area. Since the geometric capacitance formula is C = el/A, Rp is 
proportional to C and is usually given in units of ohm-farads (or megaohm-
microfarads). Insulation resistance decreases with temperature for all film 
capacitors. Foil capacitors have about five times higher insulation resistance 
then metallized types. For low-leakage applications such as slow ramp gen
erators or long-interval timers, the outer surface of the capacitor must be clean. 
A capacitor with fingerprints shows a noticeable increase of leakage, by orders 
of magnitude. Moisture also degrades insulation and creates current paths. 

For bypassing, a minimum L is desired. Electrolytic capacitors have the 
largest L, with series-resonant frequencies typically between 100 kHz and 
5 MHz. Other capacitors are usually not limited in their frequency by L but 
by dissipation factor. The best general high-frequency capacitors are ceramic. 

Dielectric materials tend to become polarized by an electric field that 
remains after the field is removed. If a capacitor is shorted for a while so that 
its terminal voltage is zero and then the short is removed, the capacitor exhibits 
a nonzero voltage! This phenomenon is due to the partial polarization of the 
dielectric material into an electret, the electric equivalent of a permanent 
magnet. It is modeled in Fig. 9.31 by several series RC elements in parallel. 
This characteristic is quantified as dielectric absorption, measured as the fraction 
of the applied voltage that the capacitor exhibits after being shorted for a 
fixed time, usually 5 seconds. This effect is good for making transducers but 
causes anomalies in circuit response. For high-performance integrators or 
sample-and-hold circuits, dielectric absorption must be minimized. 

Capacitors are made by winding alternate layers of foil and dielectric film, 
or layers of metallized film, together with opposing plates offset to opposite 
sides of the roll. In "noninductive" capacitors, the extra foil coming out of 
each end is smashed against the end and soldered to a lead. The plates are 
electrically paralleled; this reduces both L and Rs. In an "inductive" construc
tion, the foils are brought together at the ends of the wrap. One lead is placed 

C o ^ 

FIG. 9.31 Capacitor model of dielectric absorption. 



9.7 Low-Level Amplification / 419 

in the center and the other at the perimeter. Both leads run the width of the 
capacitor. Since the length of the foil or film wind is much greater than its 
width, L and Rs are greater. But this method of construction is simpler and 
is the only way to build metallized film capacitors. 

The plastic films used as dielectrics in capacitors number about a half 
dozen. The common name for polyester is Mylar. For general use, where high 
performance is not required, polyester is preferred because it is low-cost and 
has good volumetric efficiency (charge density). Capacitor size depends mainly 
on dielectric constant and dielectric strength, the maximum electric field before 
breakdown occurs. Polyester has a dielectric constant of 3.2. Its TC is bad at 
temperature extremes. It monotonically increases from -5%/°C at -55°C, with 
an inflection point at 25°C where the TC levels off. At its maximum temperature 
of 125°C, the TC is a huge +14%/°C. But from 0° to 50°C, the TC is about 
1%/°C, and then only at the extremes. The typical DF of polyester is 0.5%, 
dielectric absorption is 0.2%, and foil insulation resistance is the worst of the 
films at 1 0 5 n F a t 25°C. 

Polycarbonate capacitors are slightly larger than polyester capacitors with 
a similar shape of TC versus temperature, increasing with temperature and 
flat with zero TC at 25°C. The TC extremes are -1.5%/°C at -55°C and 
+ 1.5%/°C at 125°C. Its dissipation factor is about half that of polyester, and 
foil insulation resistance is twice as high. Polyester and polycarbonate insula
tion resistance decreases superlinearly with temperature; the better capacitors 
decrease linearly. Dielectric absorption is typically 0.08%. Both decrease super
linearly with temperature. It is a medium-grade capacitor and a likely choice 
when polyester is not quite good enough. Its biggest weakness is its moisture 
sensitivity; it is the worst of the film capacitors. Although they are not abundant, 
polysulfone capacitors are similar to polycarbonates but have less moisture 
sensitivity and DF, have a flatter TC, and can operate up to 150°C. 

The most commonly used high-performance film capacitors are polypropy
lene and polystyrene. Polypropylenes are comparable in price to polyesters, 
are only slightly larger, and have a maximum temperature of 105°C. Polystyrene 
is the better of the two, electrically, but costs more, is three times the size of 
polyester, and operates to only 85°C. For polypropylene, typical values are 
DF = 0.02% over temperature, foil insulation resistance = 8 x 105f2F at 25°C, 
dielectric absorption = 0.02% with negligible moisture sensitivity. The TC is a 
linear -250 ppm/°C. Polystyrene is similar but has half the DF and maintains 
insulation resistance at higher temperatures much better. Its TC is also linear 
but varies with material. The standard TC is -120 ppm/°C±50 ppm/°C. Poly
propylene capacitors are a good choice for high-frequency power applications 
due to their low DF. 

The common name for polytetrafluoroethylene (PTFE) is Teflon. It is the 
highest performance dielectric and highest in cost. PTFE is comparable to 
polystyrene in most properties and is twice the size of polyester. It has twice 
the foil insulation resistance of polystyrene, the best available. It has a linear 
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negative TC of -200ppm/°C and is, along with polystyrene, the most stable 
in capacitance over time, at 0.1%/year. The worst is metallized polyester, at 
0.5%/year, with the others around 0.2%/year. DF is flat with temperature. It 
is the highest in operating temperature: 200°C. 

One approach to zero TC is to make a hybrid dielectric of materials with 
opposite TCs that cancel. One such hybrid capacitor uses films of polyester 
and polypropylene with a TC of zero ±100ppm/°C. It retains some of the 
worst properties of polyester, however: DF = 0.5% and dielectric absorption = 
0.15%. Two new dielectrics, polyphenylene sulfide and polyvinylidene fluoride, 
can be used to make the most stable capacitors. Polyphenylene sulfide has a 
DF comparable to that of polypropylene. 

In summary, and with some simplification, there are three performance 
classes of film capacitors: polyester is low-performance, polycarbonate is 
medium-performance, and polypropylene, polystyrene, and PTFE (in order 
of improvement) are high-performance. Except for frequency characteristics, 
they are better than ceramic capacitors except for "zero" TC NPO ceramics. 
Mica capacitors give high performance at a high price and accuracy, with a 
range of TC down to ±70 ppm/°C. The ultimate capacitor, except for size and 
cost, has a vacuum dielectric. Glass and air approach it in stability and low 
TC but have extremely low charge density. 

Another important kind of capacitor is that made from glass epoxy circuit-
board material. These capacitors are sometimes intentional but are usually 
parasitic. The most common board materials, G-10 and fire-retardant FR-4, 
have a dielectric constant of about 4.8 and a DF (at 1 MHz) of 0.02%, 
comparable to that of polypropylene. The volume resistivity of G-10 is 5x 
108 ΜΩ-cm, five times that of FR-4. The surface resistivity of G-10 is 4x 
108 Mil, whereas for FR-4 it is an order of magnitude less. Both materials can 
be used up to 130°C. Low-cost low-performance phenolic boards have a 
dielectric constant of 4.1, a 1 MHz DF of 0.03%, volume resistivity of 5x 
106 ΜΩ-cm, surface resistivity of 5 x 104 ΜΩ, and a maximum temperature of 
125°C. 

Boards that have not been cleaned after assembly contain solder flux that 
can be a cause of excessive leakage. When even clean board leakage is excessive 
and guarding techniques inadequate, critical high-resistance nodes can be 
constructed with Teflon standoffs or mechanically stable parts connected in 
midair. 

9.8 Isolation Amplifiers 

Some applications require extreme isolation of the amplifier input from power 
supply and output. These include patient monitoring, floating measurements 
involving high-voltage circuits, digital voltmeters, and in environments with 
severe ground loops. 
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FIG. 9.32 Flying-capacitor input isolation technique. 

A long-used isolation technique is flying capacitor isolation (Fig. 9.32). 
Switches activated by A are closed, charging capacitor Cf to the input voltage. 
The A switches are then opened, and the B switches are closed, charging the 
amplifier stray input capacitance Cx. For negligible loss of voltage, C f » C j . 
By using reed relays for the switches, we can achieve large maximum voltage 
ratings and low switch resistance. Limitations are finite switch-cycle life, contact 
bounce, contact noise, relatively large size and power requirements, and slow 
switching speed. A solid-state version overcomes these problems but suffers 
from lower voltage ratings; the LTC1043 "switched-capacitor building block" 
contains two flying-capacitor circuits and an oscillator to drive them, realized 
in monolithic silicon. 

A more general approach is shown in Fig. 9.33. An input amplifier drives 
a kind of signal transmitter that drives a signal coupler. This coupler has no 
dc conductive (or galvanic) path between input and output sides and preserves 
an isolation barrier. Energy transmission is done by some means other than 
electrical conduction, such as optical coupling using optoisolators. Magnetic 
coupling is common using a transformer. Since dc amplification is desired, 
the signal transmitter in this case is a square-wave amplitude modulator and 
the receiver on the output side, a demodulator and filter. The form of trans
mission is pulse amplitude modulation (PAM). 

Input amplifier Output amplifier 

Power 
supply 

— l 
« 1 Power 

coupler 
Power 
xmtr Input power 

Barrier-

FIG. 9.33 Block diagram of an isolation amplifier. Input and output conductive paths are broken 
by couplers. 
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Because the circuits on the input side require power, a separate isolated 
power coupler is required with a power oscillator driving it and a power supply 
on the input side. If the power port is also isolated from both input and output 
sides and supplies isolated power to both, then the system has three isolated 
ports, the most general case of isolation. But a two-port isolation amplifier, 
with power and output ports unisolated, is often adequate. 

The dotted paths in Fig. 9.33 indicate that the switched power waveform 
can be supplied to the modulator and demodulator for synchronous demodula
tion and a doubling of the signal-to-noise ratio. 

Other forms of modulation can be used. Instead of PAM, voltage can be 
encoded in frequency with a voltage-to-frequency converter (VFC). Pulses 
coupled across the barrier are converted back to a voltage by a FVC, or their 
frequency is measured digitally. With pulse-width modulation (PWM), the 
voltage is encoded as a duty-ratio so that the coupled pulse frequency is not 
related to voltage accuracy. For any modulation technique, the signal band
width is limited by the carrier (or modulated) frequency. Optical coupling is 
dc, but LEDs and phototransistors are nonlinear, and their scaling is difficult 
to control. Consequently, matched optical paths are used. One is the input 
amplifier feedback loop, and the other is on the output side. Other dc-
responding devices, such as Hall-effect devices, have similar difficulties and 
have not become commonplace for such coupling. 

A common industrial instrumentation interface is the 20 mA current loop. 
Signals are encoded as analog currents with 4 mA as zero scale (zs) and 20 mA 
as full scale (fs). Several channels can be remotely connected to the inputs of 
isolation amplifiers using a cable containing a twisted pair of wires for each 
channel. At the input end of the cable, transducers with 20 mA current-loop 
interfaces send back sensor signals with little voltage variation, causing minimal 
capacitive coupling between twisted pairs in a cable. The transducers are 
required to operate on a maximum of 4 mA. Then the two-wire interface 
supplies power as a voltage, and power supply current is measured as the 
transducer output signal. 

When transformers are used to isolate circuits—not only in isolation 
amplifiers but in systems with EMI in general—parasitic capacitance between 
primary and secondary windings provides an electrical path for noise or ac 
leakage current and degrades isolation. Interwinding capacitance is minimized 
by placing the windings on opposite sides of a toroidal core or separating 
them on opposite ends of an E core, using a split bobbin. Capacitive imbalances 
arise from winding distribution, in which interwinding capacitance on one 
end of a winding is larger than on the other end. These differential imbalances 
cause differential outputs due to common-mode inputs. Interwinding capacit
ance can be minimized by placing a nonshorting turn of insulated copper sheet 
between concentric transformer windings as an electrical or Faraday shield. 
This shield is connected to the side generating the shield current, providing a 
return to the generating source. 
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9.9 Autocalibration 

Precise signal processing is achieved by making the components precise. Since 
this is limited by technological capability, compensation methods are required 
to improve performance. Several techniques are based on a general idea, called 
autocalibration. Instead of trying to null circuit errors with more circuitry, 
circuit behavior is characterized using known inputs. The deviation of the 
resulting outputs from the ideal are measured and can be used to correct the 
unknown signal output. 

A general autocalibration scheme is shown in Fig. 9.34a for an analog-to-
digital converter (ADC). An analog multiplexer switches zero-scale (zs) and 
full-scale (fs) reference voltages into the ADC, and the output is sent to a 
microcomputer (μθ) that is controlling the multiplexer sequencing. If the 
ADC is linear, a linear model is assumed for its transfer function, shown in 
(b). With two measurements based on known inputs, the slope and offset are 
computed. Then measurements of Vx are corrected according to these param
eters. Autocalibration thus requires two modes, calibration and measurement. 

A general autocalibration equation is based on two arbitrary reference 
voltages VRi and VR2 and their measured values VR1 and VR2. Then measure
ment values Vx of the unknown input Vx are calculated from 

\ ^ R 2 — VRì/ 

Integrating ADCs often have an autozero feature that corrects for offset 
error in this way. Without a microcomputer, a clock oscillator drives switches 
that first ground (or null) the ADC input and store the error on a capacitor. 
This offset error is then switched in during measurement so that it subtracts 
from the input signal. 

Autozeroing is used in the autobalanced CMOS comparator (Fig. 9.35). 
A CMOS inverter is connected in series with capacitor C and switches. When 
the A switches are closed on the first half-cycle of a clock, the inverter input 
and output are forced to be equal at threshold, VTH. The input side of C is 

zs mux 

i \ 

—U. ADC ßC 

(a) (b) 

FIG. 9.34 Autocalibration technique for A/D input to microcomputer /xC. The ßC performs 
calibration by sequencing zero and full-scale inputs to the ADC, and calculating slope m and 
output offset b. 
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FIG. 9.35 Switched-capacitor comparator with CMOS inverter. The inverter threshold offset is 
common-mode rejected by differencing inputs across capacitor C. 

at the comparator reference voltage VR. On the second half-cycle of the clock, 
the A switches are opened, and B is closed, connecting the input voltage. The 
inverter input voltage is then 

V i n = V i + V c = V 1 - ( V R - V T H ) = V 1 - V R + V T (9.65) 

Because the inverter input is offset by VTH, the difference between input and 
reference is also offset by VTH, nulling the offset. The inverter output con
sequently responds to Vx — VR and performs the comparator function. A large 
number of these comparators have been used to implement parallel ADCs 
and other mixed analog and digital systems with digital IC processes. A similar 
input scheme is used in the LTC1040 dual micropower comparator. 

Amplifier input offset voltage error can be reduced with autozeroing by 
nulling the amplifier inputs and charging a capacitor with the input error 
voltage. Then the signal is switched in, and offset error is nulled. A fault in 
this approach is that by switching between ground and signal, the switching 
waveform becomes part of the output. Also, the input signal is interrupted. 
Such amplifiers are called chopping or chopper-stabilized amplifiers. Multiple-
path amplifier topologies have been devised to deal with these problems (see 
Chapter 10). 

The chopping or switching of the input signal makes autocalibration 
techniques discontinuous, or discrete, in time. Systems with continuous ampli
tude and discrete time functions are called sampled-data systems and exhibit 
a range of behavior investigated in Chapter 12. The bandwidth of these systems 
is limited by the chopping or sampling rate; the input signal bandwidth must 
be much less than the sampling frequency. In practice, autocaHbrating or 
switched-capacitor circuits have a limited bandwidth (10 Hz to 100 kHz) but 
excellent input offset voltages (1-10 μ,ν). They are well suited as thermocouple 
and vacuum-system ion gage input circuits. 

9.10 Distortion 

Besides noise, another major cause of degradation in precision is distortion. 
Its two main causes are device nonlinearity and thermal effects. 
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Active devices are inherently nonlinear. Nonlinearity can be minimized 
by setting the operating point in the most linear region. Circuit techniques 
that minimize nonlinear behavior can be used, such as the minimization of 
BJT base-width modulat ion for the CE in a cascode stage. These attempts at 
linearization are often limited by other constraints. We now examine distortion 
due to nonlinearity and develop a simple way of estimating the amount of it. 

Bruce Hofer has developed a technique for estimating harmonic distortion 
in amplifiers. He begins with the truncated series expansion of an amplifier 
output: 

3 

v0= Σ , akv\= Vos + 0^ + α2υΐ + α3υ3γ (9.66) 
k=0 

The technique is based on measurement of the amplifier gain at the center 
and positive and negative peaks of an input sinusoid. The incremental gain is 

dt>n -, 
A = —-=al + 2a2v] + 3a3v2 (9.67) 

αυλ 

We now solve for ak at u, = 0, V, and - V. Substituting the three values, we obtain 

Λ(0) = α, (9.68a) 

A(V) = ax + 2a2V + 3a3V2 (9.68b) 

A(-V) = ax-2a2V + 3a3V2 (9.68c) 

Equations (9.68) are solved for ak by adding (b) and (c) and then subtracting 
(c) from (b). The solutions are 

VÌ- A(-V\ 
(9.69) 

(9.70) 

(9.71) 

^o = Vos + a, V sin cot + a2 V2 sin2 wt + a3 V3 sin3 ωί (9.72) 

Applying trigonometric identities, 

sin2 cot = 5 - | c o s 2 c o i , sin3 cot = | s i n (ot-\sin3a)t (9.73) 

to (9.72), we have 

^o = ( Vos + 5 0 2 y 2 ) + (α ι + 4«3 V) V sin (ut-\a2 V2 cos 2ωί -\α3 V3 sin 3ωί 
Î 

de term (9.74) 

For a sinusoidal 

the output is 

input 

a2~-

a3~-

of 

_A(V) 

_A(V) 

Vx 

-A(-V) 
4V 

+ A ( - V ) -
6 V2 

= Vsin cot 

■2A(0) 
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The distortion due to the nth harmonic is defined as 

rrr^ \\Xn\\ amplitude of nth harmonic 
nHD = = 

II Xx || amplitude of fundamental 
The second-harmonic distortion is 

(9.75) 

2HD = 
1 „ I / 2 

aiV + ia,V2 
V 

' 2 
a2 A(V)-A(-V) 

8A(0) 
l\a3\V«\ai\ (9.76) 

The condition of (9.76) is that the distortion be small. Similarly, for third-
harmonic distortion, 

3HD = 
\a,V 

α , ν + | α 3 ν 2 
«3 Λ(ν) + Λ ( - ν ) - 2 Λ ( 0 ) 

24Λ(0) 
34|ΰ3|ν«|α, | 

(9.77) 

The total harmonic distortion can be estimated as the rms sum of the MHD. 
To estimate distortion for an amplitude other than V, say, V = kV9 we substitute 
into (9.67), resulting in 

a'2 = ka2 and a'3 = k2a3 

If the amplitude is doubled, 2HD doubles and 3HD quadruples. 

Example 9.4 Estimation of CE Harmonic Distribution 

The CE amplifier stage in Fig. E9.4 is analyzed for second and third 
harmonic distortion for an input sinusoid with V=10mV amplitude. 
The BJT is biased with 1 mA of emitter current. 

l . 2 k A S l ? L 

,£ 
1 mA 

1 0 0 Ω > / ? Ε 

Î77 
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The distortion is due to variation in re due to ie. We first find the 
gain at the three input levels: -10 mV, 0 V, and 4-10 mV. The gain in 
general is 

Then 

A(0) 
1.2 kfì 

100Ω4-26Ω 
= -9.52 

At V, = 10mV, A / E - 1 0 m V / 1 2 6 i l - 8 0 / x A . Then Γ6 = 3 3 Ω . The value 
of A(V) is 

1.2 kΩ 
A(10 mV) = — =-9 .68 

Similarly, 

A(-10mV) = 

100Ω4-24Ω 

1.2 kfì 
-9.38 

100Ω4-28Ω 

With the calculated gains, we now solve for the distortion values: 

I ( - 9 . 6 8 ) - ( - 9 3 8 ) 
2HD = 

3HD = 

= 0.39% 
8(-9.52) 

(-9.68) + (-9.38)-2(-9.52) 
24(-9.52) 

If the input amplitude is increased to 25 mV, 

= 0.086% 

and 

——-1=0 .99% 
10 mV/ 

- — — | =0.54% 
10 mV/ 

Example 9.5 Estimation of CC Harmonic Distortion 

The CC of Fig. E9.5 has a sinusoidal input of 0.25 V in amplitude and 
is biased at an emitter current of 1 mA. The calculations of gain are 
similar to those of Example 9.4, with voltage gain, 

Rp + n 
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+VCC 

1 mA 

/ ? F > l k ß 

FIG. E9.5 

The three gains are 

A(0) = ^ Ì k i ? _ = 0.975 

At V̂  = 0.25 V, the emitter current changes by approximately 

0.25 V 
—^7777 = 0.244 mA 
1.026 kil 

Then JE = l m A + 0.244 mA= 1.24 mA, re = 2 i n , and 

And similarly, 

The distortion is 

2HD~ 

3 / / D -

Λ < 0 · 2 5 ν ) = τ ϊ ^ = 0 · 9 8 0 

Λ(-°·25ν)-ΐϊϊ^η=0·96' 

(0.980)-(0.967) 
■ o.n% 8(0.975) 

(0.980)+ (0.967)-2(0.975) 
24(0.975) 

= 0.013% 

When analyzed by this technique, the two-transistor diff-amp is found to have 
no 2HD and dominant 3HD. In general, odd transfer functions, in which 
fo(^i) = - fo ( - t f i ) , have only harmonics that are odd-integer multiples of the 
fundamental, or odd harmonics, whereas even functions, in which u0(fi) = 
fo(—i>i) n a v e o n 'y e v e n harmonics. 
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Harmonic distortion consists of frequencies that are harmonically related 
(that is, integer multiples of) the fundamental. Nonlinearity also produces 
interactions between frequency components of the input signal when it is not 
a sinusoid. This form of distortion is intermodulation distortion (IM). It pro
duces sum and difference frequencies as a modulator or multiplier does. 

In practical systems, the dominant linear term produces a scaled input, 
and the nonlinear terms, the distortion. Intermodulation distortion can be 
demonstrated by a system with only a quadratic term, so it produces only 
distortion terms in the output: 

v0=vi (9.78) 

Instead of a single sinusoid, vx is set to be the sum of two sinusoids at different 
frequencies: 

vx = Vx sin ωχ t + V2 sin ω2ί (9.79) 

Substituting Vi into (9.78) gives the output: 

Vo = 
V 1 + V 2 

2 

Î 
dc offset 

error 

-—-cos 2ωχί — —-cos 2ω2ί + Vx V2[cos(œx — œ2)t-cos(œx-\-wx)t] 

2HD IM 

(9.80) 

Since (9.78) is purely nonlinear, all terms of (9.80) are distortion terms. Besides 
second-harmonic distortion of each input frequency, sum and difference 
frequencies are also produced. These are the IM terms. 

9.11 Transconductance Linearity of 
Bipolar-Junction Transistor 
Diff-Amp 

The BJT differential amplifier stage, or emitter-coupled pair (Fig. 9.36), is of 
interest because of its frequent use in precision circuits. As the external emitter 

Vi O ■O V/5 

FIG. 9.36 BJT diff-amp with emitter resistance and current-source I0. 
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resistance RE is increased, the input dynamic range is extended, and the effect 
of re decreases because of the much larger series RE. Thus Are is less significant 
and linearity increases. To gain greater insight into the BJT diff-amp, we derive 
its differential transconductance. Let the output current be 

io=ii-h (9.81) 

and let the emitter bias current be 

h=h + ii (9.82) 

The differential input is 
υλ = υ2-υχ (9.83) 

Assume a = 1 and matched junctions 7Si = hi- Then KVL is applied around 
the input loop: 

-*"GM*H(*)-*"(i) 
= V T l n ( f ) + i o ( y ) (9-84) 

The first term can be expressed as 

The incremental transconductance is 

Gm is found by implicitly differentiating (9.84) and solving

: 

°^ 2v! {RE
 (9'87

) 

/ο [1 -0Ό/ /ο ) 2 ] + 2 
Since Gm depends on i0, it is not linear. When υλ = 0, the amplifier is balanced, 
and I'O = 0. Then Gm is maximum and is 

Gm(0) = O V / Λ Ρ n = Λ n (9'88) 

2VT/I0+RE/2 r e + ^ E / 2 
This result is consistent with the transresistance method. 

Instead of calculating distortion, we define the error in Gm as 

G m -G m (0)_ ( io / / 0 )2 

Gm(0) (K E / 0 /4V T )[ l - ( i o / / 0 ) 2 ] + l l · ; 

With ;'2 = 0.75 mA and i, = 0.25 mA, then /'o//0 = 0.5. Assuming ΑΕ=104Ω, 
ε = 14.3%. With ΛΕ = 0Ω, ε is simply (iQ/10)2 or 25%. 
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When # E = 0, (9.84) can be solved for i 0 . First, 

ll=e(vi/vT) ( 9 9 0 ) 

With (9.82), i, can be expressed as 

/o 
11

 e^/vT)+x 

By definition, 

ex + e 
and 

1 

By change of variable, let x^x/2. Then, 

φ-tanh^J 
ex + \ 

Using this relationship with (9.91), we get 

The differential output current is 

i, = /0-2i, = I0- hi 1 - t a n h ^ j 

(9.91) 

t a n h x ^ — — (9.92) 

è [ l - t a n h x ] = ^ r — (9.93) 
e +1 

(9.94) 

i \ = è / 0 ( l - t a n h ^ ) (9.95) 

1 ο = Ϊ 2 - 1 ι 

or 

io = / o t a n h ^ - (9.96) 

The hyperbolic tangent, an odd function, is linear around the origin and flattens 
out to ±1 for large inputs. At room temperature, 2VT = 52 mV. The deviation 
of io/h from a line tangent at the origin for a few values of vx demonstrates 
the useful input range of υλ. 

vu mV 

10.4 
17.1 
25.9 
38.8 
51.7 
77.6 

103.5 
258.7 

vJ2VT 

0.20 
0.33 
0.50 
0.75 
1.00 
1.50 
2.00 
5.00 

io/lo 

0.197 
0.319 
0.462 
0.635 
0.762 
0.905 
0.964 
1.000 

ì 0 error (%) 

-1.31 
-3.48 
-7.58 
-15.3 
-23.8 
-39.7 
-51.8 
-80.0 
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About 100 mV of input is the practical limit of the dynamic range. Above this, 
severe compression of i0 results. With zero RE, the transconductance is 

Gmi^=Mi~(f)} (9.97) 

The effect of RE is to linearize the hyperbolic tangent curve around the origin 
and add a linear term to (9.97). 

Various schemes have been devised to improve the linearity of the BJT 
diff-amp. The cross-quad circuit of Fig. 9.37 is one of them. The input voltage 
is applied across four b-e junctions, two per side, and the common emitter 
resistance RE. The voltage drop around the input loop is 

v2- vx = vB + uc + vRE-vD-vA=VTInί -jf J + iRERE- VTl-j£J (9.98) 

where, for instance, the base-emitter junction drop of transistor A is vA. 
Equation (9.98) can be further simplified for matched transistors to 

v2-vl= ν τ Ι η ί τ ^ ί + θ Α - Ϊ Β ) ^ (9.99) 

For α = 1, iB=io a n ^ I"C=ÏA· This reduces the log term of (9.99) to zero, 
leaving only the linear term. The large-signal transconductance is 

(9.100) 

(a) (b) 

FIG. 9.37 Linearized cross-quad circuit (a) and incremental model (b). Input voltage is dropped 
across series junctions, each conducting one of the output currents. 
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FIG. 9.38 Complementary diff-amp scheme using the cross-quad idea. 

The input loop is linearized by summing voltages across junctions that are 
conducting currents from both sides. A variation on this idea, using com
plementary pairs of BJTs and diodes for biasing, is shown in Fig. 9.38. The 
diodes bias the NPN pair to approximately the same currents as the PNP pair 
at zero input voltage. 

Incremental analysis of the cross-quad circuit around u, = 0 can assume 
equal dc current in the four BJTs so that re is the same for all of them. Assuming 
matched transistors with equal ß gives the inverted small-signal transcon-
ductance: 

Ol
io 

1 (^y-mm-if +-
R, ß»l (9.101) 

Without the cross-BJTs, 2re would not be divided by ß. In effect, the non-
linearity is reduced by ß. Note that the cross-quad amplifier is inverting because 
input voltage v2 mainly drives BJT C, which generates ix. 

9.12 Bipolar-Junction Transistor and 
Field-Effect Transistor Diff-Amp 
Temperature Characteristics 

Ambient temperature variations can cause changes in offset voltage of a 
diff-amp. This offset voltage drift is derived by applying KVL to the input loop 
of a BJT diff-amp. The input offset voltage, 
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Since the thermal voltage VT=kT/q is in both terms of (9.102), they are both 
temperature dependent. The first term has drift due to emitter-current mis
match; the second is due to mismatched transistor Is. BJT matching, especially 
monolithic matching, minimizes the second term. The first term requires that 
the dc currents of the differential pair be equal. The drift TC is 

dV0i 

dT ■ = - l n ( ^ ) = ( 1 9 8 M V / ° C ) l o g ( ^ (9.103) 

A 1 />tV/°C TC requires a 1% match of emitter currents. For perfectly matched 
BJTs, zero TC occurs at zero offset voltage. Slight mismatches cause the second 
term of (9.102) to be significant, leading to a modified (9.103) and nonzero 
offset when the emitter currents are equal. In addition, ohmic emitter resistance 
variations and surface leakage introduce offset error. 

Another useful quantity is the drift TC per offset voltage, for matched BJTs: 

dVJdT /xV/°C 
— 7 ^ — = 3 .3^ ' , T = 300K (9.104) 

dVos mV 
A 1 mV offset produces a drift of 3.3 M V / ° C . 

Two adjustments are required to precisely balance a practical diff-amp 
because offset voltage drift is not nulled at zero offset voltage. Offset voltages 
are also caused by load resistor and rQ mismatch. The emitter currents are 
adjusted first for zero TC. This adjustment introduces its own output offset 
voltage, which is nulled by adjusting the load resistor balance. 

For JFET diff-amps, the drift mechanisms are carrier mobility μ and 
gate-channel junction barrier voltage φ. With a constant applied VGS, the 
terminal VGS is the effective VGS + <I>. Then dVGS = άφ. The VGS TC is thus, 

dVGS_dVGS άφ dVGS dID άμ 
dT θφ dT dIO θμ dT 

We need the TCs of φ and μ. The TC of φ is that of a pn junction, or about 
- 2 mV/°C at room temperature. For an «-channel JFET, άφ/άί>0. Mobility 
varies with doping concentration and type, and only an average approximation 
can be given. It is about —0.5%/°C. The drain current of a JFET in the current 
saturation region is 

<(-f) Ì D = / D S S ^ 1 - ^ J (9.106) 

where 7DSs is the drain current when VGS = 0 and VP is the pinch-off voltage. 
VP<0 for an «-channel JFET. The saturation region is where 

V D S ^V G S -Vp (9.107) 

ΙΌ is a function of device geometry and electrical parameters. It is directly 
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dependent on channel mobility, so that 

dID άμ 
to μ 

Equation (9.105) can now be simplified after noting that 

(9.108) 

dvGS 

Substituting into (9.105) gives 

dI° *m = - ^ ( » - ^ ) < 9 · 1 0 9 ) 

= 0.4V (9.111) 
TC(Vos) = 0 

- 4 ^ = (2mV/°C) + (-0.5%/°C)( — ) (9.110) 

For zero voltage offset TC, 

IR 
dm 

Divide / D from (9.106) by gm of (9.109), resulting in 

— =4(V o s -Vp) (9.112) 

Set this equal to (9.111) and solve for the zero TC VGS: 

VGsz=VG S|T C = 0=Vp + 0.8V (9.113) 

In other words, the zero-drift VGS is about 0.8 V above pinch-off. The typical 
range of VGSz is - 2 V to - 4 V. The corresponding zero TC ΙΌ is 

I °-8 VV Ioz=Io\^=»=Ioss( - ^ ) (9.114) 

7DZ is typically several hundred microamps. Equation (9.110) can be written 
in terms of VGSz by substituting for VP from (9.113): 

rfvGS 
dT ^( -0 .25%/°C)(V G S -V G S Z ) (9.115) 

This formula is equivalent to (9.103) for a FET. The TC per volt of offset from 
VGSZ is 0.25%/°C or 2.5 AtV/0C per millivolt of offset. The drift TC per offset 
error is comparable to that of a BJT. 

To find the effect of ΙΌ on TC( VGS), substitute 7DSS of (9.114) into (9.106), 
retaining the sign within the square: 

/ V P - V G S V 
Λ -0.8 V / / D = / D Z I r . ; r ) (9.116) 

Then replace VP from (9.113), solve for VG S-VG S Z and substitute it into 
(9.115). The result is 

dVGS -»(-Vi) dT = ( - 2 mV/°C)( Ι - Λ / Τ ^ ) (9.117) 
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The sign can be checked by noting that when ΙΌ> ΙΌΖ, the TC is positive. The 
TC( VGs) is opposite in sign to TC(/D). Below JDZ, TC(/D) is positive because 
it is dominated by TC(</>). As \φ\ decreases with increasing temperature, the 
effective VGS increases, and more current flows. If ID is forced to be constant, 
then VGS must decrease. Thus, below VGSZ, T C ( V G S ) < 0 . Above JDZ, the 
TC(JD) < 0 and is dominated by ΎΟ(μ)< O.Here, VGS> VGSZandTC( VGS)>0. 
For constant ID, VGS must increase with increasing temperature. 

These results apply to a single JFET. For a matched differential pair with 
currents JD1 and ID2, 

Vo s=VG S2-VG S 1 (9.118) 

and 

^^-^f=<-™(Vi-VS (9119) 
The diff-amp is compensated when each drain current is 7DZ, and 

/D1 + /D2 = 2/D Z (9.120) 

The radicals can be written in the form 

*D1 2 i D 1 ( i D 1 + i D 2 ) — ( iD2— *Dl) Λ Jo ,~ Λ~Λ λ 

~r ̂ ΪΓ= 2/ =ι~ϊτ (9121a) 
'DZ Z iDZ Z iDZ Z iDZ 
M32 (-«DI + *D2) + (*D2 — *Dl) Λ . ^Ο / η 1 Λ 1 Ι ν 

-j-= Y =Ì+TT (9121b) 
iDZ ZJDZ z iDZ 

Equation (9.119) can now be expressed as 

dVt dT ■(lmV/wciyi^-yF-^ (9·122, 

where I0 = ΙΌ2-/DI is the output current offset. This error is usually small 
relative to 7DZ, so the binomial approximations, 

x x2 

(l±xyl/2^l±--j, x«l (9.123) 

can be applied. Then the TC reduces to 

^ = ( 2 m v / . c ) ( ^ ) ( 9 , 2 4 ) 

Comparing this result to (9.103) for the BJT diff-amp, we find that a TC of 
1 jLtV/°C occurs when the currents are mismatched by 0.1%. For the same TC, 
current matching must be an order of magnitude better for FETs than BJTs, 
which is why the input offset specification of FET-input op-amps is generally 
worse than their BJT counterparts. 
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The preceding derivations were for JFETs, but the results, including 
(9.106), hold for MOSFETs too. The difference is in 7DSS: 

/ D S S ( J F E T ) = ^ 2 » 7DSS(MOSFET) = ^ - ^ = ^ · —f~ = ^j2m CG 

(9.125) 

where μ is mobility, L the channel length, W the channel width, T the gate 
oxide thickness, and ε the gate-silicon dielectric constant. As shown in (9.125), 
even the form of 7DSS is the same. The difference is in how the gate and channel 
capacitances relate to the different device structures. Also, the MOSFET analog 
of pinch-off voltage VP is threshold voltage VT. The difference here is largely 
semantic. 

9.13 Thermal Distortion 

As the voltages and currents of electronic components vary, their power 
dissipation varies also. For components with parameters that are significantly 
affected by temperature, this self-heating can be regarded as a temperature 
signal. The electrical response is a kind of dynamic thermal distortion or noise. 

Semiconductor devices are strongly sensitive to temperature variation. A 
pn junction has a voltage TC of typically - 2 mV/°C. As a diode is heated, its 
v-i curve moves toward the vertical (current) axis, as seen on a curve tracer. 
The β of BJTs is sensitive to temperature but is hard to derive theoretically. 
It is typically about +1%/°C for silicon BJTs. The most significant parameter 
for gain variation with temperature is re, which is directly proportional to the 
thermal voltage, 

At an ambient temperature of 7 = 300 K, the fractional TC( VT) is 

T C % ( V T ) = — - — = - = = 0.33%/ K = 0.33%/ °C 
v T) VT T 300 K 

As a BJT heats on a curve tracer, not only does the v-i curve decrease in 
voltage, its slope at a given current becomes less steep; that is, re increases. 
These three thermal effects must be considered in circuit design. 

A well-designed amplifier is not very /3-sensitive; a appears in front of 
most gain expressions and depends on β as 

da I 1 V dß , 

7r = {jri)£ (9126) 

For ß = 100, TC(a) = 1 ppm and can be ignored. 
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ò 
ΚΘ1Α 

■Θ-
+ 

FIG. 9.39 Thermal-model electrical analog. Temperature is analogous to voltage and power 
dissipation to current. 

Good amplifier design also minimizes the dependence of gain on re. The 
remaining effect is the TC of vBE. BJT b-e junctions are highly doped and 
have a TC of about -2.2 mV/°C; diodes are lightly doped to increase break
down voltage and have a TC closer to -1.8 mV/°C, similar to the b-c junction 
of BJTs when operated in the inverse mode. Thermal effects are therefore 
mainly the results of a b-e bias shift with temperature change. This shift 
appears as a dynamic b-e signal and is modeled as a voltage source in series 
with a fixed VBE. 

Junction temperature Ts can be derived from the thermal model shown 
in Fig. 9.39. Ambient temperature TA is modeled by a voltage source. In series 
with it is the thermal resistance from junction to ambient. Dissipated in this 
resistance is power /?D, modeled as a current. The junction temperature is 

Tj — P D ^ 0 J A + TA (9.127) 

The maximum power that a transistor can dissipate is limited by the 
maximum junction temperature. For silicon, this is about 200 °C. The thermal 
model of (9.127) leads to the power derating curve of Fig. 9.40. Above 
TA = 25 °C, maximum power decreases linearly up to the maximum junction 
temperature. The slope of the derating curve is the thermal conductance in 

FIG. 9.40 Typical transistor power derating curve. 
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W/°C. A 16-pin dual-in-line (DIP) IC package has a thermal resistance of 
about 100°C/W and a TO-92 transistor package about 300°C/W. 

Minimization of dynamic thermal effects requires minimization of either 
RejA or APD. Semiconductor packaging often limits the minimum RejA, though 
the addition of heat sinks can significantly reduce it. We shall seek ways of 
minimizing A/?D instead. Direct reduction in ρΌ comes from reducing P D , the 
static power dissipation. Signal swings around this quiescent power are scaled 
down accordingly. Unfortunately, since power is often related to signal quan
tities, they also scale down with thermal noise. The approach we take here is 
to find the operating point at which signal excursion causes minimal change 
in power dissipation. 

The simple CE circuit of Fig. 9.41a illustrates the basic idea of thermal 
compensation. BJT power dissipation, by Watt's law, is 

PO=VCEÌE 
/ V C C - * > C E \ = /Vcc\ 

~VcE\ RL ) \RJ VCE~ 
VÇE (9.128) 

The curve described by (9.128) is parabolic (Fig. 9.41b). Maximum ρΌ occurs 
at Vc c /2 and is 

max ρΌ = 4KL 
^CE = - (9.129) 

The slope of dpO/dvCE is minimum at maximum power. If we bias the transistor 
at maximum power, signal excursions from quiescence cause minimal changes 
in power. 

This amplifier is highly β and re dependent but is not sensitive to At>BE. 
When a step of base current is applied, ic increases causing vCE to decrease, 
and the power steps down the curve from the peak. The transistor cools. As 
it does, the junction temperature decreases with time, with a cooling rate 
determined by the mass heated between the junction and ambient and the 

m 
(a) (b) 

FIG. 9.41 Variation of power dissipation in a CE BJT over v( 
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Δ Ρ 4 Ζ / Τ \ 
Thermal 
sag 

- . 

KCE 

X 
VCE 

vCE step 

No thermal response 

(a) (b) 

FIG. 9.42 The effect on step response (b) of dynamic change in power dissipation (a) 

specific heat of the mass. As T3 decreases, uBE increases, and VT and re decrease, 
causing the gain to increase. This further decreases uCE, so it contributes a 
thermal "sag" (Fig. 9.42) due to increasing gain. But the dominant effect is 
due to jß-dependency. With cooling, ß decreases, causing ic to decrease more 
than it increases from Are. The two effects tend to cancel, but ß dominates 
here. This circuit is not typical of good design, but sometimes ß and re thermal 
effects are unavoidable. 

A better amplifier circuit is the CE of Fig. 9.43. It is relatively ß and re 

insensitive but has a voltage-source input and amplifies Δι?ΒΕ. Assuming a = 1 

Kcc 

< 

-Vi EE 

FIG. 9.43 CE circuit with emitter resistance. 
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and J R E » re, we get the BJT power dissipation: 

P D S Ü C E . / C = [ V C C - ( ^ ^ (9.130) 

Differentiating ρΌ and solving for νλ gives 

V c c - V E E l r{^){*m + vE (9.131) 

Usually, u, is determined by dc input level Vx. The supply voltage - VEE can 
be adjusted instead. Solving (9.131) for VEE gives 

EE| rnaxpD 

( 2 i ? 1 -Vcc )J t E -Vc C / t L 

Ä F . - Ä 1 . 
> 0 (9.132) 

When the supply voltages are given, VEE can be made a Thévenin equivalent 
voltage by the addition of an emitter resistor to ground. 

Example 9.6 CS Buffer Thermal Compensation 

The FET x l buffer amplifier of Fig. E9.6 (also Fig. 2.15a) uses a matched 
FET as the current source. Its source resistor is chosen to set VGS to 
VGSZ S O t r i a t JD = JDZ, and the current has zero TC. (See Section 9.12.) 
The current from this source is I0. Our goal is to choose VCc so that 
thermal balance is achieved when RL = 1 k£i and /0 = 5 mA. 

In this case, two devices are involved. We want the power difference 
between the FETs to change minimally since a power change in either 
of them relative to the other introduces thermal distortion. The power 

Vfcc 

ή 
vL 

^EE 

FIG. E9.6 
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difference between them is 

Δρο = Ρι~Ρ: •[(t>L+VEE)/0] V , c - , L ) ( / ( ) ^ ) _ 

= - ^ + ( - ^ - 2 / O ) Ü L + ( V C C - V E E ) / 0 (El) 

The maximum power difference occurs at 

» L L X ^ - ^ - ' O K L => Vcc\m„PD = 2(vL+I0RL) (E2) 

where vL is the quiescent value. Substituting into (E2), we get 

VC C=10V 

If the available supply is not 10 V, a Thévenin equivalent supply can be 
constructed from a larger supply. If a series resistor Rc is inserted in the 
drain of Q,, then 

Vcc = 2 [ t ; L ( l + ^ + /o(Äc+ÄL) (E3) 

For V c c = 12 V, ΛΓ = 200Ω. To avoid the Miller effect, the drain of Qx 

is bypassed with a capacitor to load ground. 
For applications in which dc offset must be minimized, the addition 

of the zero-TC bias resistor in the source of the lower FET must be 
matched by a resistor of equal value between the source of the upper 
FET and the output. This resistor drops the same voltage as the VGS of 
the lower FET, thus compensating for the same VGS in the top FET when 
the same current flows through it. The output loading also must be 
minimal so that I0 flows through both FETs. 

A change in temperature at the b-e junction of a BJT is a thermally 
generated noise. From the power formula for a BJT, the change in power can 
be calculated, given the input signal change. The resulting power change A/?D 

results in a change in vBE. This Δι>ΒΕ is in series with the base and adds to t>, 
(Fig. 9.43). Knowing the gain, we can find the effect on the output of ΔνΒΕ 

once we know 

dune dVap dT\ 
BE BE J = (-2mV/°C)Äe j A (9.133) dpD dTj dpO 

For a 16-pin DIP package, 

dvBE 

dT = (-2 mV/°C)(100°C/W) = -200 mV/W (9.134) 
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For dynamic analysis, R0JA is a thermal impedance, but here only the resistive 
component is considered. The reactive component, a thermal capacitance, 
approximates the response of the thermal effect. The actual response is the 
solution of Laplace's equation and is only approximated by a first-order 
capacitive model. In practice, compensation networks use several time con
stants to approximate the thermal response. The complete BJT model, with 
thermal system included, is shown in Fig. 9.44. 

Differential amplifiers reject thermal noise as a common-mode voltage 
when electrically and thermally balanced. With transistors on each side operat
ing at maximum ρΌ at quiescence and operating on the same power curve, a 
positive step input to the diff-amp of Fig. 9.45a causes the action shown in 
(b) and (c). Both transistors move away from their maximum power point. Q2 

conducts more current and its vCE decreases, whereas Qj conducts less with 
increased vCE. Each moves down the power curve the same amount, symmetri
cally. The effect is that the same thermal ΔυΒΕ occurs for both, as a small 
common-mode input. 

We now derive an approximate formula for the step error, beginning with 
the expressions for pD for each side. Each transistor is conducting Ic at VCE. 
An input step υ·λ perturbs the amplifier from quiescence. Qx now conducts 
icl = Ic-ic at I>CEI= VCE+uce. For Q2, IC2 = /C+I'C at vCE2= VCE- vce. The 
power expressions are 

P\ = i c i U c E l = ( / e " l'c)( V c E + ^ce) 

Pi = iciVcEl = ( / c + l"c)( V C E - ^ce) 

(9.135a) 

(9.135b) 

ß(TJ) = ß(TA)[l + (OM)(TJ-TA)] 
rc(Tj)=rc(TA)[l + (0.0033)(7j - TA)] 

FIG. 9.44 BJT T model including thermal effects on ß, re, and VBE. A first-order thermal response 
is assumed. 
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(a) 

"ci v 
As: 

"C2 

(c) 

FIG. 9.45 A CE diflf-amp (a), power dissipation (b), and step response. The thermal sag in the 
step response is common-mode rejected in a thermally compensated diflf-amp. 

Thermal error results from a change in the differential power, 

ΔρΌ = ρί -p2 = -2( VCEic- Icvce) 

The thermal response of vBE due to ΔρΌ is 

thermal ΔυΒΕ = ΔρΌ 
dpD 

(9.136) 

(9.137) 

We now express the incremental variables ic and vce in νλ. Neglecting a and 
re, and applying the transresistance method, we obtain 

2RE 

Vce=lc(RL+RE)=—rZ Vi 
ZKp 

(9.138) 

(9.139) 

where the polarity of gain for vce is already in (9.135). Substituting these 
expressions and (9.136) into (9.137), we get the expression for ΔυΒΕ. The 
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thermal error, referred to the input, is 

thermal Δυ Β Ε _ V C E -
signal Vi 

IC(RL+RE) /dvBE\ 
_ ^ _ L E/ _ B E 9.140 

RE \dpD 
When VCE and the drop across RL+ RE are equal, they are both half of the 
supply, and the thermal error is zero. 

Equation (9.136) is applicable for differential stages in general. For a 
particular stage, two incremental, single-ended gains, vcJ ν-λ and ic/vi9 are 
required to compute the thermal error. The general formula for fractional 
input-referred thermal error is 

thermal error = - ( v C E - ^ - / c - —)(^) (9.141) 
\ Vi Vi/\ dpD} 

The general condition for thermal compensation is that thermal error be zero. 
Then 

♦ U 1 ü « e ^ C E 

zero thermal error ->- — = (9.142) 

Figure 9.46 shows a differential shunt-feedback amplifier. (Refer to Sec
tions 4.15-4.17 for shunt-feedback theory.) Equation (9.141) can be expressed 
as 

thermal error= - ( V C E - / c · γ ) ( ^ ) ( ^ ) (9143) 

The output resistance vcJic is found by assuming an ideal transconductance 
amplifier for the BJT. Then 

Dc e Dc e I; / Ri \ 
— = —'-^RA-z-hr) = Rf^ (9.144) 
ic I, ic \Rf+Rj 

cc v0 

FIG. 9.46 A differential shunt-feedback amplifier. 
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The first factor is the ideal shunt-feedback transconductance. The second factor 
is a current divider for ic. Ideally, vx = 0. Thus, Rr and RL are in parallel at 
the collector node. The second gain is 

(9.145) 

A voltage in series with the base causes current that can only flow in Rf. The 
ideal amplifier responds by sinking the current as ic. This causes a drop across 
Rf of t>j, keeping the input a virtual ground. The current is determined by Rf. 
When these expressions are substituted into (9.143), the thermal error for a 
differential shunt-feedback amplifier is 

shunt-feedback thermal error = V r F - Ic(Rr\\ RL) ίdvBE\ , cv m u _ B E 9 1 4 6 

Rf \dpD 

When VCE/Ic = Rf\\RL, thermal compensation is achieved. 
Finally, the CE of the cascode amplifier (Fig. 9.47a) requires thermal 

compensation. Its collector is at the fixed voltage of the CB base. The thermal 
error is found by noting that vce=vi and iJv-x — \/RE. Then vce/ic = RE. 
Substituting into (9.143) gives 

cascode thermal error 
V C E - ICRE/dvRE\ 

= - » ( - T 5 1 (9.147) 

Thermal compensation requires VCE//C = JRE. This is often not possible 
because VCE is determined partly by VB. To compensate, add a collector series 
resistor Rc. Then the CE thermal error is expressed by (9.140). The addition 

W^ 

(a) (b) (c) 

FIG. 9.47 Thermal compensation of the cascode amplifier CE (a) with a series resistor Rc (b), 
that is dynamically compensated by C c based on r0 and C0 of CE, (c). 
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of Rc has dynamic response consequences and can be bypassed with capacitor 
C c (see Fig. 9.47b). Since RCCC forms a time constant, it is reasonable to 
wonder by what criterion its value should be chosen. First, Cc must be large 
enough to have negligible reactance in the hf region of the CB transistor. But 
this still leaves a wide range for C c . Bruce Hofer has noted that the output 
capacitance of the CE forms a shunt RC time constant with rQ of the CE as 
in Fig. 9.47c. By setting 

RcCc = r0C0 (9.148) 

we form a compensated current divider for the CE collector current, and ie 

of the CB is 

C B l " - ( ^ ) l < ( 9 1 4 9 ) 

In single-ended and unbalanced differential amplifiers, after Δρ D is minim
ized, thermal effects remain. At this point, electrical compensation is required. 
A series RC network is commonly used in the emitter circuit to cancel thermal 
error. Furthermore, the simple single-pole thermal model we have used is only 
a dominant-pole approximation to most heat-transfer temperature functions. 
Thus, it is not unusual to find that several series RC networks are required 
to achieve acceptable response. 

9.14 Complementary Emitter-Follower 
Output Amplifier 

A common need in circuit design is for a bipolar voltage buffer with current-
drive capability. This is usually the output stage of a power amplifier, used to 
drive transmission lines, cables with large capacitance, transducers, or large 
power devices. The common requirement is that the driver have large-signal 
dynamic range relative to its transistors and that the output resistance be 
constant, usually 50 Ω for the transmission lines used to interconnect electronic 
laboratory equipment. 

One of the simplest drivers is the CC configuration. Its near-unity voltage 
gain and a current gain of β make it an attractive output buffer stage. Its 
disadvantage is that it can provide current in only one direction; it is inherently 
unipolar. To achieve bipolar drive, a CC of the opposite polarity (a complemen
tary CC) is connected in parallel (Fig. 9.48). Without the dc voltage sources 
(depicted as batteries), Qx conducts when νλ is positive and Q2 when negative. 
Because of VBE — 0.6 V for silicon, there is a deadband of reduced gain around 
zero output voltage where neither transistor conducts. The gain around zero 
is much less than the gain for |u,| > VBE- This gain variation results in a kind 
of nonlinearity, called crossover distortion, than can occur whenever the output 
drive "crosses over" from one transistor to another. The nonlinearity is due 
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ΛΥ-

v 
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2 

v0 
Φ o -

FIG. 9.48 Complementary emitter-follower buffer with input bias of V. 

to the change in output resistance with output voltage. The voltage gain is 

Av = *L+r0 
(9.150) 

where rout is the incremental (small-signal) output resistance. As v0 varies, 
rout varies, and so does Av. 

The deadzone caused by VBE can be narrowed and even eliminated by 
adding the base offset voltages shown in Fig. 9.48. The transfer characteristics 
of t?o(t>i) are shown in Fig. 9.49 for V of 1.0-1.8 V in 0.2 V steps and RL = 1 kCt. 
At V=1.8V, nonlinearity is undiscernible from the graph. This base bias 

500 

-400.0 

FIG. 9.49 Transfer functions for Fig. 9.48 when KL is 1 kü and V as parameter. The deadzone 
is apparent for small V. 
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causes conduction of current I0 through the two transistors. As v0 increases 
with vi9 some of J0 is diverted into the load RL. With further increase, all of 
/0 is diverted from Q2, and it approaches cutoff, leaving QA to drive the load 
alone. The emitter currents of Qx and Q2 are found by applying KVL to the 
input loop: 

Assuming /S1 = 7S2= Is and solving for the emitter current product, we get 

i E , Ì E 2 = / | e < v / v - V 0 (9.152) 

For a fixed V/VT and Is, neither emitter current goes to zero but only 
approaches it in the limit. This desirable property keeps both transistors on 
to reduce àre and rout; however, the ratio of emitter currents has such a wide 
range that rel and re2 do also, and Arout is large. 

Another problem with this circuit is thermal instability. In (9.152), the iE 

product varies with Is and VT. Both are temperature dependent. The dominant 
effect is the exponential variation of current with temperature due to VT that 
can cause excessive I0. This circuit is thermally unstable because increased I0 

causes increased junction heating leading to further increases in current. This 
phenomenon in BJTs is called thermal runaway and requires stabilization. Two 
modifications are shown in Fig. 9.50: the addition of emitter resistors R and 

FIG. 9.50 CE buffer with bias circuit compensation for VBE (a). The crossover region is identified 
by the intersection of the curves in (b). 
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the replacement of dc voltage sources with a more practical biasing network. 
The current sources cause voltage drops across the series resistors and diodes 
that bias the CCs. The diodes provide thermal tracking of the CC b- e junctions 
and the resistors Rx and R2 are set to each drop V/2. With ideal junction 
compensation, diode voltages equal the CC vBE, and V/2 appears stably across 
R in the emitters. 

When /0 is large and Are is negligible relative to R, the cutoff points of 
the transistors are at the values of u, where the voltage across R is zero. In 
Fig. 9.50b, v0 is plotted along with the base voltages vBi and uB2. As υλ 

increases, vB2 increases at the same rate. Since Aw<\, v0 increases at a more 
gradual rate, and the voltage across R of Q2 decreases until it is zero; Q2 is 
cut off. A similar argument applies to decreasing u, and Q, cutoff. The input 
crossover voltages are 

crossover υλ = ± 
V/2 

1-Av 
(9.153) 

and 

crossover v0 \1-AJ\2 
(9.154) 

The transfer characteristic of Fig. 9.50b is approached at relatively large 
values of J0, where excessive power is dissipated due to biasing. At a reduced 
J0, re variation is significant, and the gain is not constant over the output 
range. The resulting transfer function is asymptotically approximated as shown 
in Fig. 9.51. In the crossover region, the gain has been linearly approximated 
as the gain at the origin; the circuit is symmetrical there, with equal dynamic 
emitter resistances re(0). Then rout consists of two shunt paths, each with a 

MD 

\A/ 

\ 

rE = /î+re(0) SRL 

^f\ 
a 

\ V/2 vj 
/ rE/2 \ 
(rE/2+/fLj 

-i) 

FIG. 9.51 A more accurate linearized model of the transfer function, showing critical parameters. 

file:///1-AJ/2
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dynamic resistance of R + rQ. Base resistance is referred to the emitter and 
included in R. Outside the crossover region, rout is R + rç and approaches R 
with increasing v0. The gain is asymptotic with 

RL 

KL + [K + re(0)]/2' 
RL 

crossover region 
(9.155) 

Rt+R' 
outside region 

The effect of Are on incremental gain over the amplifier range is shown 
in Fig. 9.52a for V = 0V. The smaller values of R show a decrease in gain 
around zero input due to the large increase in re. This is due to a low value 

Av 0.7 h 

(a) 

120 

(b) 

FIG. 9.52 Incremental voltage gain Av curve (a) and output resistance rout curve (b) for buffer 
of Fig. 9.50, with RL = 100 Ω, V = 0 V, and parameter R. 
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vIf V 

FIG. 9.53 Incremental voltage gain for V = 100 mV; otherwise, same conditions as for Fig. 9.52a. 

of I0 resulting from inadequate V. For larger R, the gain begins to dip but 
then peaks at zero input. In these cases, re contributes a smaller fraction of 
the total rout per side. When both sides conduct equally around zero, their 
shunt resistance is lowest and the gain peaks. In Fig. 9.53, V= 100 mV, and 
this peak around zero is more pronounced since the shunting effect is significant 
over the wider crossover range. With greater /0, re does not increase as much 
before the crossover region is entered. 

The zero-bias output resistance is shown in Fig. 9.52b. It determines the 
gain and varies inversely with the gain, as (9.150) predicts. Figure 9.54 shows 

950 

900 
m 
I 
O 

X 

850 

_4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 
v i , V 

FIG. 9.54 Av with R = 10 Ω and parameter V. The dips in the curves are from increasing re near 
zero input; the peaks are from the two BJTs shunting their outputs. 
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the gain with R = 10 Ω and V as parameter. As V increases, the dip in gain 
around zero due to increased re begins to show the effect of the two sides 
shunting, the central peak. As shunting grows in dominance, the dip disappears 
and only the peak remains. The peak then broadens as the crossover range 
broadens with V. 

The endpoints of the crossover region and the transfer curve offsets are 
symmetrical about the v0 axis and are found by a total-variable analysis. Since 

. (vx+V/2)-v0 . v0-(vì-V/2) 
Ϊ Ε Ι = ' *E2 = (9.156) 

the endpoints are found by setting the emitter currents to zero, substituting 
the crossover-region gain for v0 and solving for vl. The asymptotic crossover 
endpoints are 

crossover extremum of u, = ± ( —-—~— II — I, rE = R + re(0) (9.157) 

These correspond to asymptotic output values of 

v0x = crossover extremum of vQ = ± ( —- I V (9.158) 

The transfer function outside the crossover region has an input offset of 

ulx = Av input offset voltage - ±Γ* L ' j j f y ) (9-159) 

Since 

'·<0>-ϊ-(Α)-(τ)" (9m 

all of the values indicated in Fig. 9.51 can be expressed in R, RL, VT, and V. 
For example, (9.159) is 

° · » = ± ( τ ) ( Ι ^ ) (9·161) 

From the numerator, vlx = 0 when V = 2VT. This gives the most linear design: 

optimum V = 2VT (9.162) 

Since VT varies with temperature, optimum performance over temperature 
requires that V track VT. 

The effect of re(0) on v0 and gain is derived from Fig. 9.51 for several 
interesting cases in Fig. 9.55. When re(0) is very large, as in (a), a deadzone 
of V exists. As re(0) decreases but remains larger than R, the effect of increasing 
re in the crossover region is shown in (b) with Av(i?,). The dip in Av is evident 
in previous figures when re(0) is large relative to R. This occurs when V is 
small. As re(0) increases, the optimum value is reached when V = 2 VT, shown 
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FIG. 9.55 Transfer curves for re(0) varying from infinity (a) to less than R (d). A more accurate 
piecewise-linear model of v0 includes increase in Av around origin (e). 
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in (c). As re(0) continues to decrease, the crossover gain is larger than that of 
the outside regions as in (d). The plot of Av shows the characteristic peak of 
previous gain plots, due to the shunting effect. When re(0) is zero, R dominates 
and ÜIX = =FV/2 . 

The small peak in a large dip is common in the Av(vi) plots. The plots of 
Fig. 9.55e are a piecewise-linear approximation of this phenomenon. Increasing 
re reduces gain in the outer part of the crossover region. At its center, shunting 
increases the gain and causes the peak. 

For high-current buffers, power dissipation in R can be reduced by diode 
shunts. As |u,| increases, the voltage across R increases until the diode conducts 
most of the current. In the crossover region, R dominates, but when the diodes 
dominate, the effective R decreases (when r d « R) and the gain increases. The 
circuit of Fig. 9.56 illustrates this. Without the diodes, Fig. 9.57a results; with 
diodes, (b). In (b), for the larger R, the diodes cause the gain to increase when 
they dominate conduction. Since their dynamic resistance rd is much less than 
R, gain increases appreciably. The diodes thus improve gain accuracy outside 
the crossover region. 

A second circuit modification that reduces Arout when the input to the 
stage has a low Thévenin resistance is the addition of Rlo (Fig. 9.58). In the 
crossover region, Rlo supplies load and bias current to the output from the 
buffer input source. Then ro u t< Rlo for the entire υλ range. This dramatic 
reduction in rout is evident by comparing Fig. 9.57b (no Rxo) with Fig. 9.59 
(with Rlo). 

1 mA Φ 

T 10 mV 

1 mA 

K > X 

T lOmV / ? > ■¥■ 100 Ω 

Φ 
FIG. 9.56 Complementary CE buffer with shunt emitter diodes. 
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(a) 

a 

(b) 

FIG. 9.57 Av and rout for Fig. 9.56 circuit without diodes (a), and with diodes (b). R is parameter. 
Diodes appreciably decrease roul when they conduct, increasing Av for large R. 

In some cases (such as Fig. E7.4a with RB removed) the complementary 
CC buffer is driven by a high-resistance source. The output resistance is then 
also very high, reflecting the high base resistance. In this case, the buffer 
defaults to a current amplifier, and the ratio of gains of the two sides is the 
ratio of the ßs of their transistors. Matched-ß transistors are then important 
for linearity. 

Feedback reduces both ß- mismatch and crossover distortions by 14- GH. 
Since the nonlinear stage is a part of the loop, GH is affected by it. For the 
minimum gain of the stage, the loop gain is minimum and distortion reduced 
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100 Ω 

FIG. 9.58 Rlo included in circuit of Fig. 9.56. 

least. For the pathological case of Fig. 9.55a, the gain is zero in the deadband, 
and no amount of feedback improves linearity there. Too wide a gain variation 
due to nonlinearity can also produce feedback instability in high-gain regions 
of the dynamic range. Reduction of loop gain required for stability then 
compromises distortion reduction in the low-gain regions. Therefore, a good 
general strategy is to make the open-loop stages as linear as possible before 
closing the loop. 

Γ̂ 0.9 

a 

FIG. 9.59 Av and rout of circuit with Rlo (Fig. 9.58). For large R, rout is reduced around zero input. 
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9.15 Closure 

Precision is a general idea with many facets. In this chapter, we have not 
exhausted all of the techniques for improving precision. In particular, we 
would like methods of designing precision amplifiers that are also fast. These 
high-performance amplifiers are explored in the next chapter. 
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C H A P T E R 

High-Performance 
Amplification 

The basic conflict between speed and precision in amplifier design has led to 
the development of techniques that are both fast and precise; this high-
performance amplification is applied as analog preprocessing for analog-to-
digital converters (ADC), as postprocessing for digital-to-analog converters 
(DAC), and for instrumentation such as oscilloscope amplifiers. We first 
examine novel subsystem-level amplifier topologies involving multiple signal 
paths, and then single-stage amplifiers. These new topologies are applied to 
buffer amplifier design, continued from the previous chapter. Finally, the 
versatility of controlling or programming amplifier gain leads to a discussion 
of multipliers and programmable-gain amplifiers. 

10.1 Current-Input and 
Current-Feedback Amplifiers 

The transistor diff-amp amplifies differential input voltages, not currents. 
Because of the Miller effect and the dominance of stray capacitance over stray 
inductance, ac voltages are often more easily degraded than ac currents. It is 
thus desirable to have op-amp topologies that sum currents instead of voltages 
at their inputs. 

A current-differencing amplifier input stage, shown in Fig. 10.1, is commer
cially implemented in the National Semiconductor LM3900 (which is called 
a Norton amplifier). The noninverting input current I{+ flows mainly through 
the diode and develops a voltage across the b-e junction of Qx. If the diode 
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FIG. 10.1 Differential-current amplifier input uses Ql as current mirror to subtract current from 
input of ex

junction is matched with Qx, then 

/d = /e, (10.1) 

The diode current is 

Since 7cl = alei, then 

/d = / i + - / b i (10.2) 

Icì = aId = (-^Iì+^aIi+ (10.3) 

The differential input current is 

/i = / i + - / i - = - / b 2 = / c i - / i - (10.4) 

Current differencing accuracy is limited by ß of Q} and is compensated by 
decreasing the area of the diode relative to the Qi b-e junctions or by a better 
current-mirror topology. 

The feedback amplifier of Fig. 10.2 has a noninverting high-impedance 
voltage input and an inverting low-impedance current input. This strange 
combination has some advantages over feedback amplifiers with voltage-
differencing inputs. The inverting input is, ideally, a voltage source (R = 0). 
Its voltage follows the noninverting input. This eliminates the possibility of 
error-voltage summation at this node; summation of feedback current results 
in the error current I,. For this reason, this topology is called a current-feedback 
op-amp. The forward-path transmittance is a transimpedance amplifier with 
input /j and output V0. From the op-amp terminals, the topology is identical 
to that of a conventional voltage-gain, noninverting op-amp. But the dynamic 
response characteristics, both small- and large-signal, are quite different. 

Figure 10.2b shows the amplifier flow graph. The input voltage, via the 
input buffer amplifier, causes error current I, to flow through the Thévenin 
resistance Rx || Rf at the inverting terminal. Then It is amplified by the trans-
impedance Zm to produce V0. The feedback current is the current through Rf 

generated across the voltage difference V0 — Vj. Feedback analysis of the 
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(a) 

+QV0 

(b) 

FIG. 10.2 Current-feedback amplifier topology (a) and flow graph (b). 

closed-loop voltage gain yields 

G 
A v = (X: 

\ + GH K^WRji+ZJi/Rr) \R, )Zm + R(
 Kl^} 

Note that the first factor of (10.5) is the conventional noninverting op-amp 
closed-loop gain. For Zm » Rr, it is the current-feedback amplifier closed-loop 
gain also. 

The frequency response is derived from (10.5) by assuming, as we did for 
the voltage-gain op-amp, a single-pole roll-off. Let the transimpedance be 

G = Zm = Rn 
1 

■STbw+l 

Substituting into (10.5), we get a closed-loop gain of 

1 

™-(τ«)(τέ?κ) s[Äf/ (Ä m o + * f ) ]T b w +l 

(10.6) 

(10.7) 

This result is significant. Unlike its conventional op-amp counterpart, the 
closed-loop bandwidth of this amplifier does not depend on the closed-loop 
gain. [Compare with (6.12) from Fig. 6.5. Also note (6.18).] In effect, there is 
no gain-bandwidth product; the bandwidth is independent of the gain. Both 
gain and bandwidth can be set independently if the bandwidth is first set with 
Rf and then the gain with R{. Ideally, for infinite RmQ9 the gain is exactly that 
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of the noninverting op-amp formula, and the closed-loop bandwidth is infinite. 
Bandwidth actually increases slightly with increasing forward-path gain. In 
practice, rbw also depends on Rmo since the transimpedance amplifier itself 
has a gain-bandwidth product. 

The bandwidth is independent of the gain only when the input buffer is 
ideal. With output resistance R, the inverting input is not constrained to be 
Vj, and a voltage-feedback interpretation could be given. But keeping with 
current feedback, we can modify the transmittances to account for R: 

1 
Ä + ÄillÄr* 

G remains the same. These transmittances are found by Nortonizing the 
external feedback circuit to the inverting input and then solving for the current 
dividers in each direction. The resulting closed-loop gain is 

A =A ( — I - (10 9) 
v v c \Äm o+Äf+Äi4v c /5Tb w(Äf+RAv c)/(Äm o + Äf+ÄAvc) + l 

where 

Avc = ^—^ (10.9a) 

R is effectively increased by the closed-loop gain Avc and also has the effect 
of adding to Rf. As Avc increases, the time constant of (10.9) approaches the 
open-loop value of rbw. In good design, Rmo» Rf; therefore, the effective 
increase in Rf due to RAVC only slightly decreases bandwidth. Equation (10.9) 
can be used to determine more precise values of Rf and R, than (10.7), 
given R. 

Current-feedback amplifiers also have a large-signal advantage over vol
tage op-amps. To show the contrast, we first examine the typical op-amp (Fig. 
10.3) with three stages. (See Section 6.9.) The first stage has a transconductance 
of Gm=l/2re when balanced, loaded by the high-gain second stage with 
compensation capacitor C c . This small on-chip capacitance is multiplied by 
the Miller effect and effects dominant single-pole compensation. The transcon
ductance stage can supply, at most, I0 to charge the second-stage input 
capacitance C{. For large Xv, 

Ci = (K v + l )Cc = KvCc, Kv»l (10.10) 

With a step input, the voltage, Ai;c, becomes slew-rate limited as Δυ, increases. 
The output current of the first stage is 

io=Gmv, (10.11) 

A maximum /0 of I0 causes the output voltage to change at the maximum rate 
of 

s l e w r a t e o f . o - ^ - X v ' ^ ^ ^ v · ^ - ^ (10.12) 
at at Ci C c 



4 6 4 / 10. High-Performance Amplification 

Φ* 
N Λ 

Slow Fast 
path path 

3-ζ 
yEE 

7 
Slew-rate-

limited node 

AW 

FIG. 10.3 Conventional three-stage op-amp. The input diff-amp has two paths from the noninvert-
ing input to the second-stage input. 

The unity-gain frequency fT corresponds to a time constant τ τ determined by 
the compensation. The small-signal exponential response to an input step has 
a maximum slope of 

max-
dvQ Δυ0 Δι?ι 
dt rbw τ τ 

The maximum small-signal step at the onset of slewing is thus 

h maximum incremental step = max Av] = — · rT 

The small-signal dynamic range of the input stage is limited to 

maxAüI = ^ - = / o ( 2 r e ) = / o ( 2 - ^ = 4 V T s i 0 0 m V 

Then rT is determined by equating (10.14) and (10.15) and solving: 

ττ--
4VTCc 

In 
fr = Io 

8 T 7 - V T C C 

(10.13) 

(10.14) 

(10.15) 

(10.16) 

The small-signal dynamic range at the input can be increased by decreasing 
Gm. This can be achieved by adding external RE to the emitter circuit. In 
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addition, the small-signal response of the input stage is complicated by its two 
signal paths. In the noninverting configuration of Fig. 10.3, υχ travels directly 
through the input transistor to the second stage. This is the direct path and is 
faster than the path through the other diff-amp transistor and the current 
mirror. The Cbe of the mirror transistors adds an additional pole to this route, 
leading to a combined response in vc. 

This split-path response is eliminated in the circuit of Fig. 10.4, in which 
the additional shunt diff-amp at the input provides differential drive to the 
second stage. It also drives the current mirror with a common-mode dc current, 
the effect of cancelling inverted signals. The resulting current biases the mirror. 
No gain is lost due to elimination of the slow path because the second stage 
is driven differentially. The LF400 JFET-input amplifier uses this technique. 

Another "transconductance spoiler" is realized by making the diff-amp 
transistors with split collectors. The large area collectors are connected to the 
supply and shunt most of the signal current. In effect, the Gm is reduced by 
collector current-divider action. An example of the use of this technique is 
the National Semiconductor LM346 programmable op-amp. 

The large-signal behavior of current-feedback amplifiers does not have 
this slew-rate limitation on input dynamic range. Figure 10.5 shows simplified 
circuitry of a typical current-feedback amplifier, the Analog Devices AD846. 
The inverting input connects to the output of a buffered complementary CC 
driven by the noninverting input. The output CC collector currents are a 
differential output of the input current difference at u,_. The first stage of the 
transimpedance amplifier is a differential current mirror—one current mirror 

fô ώ* 

ß i | | Γ |Ö4 r 
è I 1 1 I 
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FIG. 10.4 The dynamic slow path of Fig. 10.3 is eliminated by common-mode biasing the 
current-mirror with a second diff-amp. 
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>Vi+ F 
O Output 

FIG. 10.5 Simplified topology of the AD846 current-feedback amplifier. lx is the input error 
current to the transimpedance amplifier. 

per side—that drives another complementary CC buffer. The dominant pole 
is determined at the high-resistance input node of this buffer, with dominant-
pole capacitance C c split between the power-supply "rails." 

Slewing does not occur at vc for a wide range of input voltages because 
a larger Δνι produces a larger current into the transimpedance amplifier. This 
current is generated by Δν} across the resistance driven by the inverting-input 
buffer, 

rin- = R + Ri\\Rr 

The output slew rate is 

dv0 ic (Δνι/Γίη.) Δν-λ Δν0 
max dt Cc 

For R = 0, this reduces to 

Ce r in-Cc K^rìn_Cc 

max 
dv0 

dt 

and 

_ Δνα 

R=Q RfCC 

Tbw — RfCc 

(10.17) 

(10.18) 

(10.19) 

(10.20) 

In contrast to (10.16), no dependence on large-signal parameters appears in 
(10.20); the current-feedback amplifier is free of the slew-rate limitations of 
conventional op-amps. 



10.1 Current Input and Feedback Amplifiers / 467 

Although the inverting input of a current-feedback amplifier has low 
open-loop impedance, since the error quantity is the terminal current 7i9 it is 
nulled by feedback to a low value. Consequently, current-feedback op-amps 
can be used with the same external circuits as voltage-gain op-amps. 

The current-feedback concept also applies to instrumentation amplifiers. 
Figure 10.6 shows the Precision Monolithics AMP-01 simplified topology, a 
typical current-feedback IA. This topology is different from the current-feed
back op-amp because it has a voltage diff-amp input and a voltage-divider 
feedback path. The divider is followed by a voltage-to-current (V/I) converter 
consisting of a BJT diff-amp with emitter resistor Rs. The error current is 
generated by the cascoded diff-amps and in feedback nomenclature is 

iE=i\-
Vi ( Rx \ v0 

1 RG \Rf+RjRs 
(10.21) 

The output voltage is 

v0=RmiE (10.22) 

where Rm is the transmittance of the transimpedance amplifier. Combining 
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FIG. 10.6 Simplified topology of the AMP-01 current-feedback instrumentation amplifier. Error 
current is summed in the cascode stage. 
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(10.21) and (10.22) and solving for the closed-loop voltage gain, we obtain 

V V R, /Uo/l+[(Äf+Äi)/Äi](Äs/Äm) 

= A-\kJl + Avo-(Rs/RJ ( 1 ° - 2 3 ) 

Ideally, Rm » Rs, and the gain becomes 

"j—- (*?){$ mM) 

The error current is generated as emitter current in the input diff-amp transis
tors. An input increase vi+ causes Qx to conduct more, resulting in output 
increase v0. Through the feedback network, Q4 is made to conduct more and 
Q3 less. The error current for iel = vj RG- /c3, where the first term is ix. A 
similar expression for ie2 can be written. Current-feedback IAs have the same 
basic properties as current-feedback op-amps; bandwidth remains relatively 
independent of gain. 

In passing, note that the AMP-01 has two adjustments to correct offset 
error. (See Section 9.12.) The IA requirement for two adjustments is somewhat 
different from that of a two-transistor diff-amp. At the output, the total offset 
voltage is the sum of gain-dependent (input) and gain-independent (output) 
offsets: 

Vos = AvVIOs+Voos (10.25) 

A similar equation holds for the offset voltage TCs. The input offset voltage 
adjustment varies the current ratio of the collector current sources at the output 
of the first stage. With RG shorted, the offset voltage of Qx and Q2 is most 
sensitive to their emitter current ratio. With RG unshorted, the output offset 
voltage is adjusted by the emitter current ratio of Q3 and Q4 since they are 
part of the output feedback path. That is, the gain from output to Rs is 1/AVC, 
whereas the gain from the collector current sources to the output - the 
transimpedance amplifier gain - is very large. 

10.2 Split-Path, Low-Frequency 
Feedback, and Feedbeside 
Amplifiers 

In Chapter 4, we investigated the effect of r0 in simple BJT amplifiers and the 
passive forward path through feedback networks. These paths are largely 
unintentional and generally degrade performance. Amplifiers designed to 
benefit from multiple paths are composite amplifiers. Various topologies at the 
subsystem level are possible. The split-path amplifier (Fig. 10.7) purposely has 
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V:. 

FIG. 10.7 Split-path amplifier. 

parallel paths to improve performance. Because fast amplifiers often lack good 
dc characteristics, the idea is to combine the best of both in one amplifier. A 
common strategy is to shunt a fast amplifier with a low-speed, precision 
amplifier. The two paths are combined at the output. 

A requirement for flat frequency response is that the fast and slow paths 
have complementary gains in the crossover frequency range so that their sum 
is constant. The crossover gain must also be the same as the low- and high-
frequency gains. A simple design strategy is to let the slow path have a 
single-pole response: 

(10.26) 

The fast path is an ac amplifier (no gain at dc) that rolls up in gain as A, rolls 
off. At a high frequency of l / r h , it also rolls off: 

W. + i / W h + i / (10.27) 

The composite gain is 

*_A+^_K(_U(£<s±aj±!) (1„,8) 

With rh = 0, the two paths combine to give a flat response. To approach this 
ideal, the crossover frequency 1/r, must be much less than the fast path 
bandwidth of l / r h . 

This constraint to flat response can be eliminated by adding a compensation 
stage Ac in the slow path (Fig. 10.8). It compensates for rh of the fast path 
and is 

1 
Ac = -

STh+l 
The modified slow-path response is thus 

W . + i / W h + i / 

(10.29) 

(10.30) 
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FIG. 10.8 Compensated split-path amplifier, in which frequency response is independent of the 
crossover frequency. 

Now the composite gain is 

A = AXc + A H = K(—{—) (10.31) 
\ 5 T h + l / 

and the crossover frequency l /r , is independent of fast-path bandwidth. 

Example 10.1 Split-Path Composite Trigger Amplifier 

The amplifier of Fig. E10.1 is typical of the input to an oscilloscope 
trigger generator. Various sources are selected for vi9 and either If or hf 

Trigger 
level vw 

FIG. E10.1 
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paths can be turned off for "If reject" or "hf reject" trigger functions. 
The single-ended vt is converted to a differential signal for the diff-amp 
input by the inverting op-amp in the slow path. The trigger level control 
is summed in the slow path. For good dynamic response, the fast-path 
RC differentiator and slow-path RC integrator time constants must be 
equal. The low-pass pole of the slow path could be realized by placing 
a capacitor around the slow-path op-amp, but its inability to reject high 
frequencies makes this capacitor an undesirable hf feedthrough. A passive 
RC integrator following the op-amp is a broadband low-pass filter. 

Another composite amplifier topology that is intended to accomplish the 
same design objective is the low-frequency feedback topology (Fig. 10.9). 
Low-frequency correction is made at the input to the fast amplifier by adding 
to Vi the error quantity, 

VX = AX(V.X-HV0) 

The output is 

V0 = Ah(Vi+Vl) 

Combining (10.32) and (10.33) yields the composite gain: 

1 + A| Ah AhA\ 
A = Ah 1 + HAhA} - + -1 + HAhAx 1 + HAh A, 

î Î 
fast path slow path 

(10.32) 

(10.33) 

(10.34) 

Both paths benefit from feedback, with a loop gain of HAhAx. For large A, 
at low frequencies, the loop gain is large, and dc characteristics are improved 
over those of Ah alone. To frequency-compensate this amplifier, we assume 

FIG. 10.9 Composite low-frequency feedback amplifier. 
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that A, rolls off with frequency, so that 

Consequently, 

and the fast-path response is 

HmA, = 0 (10.35) 
/ - ► CO 

lim//AhA, = 0 (10.36) 

The slow-path response is 

Hm \ =Ah (10.37) 

H m — - j - 1 — - 0 (10.38) 

At high frequencies, only the fast path contributes Ah to the gain. If we also 
assume that A, is an op-amp with infinite gain at dc, then the fast-path response 
at dc is 

H m — 7 7 7 - r = 0 (10.39) 

and for the slow path, 

AhA* Ah 1 , 
lim ^—L—= lim— — - = — 10.40 
/ - o l + //AhA, /-o l/A, + HAh / / v 

Then A = l / / / at dc. This is the same gain as for the inverting op-amp 
configuration. For flat response, the gain at dc must be the same as at high 
frequencies, or 

77 = A« => H=Y- (10.41) 
H Ah 

This condition is necessary but not sufficient for flat response; the midfrequency 
range might not be flat. In (10.34), the (1 4-A,) factor in the numerator cancels 
the denominator only under this condition and ensures wideband flatness. The 
compensated gain is 

A\„=A-> = Ah (10.42) 

This topology has the practical disadvantage that a slow amplifier A, is 
driven by a fast signal Vj. Unless the feedback compensation is correct, A, 
responds to a fast error voltage but is unable to follow it. The effect is a 
low-frequency response anomaly; the cause, however, is that a slow amplifier 
is responding to a fast input. In addition, because of loop delay (or phase 
lag) through Ah and H, the output of H cannot match V-t in phase. At 
frequencies for which the delay is significant, this error quantity becomes large. 
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Gì φ H 

FIG. 10.10 General low-frequency feedback topology. 

The general low-frequency feedback topology is shown in Fig. 10.10. Its 
voltage gain is 

A = Ah 
Gh+G,A, 
1 + HAhAx 

(10.43) 

The fast path goes through Gh and Ah and is represented by the first term; 
the slow path goes through Gu A,, and then Ah, which are factors of the 
second term of (10.43). The feedback loop contains the blocks represented in 
the denominator. 

A special case of Fig. 10.10 has H = Gh = 1. It has the same problem with 
high-frequency input to the slow path as that of Fig. 10.9, but coming from 
V0. For it, the composite gain is 

Α,ο + σ,Λ,) 
A = 

Ah 1 + Gì A, 
l + AhA, l + AhA, l + AhA, 

With the compensation criterion of this amplifier, the gain is 

Α|Ο,=ΑΗ
 = Ah 

(10.44) 

(10.45) 

This topology has the advantage that a matching Ah can be used to provide 
tracking compensation of the fast path. 

Example 10.2 Low-Frequency Feedback 
Composite Amplifier 

The amplifier design of Fig. E10.2 is based on the following reasoning; 
because the dc characteristics of Ah are poor, the ac couples to it through 
an RC differentiator and adds op-amp feedback from A, at its input. 
The G{ block of Fig. 10.10 is set according to (10.45) and to make A2 

differential. Will the amplifier provide a flat frequency response? 
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FIG. E10.2 

For this amplifier, the blocks of Fig. 10.10 are as follows: 

sRC 
G, = A 

sRC + l 

Then 

*-<$£). *-*® 
Substituting for Gh, 

sRCl 
Λ J ^ \ —Λ A, ') 
* ~ A h \ i + v 5RC+1 

+1 

and has a flat response only for infinite K. 

Example 10.3 Low-Frequency Feedback Input Buffer 

The buffer amplifier of Fig. E10.3 has a high-impedance input because 
of the FET CD input stage. The FET has voltage offset and drift that 
are corrected by a slow path that varies the FET current to achieve zero 
dc offset voltage. 

This amplifier is represented by the general low-frequency feedback 
topology of Fig. 10.10 and (10.43). Since it is a buffer (with a x l gain), 
Ah = l. From the circuit diagram, the FET CD is Gh=\, and G, = H. 
Both Gx and H are RC integrators. A, is thus driven only by low-
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FIG. E10.3 

frequency signals. Substituting into (10.43) gives 

1 + GXA, 
A = Ah l + G,A,Ah 

If Ah = 1, the fraction is unity, and the gain is Ah; otherwise, gain error 
in Ah contributes to compensation error. For large A,, the fraction 
approaches 1/Ah, and A approaches unity. The RC time constant is set 
well within the bandwidth of A,. This buffer eliminates the need for 
matched high-frequency FETs. 

The two concepts of split-path and low-frequency feedback are combined 
in the amplifier of Fig. 10.11. Its gain is 

A = 
1 + G0A, 

(10.46) 

Factoring Ah from the numerator, we get the gain Ah under the condition 

A\0i=G0Ah = Ah (10.47) 

If G0 is a low-pass filter, then the input of A, is always low in frequency. This 
eliminates high-frequency rectification at the inputs due to op-amp inability 
to servo quickly enough. It also keeps A, from responding slowly to fast inputs. 

Flat frequency response is not the only criterion of precision. Fast 
amplifiers typically have poorer linearity and more thermal drift and distortion 
than low-frequency amplifiers. Nonlinearity is greatest at the extremes of the 
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FIG. 10.11 Combined split-path and low-frequency feedback topologies. 

dynamic range, as in Fig. 10.12a. Usually, gain decreases at the extremes of 
Vj. The amplifier has constant gain over its dynamic range at low frequencies 
(Fig. 10.12b) due to feedback. The step response is shown in (c); the gain of 
Ah is less than the low-frequency gain of A. As the slow path begins to respond, 
the gain increases. 

To correct for this nonlinearity, Ah can be linearized. Also, temperature 
effects of Ah can be compensated. But it is better in wideband amplifiers to 
minimize the complexity of the compensation networks at high-frequency 
nodes due to their additional stray reactance. A complicated slow-path linearity 
or thermal correction network avoids this problem. 

One such scheme (Fig. 10.13) sums at the input to Ah. The input is sampled 
by a slow compensation path that corrects for imperfections in Ah. This scheme, 
called feedbeside, is open-loop. Its compensation network parameters are 
adjusted to correct for low-frequency imperfections in Ah. Its gain is 

A = Ah- (1 + GA,) (10.48) 

A(\f) 

(a) (b) 

A(\f)-Vi 
AhVi 

(c) 

FIG. 10.12 Fast-amplifier gain curve (a) showing typical compressive effect near input range 
limits. Low-frequency amplifier path (b) has better characteristics. The combined-path transient 
response (c) at range extremes. 
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V,· "*© η> 

1> 
FIG. 10.13 Feedbeside amplifier. 

where G is a passive, attenuating compensation network. A, provides scaling 
and inversion, if needed, so that GA] matches the reciprocal of the error in 
Ah. The feedbeside path can itself be a split-path amplifier, in which each 
path independently compensates for an anomaly in Ah. 

An amplifier involving feedbeside is that of Fig. 10.14a. A fast op-amp Ah 

requires input offset-voltage correction provided by the slower, more precise 
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FIG. 10.14 Input offset nulling scheme (a) combines feedbeside within a feedback loop. 
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A,. C] limits the bandwidth of the feedbeside path to near dc; Rx and R2 

reduce the gain of the slow path. 
This amplifier has the block diagram of Fig. 10.14b and is not a pure 

feedbeside topology since the slow path is within the fast-path feedback loop. 
The general form of the gain found from (b) is 

A = a, l + HAhc' 
Ahc = Ah(l + GA,) (10.49) 

This topology has the form of classical feedback with feedbeside within the 
loop, modifying Ah. The feedbeside loop provides added gain in the fast loop 
at low frequencies. The attenuator consisting of R} and R2 reduces the gain 
of this low-frequency loop to stabilize it. 

The feedbeside topology is used in the Tektronix 7104 1 GHz oscilloscope 
vertical amplifier to correct wideband vertical stages for thermal effects. It is 
used in a different way in the LMC669 as an offset voltage compensator for 
op-amp inputs. This auto-zero IC samples the inverting virtual ground input 
of an op-amp and controls its noninverting input to null the voltage offset, 
much like the circuit of Fig. 10.14. 

10.3 Feedforward and Linearized 
Differential Cascode Amplifiers 

Feedback compares output with input and drives the forward-path amplifier 
with the error, thus correcting the output. Instead of applying the error to the 
input, the feedforward scheme adds a compensating error quantity at the 
output. The feedforward topology (Fig. 10.15) has a forward path through G. 
Its output is fed back through H and subtracted from the amplifier input 

FIG. 10.15 Feedforward amplifier. 
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through F, resulting in the error of G in amplifying the input. This error is 
scaled by compensation amplifier Ac to the same magnitude as the output of 
G When it is then added to the output of G, the error terms in GVX are nulled. 

The gain of the feedforward topology is 

A = G + AC(F-GH) (10.50) 

To demonstrate error reduction, let 

G = K + e (10.51) 

where K is the linear gain of G and ε is the nonlinear distortion terms. For 
feedforward error nulling, the scaling of F, H, and Ac must be correct. F and 
H are passive attenuators and are assumed linear. The input to Ac should be 
only error terms; Vj is nulled by scaling F and H so that 

KH = F =Φ Η=- (10.52) 

In addition, since F has scaled down the input, Ac must amplify it to correct 
for scaling and have a gain of K/F. Since Ac also has distortion, and assuming 
nonlinear terms scale with amplitude, then let 

K + ec , 
Ac = — — - (10.53) 

F 
Substituting (10.51)-(10.53) into (10.50), we get the gain: 

A = K - - ^ (10.54) 

The feedforward advantage is that distortion is reduced from ε to a magnitude 
of about ε2/ K. For small ε, this is a large improvement of linearity. In practice, 
it requires accurate scaling and gain-matching of transmittances, whereas 
feedback does not. Feedforward amplifiers can be made faster than feedback 
amplifiers since loop delay is not a limitation. However, the error-path delay 
must match the main path for correct output summation. Although F and H 
are passive and can have little delay, the gain-bandwidth demand on Ac is 
greater than G since it has more gain and requires slightly greater bandwidth 
due to F and H. But since it is amplifying an already small error, its linearity 
need not be high. 

Example 10.4 Op-Amp Feedforward Amplifier 

The feedforward amplifier of Fig. E 10.4 uses two inverting op-amps to 
give a gain of -10. Input summing is done at the inverting input of the 
error amplifier, and output summing is done with resistors. The output 



480 / 10. High-Performance Amplification 

1 k ß 

10 kQ 

> 

-lOvi + ε 

► 9.1 kO. 

1 kQ 

-vW-

1 kQ 

VW-

AkQ 

10 kQ 
■ΛΛΛΛ-

3> 
.1 kQ 

- ε 

► 510Ω 

FIG. E10.4 

might need to be buffered, and the output summer could be the input 
of another inverting op-amp. A dual op-amp IC provides matched op-
amps. The resistors must be matched or, at least, have 1% tolerances. 

The feedforward topology can be used to linearize fast BJT diff-amps. 
Nonlinearity is caused by variation in transistor parameters re, ß, r0, and / T . 
The most significant is re. As υ·χ varies, the emitter current, 

rel + re2 + 2tfE + 2tfB/(0 + l) 
(10.55) 

also varies with rel, re2, and ß. Transconductance is largest when υ·χ is zero 
(Section 9.11) and decreases with |u,|. This is a compressive (versus expansive) 
gain characteristic. The emitter-referred base resistance term in (10.55) also 
varies with β ( ιΕ). Input impedance varies expansively with re variation, forming 
a nonlinear divider with base resistance. Since fT also varies with emitter 
current, C^ varies, causing input capacitance to vary too. Since re is propor
tional to VT and hence absolute temperature, gain varies with temperature. To 
stabilize, either RE must be increased or the emitter current source /0 must 
track VT. 
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All of these causes of distortion can be compensated individually, but this 
approach is complicated and difficult to achieve. A simpler, more elegant 
solution is to remove them all together by nulling the combined error with 
feedforward. In particular, we concentrate on b-e junction nonlinearity. Tech
niques for correcting ß or a follow. 

In 1976, Pat Quinn invented the feedforward amplifier of Fig. 10.16. Qx 

and Q2 comprise the diff-amp and Q3 and Q4 the error amplifier, also a 
diff-amp. The error amplifier output current is summed with the main output 
current at their collectors. Instead of feeding back from the main collectors, 
the error is sensed at the emitters and summed with resistors Rx through R4. 
Applying KVL around the main diff-amp input loop, we get 

vl = v2-vl = vBE2- vBEi + (iE2- iEl)RE = /ivBE + ΔιΕ · RE (10.56) 

By superposition, the input voltages to the error amplifier are 

v*= v\ ( T T ^ V ) + VEI ( * ' | (10.57) 
Λ κ , + ^ / E2\Ri + R3/ 

i 

VjO-

* 3 

♦ — A ^ -
Φ'Ί 

9 -OV2 

R2l 

R4 

-VW—f 

v3 
Γο3 QAM—* 

-ΛΛΛΛ 

Φ Φ 
FIG. 10.16 Diff-amp feedforward amplifier with diff-amp error amplifier. 



482 / 10. High-Performance Amplification 

and 

v4 = v2\ n ' ) + vEl ( n
 2

n ) (10.58) 
2\R2+RJ \R2+RJ 

Feedforward scaling requires 

Rx = R3, R2 = R4 (10.59) 

Then the dividers on each side have the same attenuation F of \, and the error 
amplifier differential input is 

ι>4-ι>3 = - ^ (10.60) 

This input contains only the scaled Δι;ΒΕ error term of (10.56), as required for 
feedforward. The error amplifier transconductance must now be scaled to 
cancel the ΔυΒΕ terms of the main output current. The main amplifier output 
current is 

/υλ ΔΙ?ΒΕ\ 
a\RE RE) 

i0=a>UE = a\j£---j^) (10.61) 

where «, = a2 = a. The output current of the error amplifier is 

Δι;ΒΕ a 
*° = ~ T ~ ' KD+re3 + re4 + 2tfB/(/3 + l) ( 1 ° , 6 2 ) 

where 7?B = the Thévenin resistance of the dividers. Error amplifier gain scaling 
requires that 

ÄE = 2(Ä D +r C 3+r e 4 + - J =2RD, RD dominant (10.63) 

With this scaling, Δι;ΒΕ currents cancel at the output, resulting in an amplifier 
gain of 

A = -2a-—- (10.64) 

with b-e nonlinearity removed. The error amplifier has twice the gain of the 
main amplifier. If the transistors are of the same type, then precision 
amplification extends to about half the bandwidth of the main path. 

The feedforward diff-amp was succeeded by the cascomp (Fig. 10.17), 
another invention of Pat Quinn at about the same time. The main amplifier is 
a differential cascode. Because the same currents (apart from iB) flow through 
the CB as the CE, the nonlinearity of the CE transistors is duplicated at the 
emitters of the CB. Because the CB base voltages are fixed, the differential 
emitter voltage is the error signal, conveniently ground-referenced. The resistive 
dividers are not needed, and the error amplifier is driven directly by the CB 
ΔνΕ. The error amplifier can be another diff-amp (Fig. 10.17b). 
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FIG. 10.17 The general cascomp topology (a), with diflf-amp error amplifier (b). 
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The error is nulled when 

^ a a , 
# D + r e 5 + re6 # E 

For dominant RO, the condition for cascomp error-path gain is that RD = RE. 
The error amplifier corrects for main amplifier error, which is worst at the 
limits of its dynamic range. It is here that error-amplifier correction is most 
needed, and its gain is matched at these range limits. 

Since the emitter bias current 7D is arbitrary, criteria for its optimization 
can be sought. Increasing /D reduces error amplifier Are, increasing its linearity. 
It also increases error-amp base current JB, which is part of the CB emitter 
current. This causes ÜBE(CB) error but tends to compensate for de a loss of 
the CE input transistors. By adding 7B-compensating sources at the error 
amplifier bases, total amplifier linearity is improved and dynamic range exten
ded. For / D / / 0 > 3, a total current / D + 1 0 in an uncompensated cascode reduces 
its Are to the point of comparable linearity to the cascomp. An optimum ratio 
of / D / / 0 is about 2. 

The error amplifier must be linear over an input range of Ai;BE(CB), which 
is limited by I0. Its maximum dynamic range is 

■-HS AüBE(CB)=VTln^J (10.66) 

since the minimum emitter current of Q3 and Q4 is IB. This base current 
reduces AuBE(CB), effectively reducing the gain and dynamic range of the 
error amplifier. Also, the CE emitter current generates uBE(CE), but its collector 
current generates uBE(CB). This current mismatch causes a corresponding 
mismatch between Ai?BE(CE) and AuBE(CB). This " a error" can be com
pensated by adding a base resistor to the CB. It drops additional voltage that 
compensates for the loss of /B. 

The cascomp is thermally compensated by stacking another differential 
CB onto the output of the cascomp CB transistors. The output CB base voltage 
is set to provide the same thermal operating point as the CE stage beneath. 

10.4 a-Compensated Gain Cells 

Amplifier stages with sub-1% nonlinearities must compensate for a error due 
to finite ß and loss of base current. Two multiple-transistor stages with feedback 
that function as a gain unit, or cell, were devised by Ken Schlotzhaur (Fig. 
10.18) and Stewart Taylor (Fig. 10.19). These gain cells both use a-compensa-
tion techniques. 

The Schlotzhaur cell is a diff-amp with CC feedback to Q2. The feedback 
loop has little delay, and the cell is fast. Two of these cells are used as x l 
buffer amplifiers. They apply the differential input voltage that appears across 
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FIG. 10.18 Schlotzhaur gain cell with a compensation. 

FIG. 10.19 Taylor gain cell with a compensation. 



486 / 10. High-Performance Amplification 

RG. The differential transconductance is therefore RG, or RG/2 per side. Since 
it is a noninverting configuration, the input impedance is large due to feedback. 

In the left cell, the a loss in the CC (Q3) is compensated by connecting 
the collector of Qx to the emitter of the CC instead of the supply. The current 
through RG is then the output current, ilm The base current added to i, is 
removed as Qx collector current. Since 

ic\ + *c2 = 2/0 = constant (10.67) 

the base current of Q3 lost from iC2 must add to /C1. The resulting current in 
RG is i,. The shunting base impedance of Q2 is negligible if the loop gain is large. 

The error quantity on the left side is 

E = vi-vB2 (10.68) 

Applying feedback analysis, the forward gain to RG is 

vB2 ()8 + l)(re + * G /2 ) 
O = = a 

Vi 2re 

■(■££-) —ψ »0.69, 
\RG/2+rJ 2re 

assuming symmetrical circuitry for a virtual ground at the midpoint of RG and 
equal re. The first term is due to iC2 and the second to iCi. The load resistance 
of Q2 is the input resistance of Q3. G simplifies to 

ß(RJ2) 
G = a (10.69a) 

2re 

and H = 1, due to the direct connection. The closed-loop voltage gain is thus 

vB2 RG/2 
vx 2rJaß + RG/2 (10.70) 

When 2rJaß« RG/2, the gain approaches one, and the nonlinearity due to 
re is less than that of a diff-amp with RG/2 emitter resistance by ß times. The 
single-ended incremental input resistance is 

rm = ^ = ^ ß - ^ = ß2-^=ß2-^ (10.71) 
ibi W ß *b3 lc3 2 

an improvement of about ß times over a diff-amp. 
The conceptually similar Taylor cell of Fig. 10.19 is a differential amplifier. 

The input voltage appears across RG via Qx and Q3 on the left side and Q2 

and Q4 on the right. It causes an incremental current through RG that flows 
through Q7 and (?8 to the output. The goal is to correct the a error of Q7 and 
Q8. Analyzing the left side, beginning with Q5, we get its collector current: 

iC5 = /o-ÌB7 (10.72) 

Q5 and Q3 comprise a current mirror, and iC5 is replicated as 

ÌC3 = ÌE7 = / O - I " B 7 (10.73) 

We are assuming that the areas of Q5 and Q3 are ratioed for a current-mirror 
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FIG. 10.20 Current-mirror variation on the Schlotzhaur cell. 

gain of 1, not (ß + 2)/ß as for equal areas. Q7 loses /B7 by a loss and 

*C7 = *0~ 2iB 7 

At the emitter node of Qx, KCL yields 

/Ε 1 = 3 / 0 - ( Ϊ Ε 5 + Ϊ Ε 3 ) = 3 / Ο - ( 2 / Ο - 2 Ϊ Β 7 ) = /Ο + 2/Β7 

At the output node, ic l and /C7 add. Applying KCL, we get 

i, + ici - 2 / 0 = iC7+ ici - 2 / ( ■•■G)«'· + 2/B7) = 0 

(10.74) 

(10.75) 

(10.76) 

If Q, has a = 1, then (10.76) is zero, and Q7 a error is compensated. When 
Qx a < 1, a error is reduced by β/2. 

The last cell, in Fig. 10.20, is similar to the Schlotzhaur cell except that a 
current mirror is used. The total mirror current is I0, conducted by the diff-amp 
Q1-Q2, plus the base current of the output CC, Q5. The mirror current is part 
of the output, and since it includes /B5, 

io\ = IO+ÌE5 = IO+IE + 
KG/2 

(10.77) 

The cell is also differential, and RG determines the transconductance. 

10.5 fT Multipliers 

The fT (gain-bandwidth product) of current-feedback amplifiers is not gain-
limited but this property is not unique to them. Amplifiers with a fixed fT can 
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D> 
FIG. 10.21 Basic/T-doubler amplifier topology. 

be combined to achieve a greater fT. A/T-multiplying stage output can avoid 
bandwidth reduction by summing current outputs from individual amplifiers 
and converting them to a voltage in a succeeding stage. Or for very fast 
amplifiers, a current input creates an input voltage to paralleled transconduct-
ance amplifiers across source resistance Rs. The composite amplifier then has 
a current gain instead of a voltage gain. 

As the gain of an individual amplifier is reduced, its bandwidth increases. 
Figure 10.21 shows two amplifiers connected in parallel. The transfer function 
for each amplifier individually is 

A = 
s(rT/A0) + l 

where the bandwidth time constant is 

(10.78) 

T b w - " (10.79) 

When the If gain A0 is halved, the bandwidth doubles. Two of these amplifiers 
in parallel have an additive output, so the total gain is twice that of (10.78), or 

composite A = 2 (10.80) 

Comparing (10.80) with (10.78), we find that the composite amplifier has the 
same If gain but twice the bandwidth. In effect, fT has doubled. 

Such amplifiers, called fT doublers, were invented by Carl Battjes for use 
in oscilloscope vertical amplifiers. He extended the idea to an arbitrary number 
of amplifiers; three amplifiers triples fT. In practice, parasitic elements of most 
fT-multiplier topologies cause diminishing returns above two amplifiers. The 
input loading increases, and the input pole decreases bandwidth faster than 
extra amplifiers increase it. 

The common circuit realization of the fT doubler is shown in Fig. 10.22. 
Two diff-amps are connected so that their inputs are in series across VÌ9 and 
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FIG. 10.22 Differential /T-doubler block diagram (a) and circuit realization with two diff-amps 
with series voltage inputs and parallel current outputs. 

their outputs are in parallel, cross-coupled so that they add. With a gain of A 
and input of Vj/2 for each diff-amp, the/T-doubler output is AVi9 the same 
as a single diff-amp with input of V; and gain of A. But the fT doubler has 
twice the gain at the same bandwidth. The difference is illustrated in one 
equation for /T multiplication, m: 

m m 
î 

■AVX 

Î 
/ τ 

(10.81) 

Another differential fT doubler is shown in Fig. 10.23. The input to the 
second diff-amp is taken from across 2Rm of the input diff-amp. For Rm » re, 
the input to the second diff-amp is approximately Vx also. 

Single-ended fT doublers are also possible (Fig. 10.24). The topology is 
basically that of a Darlington configuration except for the diode. This gain 
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FIG. 10.23 An fT doubler in which the voltage inputs are 
in parallel. 

FIG. 10.24 Single-ended fT doubler. 

cell has three terminals and can be substituted for a single BJT. The base 
current of Qx generates emitter current iE1, which flows through the diode, 
creating the same voltage drop, vBE2, as DBEI· This results in iC2, which sums 
with i c i , producing 2 i c i . This current output is caused by an input of iB1; 
therefore, the current gain is 2/c l / iB 1 =2ß. The current gain is double that of 
a single BJT with the same fß. Thus, fT has doubled. 

More precisely, some of the iE1 goes into the base of Q2. With matched 
junctions, the diode current is /C1, and the current mirror replicates this current 
in the emitter of Q2, or iE2 = iCi · The output current is slightly less than before, 
or 

io = (l + a)i 'ci=2/ci , /3 » 1 (10.82) 

The /T-doubler current gain is consequently 

single-ended fT doubler A-, = (1 + a)ß(s) (10.83) 

The idea of adding the outputs of multiple amplifiers instead of cascading 
them leads us to the fastest amplifier topology, the distributed amplifier, shown 
in simplified form in Fig. 10.25. We start with two discrete delay lines. The 
input source drives the input line. As the signal propagates along the line, it 
drives the inputs of gain stages. They are typically a single transistor amplifier 
with large input resistance and a controlled input capacitance that is part of 
the delay line. Its output feeds a tap on the output line, also with controlled 
output capacitance. As the individual stages respond, their outputs accumulate 
as they propagate down the output line toward the load. Input and output 
signals propagate in synchronism for minimum phase error in the summation 
of outputs. Each line is terminated properly at each end. 
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FIG. 10.25 Distributed amplifier. 

Although distributed amplifiers have been implemented in various oscillo
scope vertical amplifiers, they are a last resort at speed improvement because 
of the number of stages required for a given gain. For n stages with gain A, 
the composite gain is nA rather than A" for cascaded stages. For large gain 
requirements, the number of stages could be excessive. With increasing IC 
density, however, a novel form of IC distributed amplifier with silicon-based 
delay-line structures might be feasible. 

10.6 High-Performance Buffer 
Amplifiers 

Amplifiers with a high-impedance input, accurate (usually x l ) voltage gain, 
and a low-impedance, large-signal output are called buffer amplifiers, or buffers. 
We continue from where Section 9.14 ended with the design of these amplifiers. 
They are typically used to drive low-impedance loads and have a large-signal 
dynamic range. Examples of loads are video distribution cables, CRT deflection 
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plates, magnetic deflection yokes, electromechanical devices, and pulse- and 
function-generator outputs. 

The two-stage complementary emitter-follower in Fig. 10.26a - a variation 
on that of Section 9.14 - is preceded by a complementary CC stage. This gives 
a higher input impedance. In addition, instead of returning the input-stage 
emitters to the supplies, they are connected to the output. This has the effect 
of reducing the output-stage deadzone by supplying output drive from the 
input stage. Since the deadzone is around 0 V output, the output current 
requirement within it is not large, and the input stage can supply much of the 
needed current, putting otherwise wasted signal to use. 

The buffer of Fig. 10.26b also supplies input-stage signal to the output 
and reduces the deadzone. Its complementary CC input stage is inverted from 
that of Fig. 10.26a, and the collectors connect to the output. In this circuit, as 
V\ increases, Q2 increases conduction, supplying emitter current to Q3. In the 
deadzone, this current biases Q3 on, reducing re3 and increasing gain. By 
symmetry, Q, similarly biases Q4. This buffer does not necessarily require 
input-bias voltage sources since the b-e junction voltages of Qi-Q3 and Q2-QA 
tend to cancel. The choice of R in both (a) and (b) circuits of Fig. 10.26 is 
based on a trade off between input characteristics and deadzone reduction. 

+VCC +VCC 

VB x 

vT0 ë 

Vn-Zb 
■Q4 

Lß2 TI 
"EE 

■vo 

Ε̂Ε 
(a) (b) 

FIG. 10.26 Two-stage buffer with low-level output drive from first stage (a), and with complemen
tary first stage (b). 
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FIG. 10.27 Output buffer stage with current-mirror sink. 

The output buffer of Fig. 10.27 has equal diode currents at 0 V output. 
The current source sinks / through Q2 and D, . Q2 and Q4 are coupled to 
exchange base currents and are thereby a compensated. Since 

^Dl + ^BE2 — ^BE3 + VO2 (10.84) 

with matched junctions and no load current, iO2 = iDi · Consequently, the base 
currents öf Q2 and Q4 are equal (for matched devices) and cancel. As υλ varies, 
load current upsets the compensation somewhat since i;BE3 no longer matches 
vBE2. However, the deadzone is reduced because Q3 is biased by an emitter 
current source of /. 

The buffer can sink up to (β +1)1 current. Applying KCL at the bases of 
Q2 and Q4 and solving, we obtain 

/D2 = (j3 + 1 ) / -
β2 + β + \ 

0 + 1 
ÌDi = (i8 + l ) / - i 8 / D 1 (10.85) 

For large negative inputs, iD1 = 0, and / is the base current of Q4. Thus, / can 
be kept small to reduce the base current of Qx. This buffer has an inherent 
voltage offset of i;BE1 + vBE3. 

Output current-limiting does not appreciably reduce the dynamic range 
in the noninverting feedback buffer of Fig. 10.28. Without Q3 and RE, the 
maximum output occurs when Q2 saturates, and is Vc c . When the current-limit 
circuit is added, some drop occurs across RE, but it can have a small value 
because of the gain through Q3 to the amplifier input loop. 
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FIG. 10.28 Scheme for current limiting with Q3. FIG. 10.29 Composite buffer with vBE compensation 
of Q4 by Q5, and active source Q2. 

More precise buffer amplifiers have better input characteristics and less 
offset voltage. In Fig. 10.29, Q4 is matched with Q5. Then with matched FETs, 

* G S 1 — ~~ »^BE5 = — ^ B E 4 

and offset voltage is cancelled. Since VGS3 is forced to be VBES, any FET drift 
in Q3 causes a corresponding drift in Q,, thus nulling FET TC effects on offset 
voltage. 

The current-sourcing capability of the buffer is improved by the Q2 CE, 
though this path is slower than for current-sinking through Q4. Rs may be 
needed for thermal compensation. 

A similar two-path buffer topology is found in the Linear Technology 
LTIOIO and is simplified in Fig. 10.30. Qx and Q2 are complementary CCs of 
the fast path. Q2 also functions as a CE to drive the slow path through a gain 
of K to Q3, which provides active current-sinking, similar in function to Q2 

of Fig. 10.29. 
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FIG. 10.30 Two-path buffer topology of the LT1010. 

The general technique of bootstrapping is applied to the buffer of Fig. 
10.31. (This circuit is also used in the LT1010.) Q3, Q4, and RB form the 
bootstrap circuit. Q4 is an integrated split-collector BJT with one collector 
connected to the base. This is equivalent to the circuit in Fig. 10.31b and 
functions as a simple current mirror. The bootstrap circuit is driven from the 
input to Q2 and forms an active parallel path to its base, supplementing the 
drive of the passive path through RB. To increase efficiency, the emitter current 
of Q3 is supplied to the output. 

+v 

■ΛΛΛΓ K 
< = > 

(a) (b) 

FIG. 10.31 Bootstrapped buffer (a), with integrated split-collector BJT current mirror Q4 (b). 
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FIG. 10.32 Bootstrapping technique for increasing dynamic range of an output stage. 

Finally, a general bootstrapping technique for increasing the dynamic 
range of an output stage is shown in Fig. 10.32. Q2 is bootstrapped via V atop 
Qx. This minimizes power dissipation in Q} but gives it more collector voltage 
as the output requires it. A similar complementary circuit is applied to Q3. 

10.7 Unipolar Voltage-Translating 
Amplifiers 

Some amplifier stages require control from near circuit ground and supply a 
unipolar drive at an elevated voltage. Examples are the current-sourcing drivers 
of H-bridge power switches, oscilloscope horizontal deflection amplifiers, and 
voltage level-translators. The basic problem to be solved is that of supplying 
adequate drive to the elevated output device from ground. The basic situation 
is shown in Fig. 10.33. Qx operates near ground and drives Q2. Since Qx can 
only sink current, it cannot actively drive Q2 on. RL supplies Q2 drive but 
must be kept large to limit Q^ current. The capacitance C0 at the base of Q2 

and load capacitance referred to the base node limit amplifier speed. Various 
schemes have been devised to replace RL with a high-side driver to reduce 
power dissipation in Qx and increase slew rate. 

If we make Q2 a Darlington stage instead (Fig. 10.34a), less drive current 
is needed and the slew-rate-limiting base node is further isolated from the 
load. But the time constant, RLC0 is not reduced, and with the higher input 
resistance of the Darlington, the node response time is increased for small 
signals. 

A complementary Darlington (Fig. 10.34b) is used in the LM3900 with 
some advantages over that of (a). The output voltage range is increased by a 
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m 

FIG. 10.33 Basic high-side driver. C0 limits slew rate. 

vO 

Π7 

(a) (b) 

FIG. 10.34 Darlington output (a) reduces base drive current needed to charge C0 ; complementary 
Darlington with active current sink Q4 (b). 
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junction drop. Also, the b-c junction of Q3 conducts in the forward direction 
for large, quick negative-going outputs and provides a low-impedance path 
from the output to Qi. In effect, Qj is the output current-sinking driver. (This 
feature can be easily added to Fig. 10.33 by placing a diode in reverse across 
the b-e junction of Q2 but with no additional gain advantage.) When the 
output voltage offset from the input is small (as in the LM3900), Q4 can be 
added to buffer Qx for sinking output current. In amplifiers with large VBC4, 
Q4 (like Qx in Fig. 10.33) can dissipate excessive power. Therefore, high-side 
drivers are needed that do not sink large currents to ground across large voltage 
drops. 

One approach is to minimize C0. The input stage can be made a cascode; 
the Miller effect is eliminated and C0 substantially reduced. A shunt-feedback 
cascode with high side driver has feedback benefits as well, but feedback itself 
cannot overcome slew-rate limitations. 

In the early 1970s, Carl Battjes devised the floating current mirror scheme 
of Fig. 10.35. The current mirror consists of Q3 and Q4 with area ratio 
A3/A4 = K. The emitter current splits in the proportions of 

K 
' E 3 = ' «I K + l 

1 _ 
, Ε 4 ~ κ + Γ ! ι 

The output sink current is 
. _ . , . K_ . U{K + \) 

K + l 0 + 1 

(10.86) 

(10.87) 

FIG. 10.35 Floating current-mirror driver. 
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The source current from the emitter of Q2 is -(/3 + l ) /C 4 . Voltage inversion 
occurs at the collector of Q4, reducing iE2 when i, increases. Then 

ß 
ÏE2 = - G 8 + 1 

Then the transfer ratio of 

. [ «■ -^ 
L κ + \ K + \ 

/L i E 2 - i 3 j3 +1/08 + 1) + * 
l i K + l 

(10.88) 

(10.89) 

The floating current mirror sinks output current and drives Q2. 
Bootstrapping techniques can be applied to the high-side driver from either 

the input (Fig. 10.36a) or output (b). Both are dynamic bootstraps, as shown, 
to improve speed. In (a), the cascode input drives Q2 through C, making it 
an active current source for fast inputs. 

Figure 10.36b is a circuit developed by Art Metz for oscilloscope horizontal 
amplifiers. The output, through C, bootstraps R2\ as v0 increases, υλ does 
also. This keeps the voltage across R2 and its current from decreasing as v2 

rises, thereby maintaining current drive to Q2. He further improved the circuit 
by making Qx and Q2 fT doublers (as in Fig. 10.24). For Q2, the gain and 
bandwidth are higher, and base current drive is reduced, leaving more current 

VjO é 

(a) (b) 

FIG. 10.36 Input bootstrap drive to active source Q2 (a); output bootstrap of R2 maintains 
charging current as output voltage approaches + V (b). 
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to charge node capacitance. The final embellishment is to tap the shunt-
feedback resistor and drive the base of the cascode CB, Q3, from the tap. The 
c-b junction of Q3 is bootstrapped since output and base voltage vary together. 
This increases the dynamic range and reduces C0 and the breakdown voltage 
requirements of Q3. The topology is similar to that of the split cascode in 
Fig. 4.32. 

10.8 Bootstrapped Input Stages 

Bootstrapping is commonly applied to the inputs of op-amps to increase their 
dynamic range and improve performance. A simplified topology of the 741 
op-amp is shown in Fig. 10.37. The input differential BJT pair, Q\-Q2, is a 
CC stage driving a complementary differential CB stage, Q3-Q4. The CB bases 
are bootstrapped to follow the inputs and are controlled through the feedback 
loop through Q5. As the input pair conduct more current due to a common-
mode voltage increase, Q5 operates as a current mirror and sources more 
current, causing the CB bases to rise. This bootstrapping action takes the form 
of noninverting feedback and also bootstraps the input impedance. 

The more conventional diff-amp input of Fig. 10.38 drives bootstrapped 
CB transistors. In the circuit, the common-mode input voltage is taken from 
the emitter virtual ground node. The voltage translator, shown as a battery, is 
typically a zener diode or resistor driven by a current source. 

The Linear Technology LT1011 comparator has an input like that in Fig. 
10.39. A differential two-stage follower is bootstrapped to control the emitter 
bias currents in the first stage CCs. The variation in bias currents of the output 
CCs is tracked in the input CCs. 

vI+*—r a 

FIG. 10.37 Input low-end range extension of 741 op-amp. 
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FIG. 10.38 Input high-end range extension: a bootstrapped cascode diff-amp. 

FIG. 10.39 Bootstrapping for offset-voltage compensation by control of emitter currents in the 
input stage. 
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FIG. 10.40 Simple input bootstrapping scheme for collector of Ç),, provided by Q2 

Finally, the simple input bootstrapping scheme for the collector of Qx in 
Fig. 10.40 is provided by Q2. Although VCE of Qx is limited to VBE2, its collector 
follows its emitter as the complementary CC output of Q2. 

10.9 Composite-Feedback and 
Large-Signal Dynamic 
Compensation 

The composite amplifiers of Section 10.2 had a single feedback path. We now 
consider composite amplifiers with multiple feedback paths. In Fig. 10.41, the 
paths are nested. The inner loop of GxHh is part of the forward path of the 
outer loop. Here, an op-amp drives a more powerful, reactively loaded buffer 
amplifier. The high-frequency path through Cf is isolated by the buffer and 
Rf from the load, whereas dc feedback is taken at the load through Rf. (This 
topology is an alternative to that of Fig. 6.29.) The block diagram transfer 
function reduces to 

Vi αχ \ + GxHh+GxG2Hx 
(10.90) 

The noninverting version omits αλ. Hh, Hu and ax have poles at l / r = 
l/(/?f || R\)Cf, and Hh has a zero at the origin since it is an RC differentiator. 
These blocks are of the form 

a\ '- sr+l 
-Hh = -

ST+l - / / , = -
H0 

ST+\ 
(10.91) 



10.9 Composite-Feedback and Large-Signal Compensation / 503 

Ατ 

Hh 

G2 

Hl 

(b) 

FIG. 10.41 Multiple-feedback amplifier for isolating the hf path from the load (a), and its block 
diagram (b). 

where 

Rf Hn = R, (10.91a) 
'° Rf+R,' "" Rr+R, 

Substituting into (10.90), setting G, = —K and G2 = 1, the voltage gain is 

o = _ ( K \ ! 
(10.92) 

For infinite K, 

^ 2 1 K_f 

Rx sRfCr+1 
(10.93) 

The low-frequency gain is that of a standard inverting op-amp with a pole at 
1/ RfCf. This pole can be placed at a high frequency, away from the poles of 
the forward path and load. 
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FIG. 10.42 Nested feedback amplifier. 

Nested feedback loops are common in power electronics. In both power 
converters and motor controllers, a current-controlling inner loop is controlled 
by a voltage or speed-controlled outer loop. In position controllers for motors, 
a third outer position loop is added to allow speed to be controlled by position 
error. The general topology is shown in Fig. 10.42. For a position controller, 
xx is speed and G2H2 is a speed-control loop. For a motor speed controller, 
xx is current (or scaled torque); and for current-mode switching power supplies, 
xx is voltage and xx is current. Voltage-mode power converters have the same 
topology, with xx as duty ratio and the inner loop as a pulse-width modulator. 
This topology can be equally well applied to purely electronic applications 
and is sometimes called pseudoderivative feedback (PDF) control. 

The most common form of compensator for this topology is a variant of 
lead-lag compensation called proportional integral differential (PID) control 
(Fig. 10.43). It is a multipath topology with gain, integral, and derivative paths 
that add. Each path can be adjusted independently, with transfer function: 

B s2{A/B) + s{K/B) + \ 
PI D compensator = K + s A + — = F s sB 

(10.94) 

xlo-

sA 

. t + 

—' +ΊΓ 

FIG. 10.43 PID control compensator, a multipath topology. 
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Since A, K, and B are independently adjustable, the coefficients can be set 
with only scale interaction. The dc gain, l / £ , scales the coefficients and is set 
first. Note that this transfer function has more zeros than poles and can deter 
phase lag more effectively than lead-lag compensation. 

The complexity of topologies beyond those given here requires a more 
abstract and simplifying formulation. State-variable control theory is a good 
foundation for more complex designs, and as with classical control, some 
techniques do appeal to design insight. Formulations must be sought that 
provide physically meaningful insight into circuit operation [see Lorenz (1986) 
in the reference list]. 

A design technique for compensating feedback amplifiers with large feed
back resistors is shown in Fig. 10.44. The problem caused by the large value 
of Rf is that Cf must be made too small to be practical for proper compensation. 
Not uncommonly, fractions of a picofarad are required. Another problem 
caused by Cf, due to the Miller effect, is large input capacitance. Some sources 
must have minimum capacitive loading, such as D/A outputs. 

A larger Cf can be used in the circuit in Fig. 10.44b, in which a voltage 
divider is formed to drive Cf. If the divider Thévenin resistance is negligible, 
then the loop gain is reduced by the divider. The voltage gain across Cf is 
also reduced from (Av+1), so the Miller capacitance is 

C i n = C f ( A v + l ) 
U 1 + Ä2/ 

(10.95) 

Cf 

■ΛΛΛΛ-

^ > X 
ViO 

(a) (b) 

FIG. 10.44 Conventional feedback-compensated op-amp with large R( and impractically small 
Cf (a); modified circuit using voltage divider in feedback path and larger Q (b). 



506 / 10. High-Performance Amplification 

If Rx || R2 is not negligible, various poles and zeros appear. A divider in the 
feedback path can similarly be used to reduce Rf. 

Nonlinear dynamic compensation is often necessary in circuits with large 
dynamic ranges. Transistor parameters change with the signal, causing other
wise well-compensated circuits to show errors in their response. The b-c 
capacitance of BJTs varies nonlinearly with vBC. The circuits of Fig. 10.45 
compensate for ACbc with another b-c junction of a similar transistor. In (a), 
emitter compensation is applied by reverse-biasing the b-c junction of Q2 to 
track Cbc of (?2· ^Β biases Cbc of Q2 to track Qx. The tracking is more easily 

(a) (b) 

^ F V B 

(c) 

FIG. 10.45 Dynamic large-signal compensation of b-c junction of Qx with b-c junction of Q2, 
as emitter compensation (a); differential compensation with reverse-biased diodes (b); boot
strapped cascode compensation of Cbc (c). 
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accomplished in a differential amplifier, as in (b), where the opposing sides 
of the shunt-feedback amplifier vary by ±AÜBC around the same bias point. 

In Fig. 10.45c, Cbc is bootstrapped from the emitter of Q}. As υλ varies, 
vE2 follows it, keeping the voltage across Cbc constant. However, now that vm 

varies, the effect is transferred to Cbc of Q2. But if VCB of Q2 is large relative 
to that of C?!, its Cbc is smaller and varies less. 

The basic technique of adjusting a semiconductor parameter with a dc 
quantity for dynamic compensation is used in high-speed IC circuits, in which 
compensation of internal nodes is only feasible by means of an external 
adjustment outside the high-frequency signal path. 

10.10 The Gilbert Gain Cell and 
Multiplier 

In the mid-1960s, Barrie Gilbert discovered another basic amplifier technique 
with wide bandwidth and high linearity. Instead of increasing circuit com
plexity to compensate for circuit error, the technique is based on the accurate 
logarithmic function of b-e junctions and good junction matching. 

A differential current mirror, or translinear cell, based on the one in Fig. 
10.1, is shown in Fig. 10.46; it consists of two pairs of emitter-coupled transis
tors. The input pair is connected as diodes, with input current iI2 — /ii. If the 
areas are matched, then Js is the same for all transistors. The differential 

,„! 

Hi 

'Oil I «02 

I M2, <h\ I 

ΡγΓΐ 
J'12 

ÌH 

d> 
FIG. 10.46 Translinear cell. 
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voltage across the bases of Q} and Q2 is the same as across Q3 and Q4, or 

In other words, the ratio of output currents equals the ratio of input currents, 
assuming that BJT a = 1. Since this result is a current gain, it cannot exceed 
ß but is very linear up to gains near ß. Linearity is reduced by junction area 
mismatch and ohmic base and emitter resistance but is much better than for 
comparable diff-amps with emitter resistance. Also, since Q3 and Q4 have 
VCE = ^BE — 0.8 V, additional voltage drop across the collector ohmic resistance 
can cause VCE to approach zero, causing diode error. The bandwidth is limited 
b y B J T / T . 

The differential current gain is found by expressing the current ratios of 
(10.96) in the form 

0θ2+ίθΐ) + 0'θ2-ΐ'θΐ) 
*01 ( * 0 2 + *Ol) ~ ( * 0 2 — *Ol) 

ÎI2 0 ' l2+ ' l l ) + 0 ' l 2 - i l l ) 

in 0"l2+*'ll)-0'l2-l'll) 

Solving (10.97) for current gain yields 

' i p i _ [ o i "*" g'o2 _ ^o A
 lO *02 " 

Ai = — = - — 
h I l 2 - * I 1 

ίιι + ίι. 

(10.97) 

(10.98) 

The significance of this result is that ratios of input and output variables can 
be expressed as ratios of their sums and differences. In general, 

a c 
~d 

a-b 
a+b c+d 

(10.99) 

Φ 
'oi I II·̂  

e3
 } Γ ß4 

FIG. 10.47 Inverting translinear cell. 
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A gain-inverting translinear cell is shown in Fig. 10.47. The outer pair 
Δι;ΒΕ is negative that of Fig. 10.46, with current ratios 

*Q2 *I1 

*01 *I2 

and 

A=- h 

(10.100) 

(10.101) 

Complementary pairs of inner and outer junctions are also possible, though 
Js-matching is more difficult. 

The Gilbert gain cell follows from Fig. 10.47 by connecting Q3 and Q4 as 
CB transistors and cross-coupling their collectors with Qx and Q2 for additive 
outputs (Fig. 10.48). The current gain of the outer pair alone is a = 1, apart 
from the additional current gain of the inner pair. The inner-pair gain is that 
of (10.101), or 

*C2 *C1 _ '0 

Ì\2-Ì\l II 

Approximating a as unity again, we find the Gilbert-cell gain: 

io2~ *01 0'ci + I'l2) - 0"C2+ III) 

(10.102) 

A = -

tC2-*C\ + 1 = 

h2-h 

(10.103) 

Two currents, such as in and iI2, can be expressed as fractions of / , . Let 
the "modulation index" be the fraction x, so 

in =xli and îI2 = ( l - x ) / , (10.104) 

FIG. 10.48 Gilbert gain cell. 



510 / 10. High-Performance Amplification 

Their sum is still / , . Applying (10.100) to the Gilbert cell, we find that i0 of 
(10.100) is ic of the Gilbert cell. Their ratio is 

ÎI2 1 -x i c , 

Thus, 

*'c2 = xlo and ic l = ( 1 - x) I0 

The Gilbert cell output currents are then 

*02 = ICI + Il2 = (1 - x ) ( / 0 + / i ) 

(10.105) 

(10.106) 

*Oi = ic2+i'ii = x U o + / i ) 

(10.107a) 

(10.107b) 

The dynamic range is 0 < x < 1; unlike the cascomp, I0 and /, are fully used 
as signal currents over this range. Gilbert cells are easily cascaded with little 
bandwidth loss due to interstage coupling. 

The differential current mirror and Gilbert cell have important uses beyond 
current amplification. Equations (10.98) and (10.101) suggest that they also 
function as multipliers. Since J0 and /, can both be varied, the current gain 
can be changed; I0 multiplies the gain and Ιλ divides it. If J0 is not held 
constant but allowed to be the signal iY, then the output from (10.98) is 

I i l v 
(10.108) 

A divider is similarly realized if Ix is a signal instead. Since i, is differential, 
it is a bipolar signal; iY is unipolar, resulting in a two-quadrant multiplier. 
Two differential pairs (Fig. 10.49) give full four-quadrant multiplication. The 
collectors of the pairs are cross-coupled. When iY1 = iY2, the BJT pairs have 

FIG. 10.49 Gilbert four-quadrant transconductance multiplier based on translinear cells. 
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equal but opposite gains, and their output signal currents cancel. At either 
range extremum, iY1 or ^2 = 0, and only one pair amplifies. Within the range, 
the proportions of collector currents are set by the ratio of iY1 and iY2. 

The four-quadrant multiplier output is derived in terms of the inputs, 

ίχ = ίχ2-*'χι and ί γ= ί γ2 - ί γ ι (10.109) 

where 

*Χ1 + ί χ 2 = ^ Χ a n < 3 *"γΐ + ΪΥ2=^Υ (10.110) 

Define the ratio of input currents to be 

ix2 = x/χ, ixi = ( l - * H x (10.111) 

Then from (10.109), 

ίχ = χ / χ - ( 1 - χ ) / χ = ( 2 χ - 1 ) / χ (10.112) 

The output currents are 

*'oi = «I + *3 = **YI + (1 - *)ϊγ2 = -Xiy+iyi (10.113) 

and 
I'o2 = i*2"F i*4 = (1 ~~x)iYl + xiY2 = xiy+ iyi (10.114) 

The differential output current is 
/χ 

*o = '02 - i'oi = 2xiY - iY = (2x-l)iY = —' iY (10.115) 
^x 

The output current is a fraction of the total output current IY, or 

l9.-l2L.lX. 
*Y Ιχ Ιγ 

(10.116) 

The result is ideal; ix and iY are multiplied and scaled by Ix and IY. Since 
the fractional output depends on Ix, it too can be varied to provide division 
without affecting the output scaling. In practice, vBE mismatch causes even 
harmonic distortion, junction resistance causes odd harmonics and thermal 
noise, and Cbc of Q\-Q4 are a feedthrough path for high-frequency signal 
leakage, causing appreciable error around zero output. The circuit in Fig. 10.49 
is the multiplier core. To multiply voltages, diff-amp transconductance 
amplifiers drive the multiplier and ratio Jx and IY by their inputs. 

Two-quadrant multipliers are used as voltage-controlled amplifiers (VCA), 
in which only magnitude (not phase) of the signal is controlled. A typical 
two-quadrant multiplier is shown in Fig. 10.50 using an inverting translinear 
cell. Ix controls the amplitude of the input vY. The fractional output i0/ Ix = 
iY/IY. 

An improved multiplier topology is the two-quadrant controlled-cascode 
multiplier cell (Fig. 10.51). The input vY generates iY as collector currents of 
a differential cascode amplifier. The translinear input junctions are now the 

http://l9.-l2L.lX


512 / 10. High-Performance Amplification 

+V 

os zoiM J/02 α 

"Υ2 

FIG. 10.50 Two-quadrant multiplier, or VCA. 

'02 

Ô4J— VB 

I'x 

HS V Y I ° - L ß> 

V/Λ VW- r 
Φ' 

FIG. 10.51 Controlled-cascode two-quadrant multiplier. 
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b-e junctions of the CB stage instead of diodes. Consequently, iY becomes 
the output current. Ix drives the other translinear pair of junctions, Q5 and 
Q6, and is proportioned by the CB currents so that xlx subtracts from xIY. 
The outputs are the differences: 

ίοι = ί γ ι - ί χ ι = ( 1 - ^ ) / γ - ( 1 - ^ ) / χ = ( 1 - ^ ) ( / γ - / χ ) 

*'o2 = I'Y2 - 'X2 = Χΐγ - xlx = χ(Ιγ~ Ιχ) ( 10.117) 

Thus the differential output is 

ΐο = ( 2 χ - 1 ) ( / Υ - / χ ) (10.118) 

and the fractional output is 

^=(2x-\)(l-!f) (10.119) 
1\ \ Ιγ' 

As a two-quadrant multiplier, lx varies from zero to IY, whereas the input vY 

varies x over the range from zero to one. The scaling effect for Ix is reversed 
since an increase in Ix decreases the output. 

This topology has less high-frequency feedthrough because of the CB 
isolation of Ccb. In the circuit of Fig. 10.50, the fractional output varies inversely 
with input-current scaling /Y. In (10.119), the sensitivity of i0 to IY is IY/(IY-
/ X ) > 1 , and scaling is more sensitive to IY. This topology also has less 
nonlinearity from area mismatch and junction resistance. The Analog Devices 
AD539 is a dual cascode-controlled multiplier of Gilbert's design, with an iY 

gain-independent bandwidth of 60 MHz, Ix bandwidth of 5 MHz, and less 
than 1% nonlinearity. 

A four-quadrant cascode multiplier using Gilbert gain cells was developed 
by Art Metz. The BJT pair, <?!-<?2, in Fig. 10.52 forms a Gilbert cell with 
Q5-Q6. The second Gilbert cell, with Q3-Q4, is reversed from the first cell. 
When ix = 0, both cells have the same gain and their outputs cancel, leaving 
iY unattenuated. At the extremes, only one cell is on and either adds or subtracts 
from ίγ. The output range is from zero to twice iY when iX2 = Ix = IY. The 
outputs in general are 

ίοι = ίγι + *ΐχι + (1-*) ίχ2 (10.120a) 

io2=ÌY2 + */X2 + ( l - x ) / x l (10.120b) 

For the translinear cell, 

ί γ lX 

γ = ̂  = 2χ-\ (10.121) 
^Υ ^Χ 

The output is then 

Ux = . Y ( l + ^ ) io= ι ' γ+(2x-Dix = /Y I 1+-T (10.122) 
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FIG. 10.52 Four-quadrant Gilbert gain-cell multiplier. 

The multiplier acts as a controlled-gain amplifier of iY, with current gain 

(10.123) 

Since ix is bipolar, the gain is unity when ix is zero. 
This multiplier has the same advantages as that of Fig. 10.51: high linearity 

with junction mismatch and resistance. Both also have low thermal distortion. 

iD& 

Vj_0 é ovi+ 

FIG. 10.53 LM13600 translinear-cell input stage. 
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The diodes Dx and D2 in Fig. 10.52 make the operating-point c-b voltage of 
the Gilbert-cell transistors the same as for the CB. D, reduces i;CE1 and vCE3 

to compensate for vBE5. If IX = IY, the emitter currents are also equal, and 
thermal balance results. The additional CB of Q7 and Q8 provides feedthrough 
isolation for the Gilbert cells. 

A translinear cell is also found in the input of the LM13600 dual transcon-
ductance op-amp employing "linearizing diodes" (Fig. 10.53). A method of 
biasing the translinear cell is shown in Fig. 10.54a. Balanced currents of 7D/2 

(a) 

(b) 

FIG. 10.54 Single-ended configuration of translinear cell (a) and voltage-source version (b). 
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flow through both diodes, resulting in zero input voltages to the diff-amp. 
Input current /, upsets the balance so that the junction voltages around the 
translinear-cell loop are 

which simplifies to 

„ - „ = V T . n ( ^ ) = V T ln(*2) = V T . „ ( f ^ ) (10.124) 
\ / D / 2 - ! , / \ i o i / \ / o - i o / 

lO — *02 *C W < / D / 2 (10.125) 

This topology is a single-ended-to-differential translinear cell. Since matching 
of bias-current sources is harder to achieve than matching resistors, the voltage-
input version of Fig. 10.54b is easier for discrete design. When signal 
amplification must be linear but amplitude control need not be, the linearizing 
diodes of the translinear cell can be discarded. The linear input is i x , and 
VCA control input is υλ. 

A class of variable-gain circuits with minimal control bandwidth and 
linearity requirements are automatic gain control (AGC) and compandor (com
pressor-expander) circuits, used in radios to maintain constant loudness. A 
variety of variable-gain circuits exist such as the one in Fig. 10.55. By increasing 
/ x , re in Q3 and Q4 are reduced and gain increased. 

FET forms of the Gilbert multiplier have been studied, but since the FET 
is a square-law rather than an exponential device, the simplicity of high-
performance multiplication has not been achieved. The quarter-square multi
plier is based on square-law devices and the quarter-square formula: 

i[(x+y)2-(x-y)2] = xy (10.126) 

FIG. 10.55 A simple variable-gain amplifier for AGC applications. Ix controls gain by varying 
re of Q3 and Q4. 
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This technique requires three summations, two squarings and scaling and has 
been implemented with MOSFETs. 

10.11 Programmable-Gain Amplifiers 

For amplifier applications in which inputs cover a wide range, amplifier range 
and gain constraints can conflict. For small signals, a high gain is needed to 
produce a full-scale (fs) output; but for large signals, the same gain drives 
them out of range. If the scaling accuracy is not critical, a logarithmic amplifier 
or compander can solve this problem; both have a nonlinear transfer curve, 
so for small signals the gain is high but decreases with amplitude. The output, 
of course, is distorted by the log-amp or compander gain variation. 

For linear systems, a simple solution is to change the amplifier gain to 
match the signal amplitude. This minimizes amplifier error and keeps the signal 
within the amplifier linear range. An input x{ is subject to scaling (gain) and 
offset errors in the amplifier, so the output, referred to the input, is 

x0 = (l + ss)xi + e0 (10.126) 

where ε8 is scaling error, and ε0 is offset error. The amplifier error is defined 
as 

ε = — L = — ~=es + — (10.127) 

The error has two terms: ε8 is the "range error," and ε0/χ{ is the "reading 
error." Accuracy specifications are often given as es because it is a fraction of 
the fs amount for all x-x. As xx approaches zero, the fixed offset error becomes 
an increasingly large fraction of the total error and varies inversely with x-,. 
The zero-scale (zs) end of the range partly depends on how much error can 
be tolerated. 

Amplifier gain can be changed over a continuous range using a multiplier. 
But usually it is simpler to switch gain-determining elements for a small number 
of gain settings. These gain-switched or programmable-gain amplifiers are 
commonly found on measurement instruments, such as oscilloscopes, in which 
a very wide range of input amplitudes is allowed. The vertical sensitivity 
control on oscilloscopes typically spans a range from 2mV/div to 50V/div. 
(The div unit is a division of vertical deflection on the CRT screen graticule; 
eight divisions is standard for full scale.) Instrument designers have standard
ized on a 1-2-5 sequence of gain settings within a decade. Since these discrete 
settings fall short of matching the amplifier fs to the signal, some additional 
error due to ε0 is accepted. 

For a given gain setting, the range is from zs to fs for input quantity X\, or 

xzs = — <Xi<xf s , a>\ (10.128) 
a 
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where xfs is the maximum xx at fs and minimum x-x dit zs is xzs, the fraction 
1/ a of fs. Thus a defines the extent of the range. Now the average error over 
the range is 

e= l—— I fS (ε 5 + - ) < / χ ^ ( aln" ) ε 0 + ε 5 (10.129) 
XfS-Xfs/« JX(s/a \ xJ \(a-\)xj 

for a> 1. For amplifiers with continuously adjustable gain, for all xi9 gain is 
adjusted so that χ·λ is xfs. The ratio of offset errors for the discrete to continuous 
cases is 

^ = ( ^ - ) l n a (10.130) 
eoc \a-l/ 

For a range of a: l , the larger a is, the larger the error ratio, to the disadvantage 
of discrete-gain settings. 

In computer-based data-acquisition systems, a 1-2-5 gain sequence is not 
necessary since the computer can rescale the measurements. The question then 
arises as to the advantage of regular gain settings over the 1-2-5 settings. For 
minimum offset error, many ranges with small a are desired. If we assume 
that at fs, £s can be nulled, then for three gain settings per decade, the 1-2-5 
scheme has the following a and normalized offset error: 

*fs *zs û (ë-es)/e0 

2 1 2.0 1.39 
5 2 2.5 1.53 

10 5 2.0 1.39 

The maximum normalized error is 1.53. For three regularly spaced settings 
covering a decade, 

a = 101/3 = 2.15 

and maximum normalized error is 1.43. Therefore, the improvement of regular 
settings over 1-2-5 settings is 1.43/1.53 = 0.93, for 7% improvement. This is 
usually not significant, and the 1-2-5 sequence appears to be well chosen. 

The major consideration in gain-switched amplifiers is the imperfection 
of the switches. Reed relays are closest to ideal electrically but are slow, bulky, 
and power-intensive. Solid-state analog switches are used in all but the most 
demanding applications, with their parasitic series, shunt (leakage) resistances, 
and shunt capacitance. 

Diodes, BJTs, JFETs, and MOSFETs function as switches of voltage or 
current. JFETs (including those of biFET implementation) have constant 
on-resistance rON of typically 100 Ω over the input voltage range. MOSFET 
switches have lower rON, typically 10-20 Ω, with large ArON- Discrete power 
MOSFETs have rON values of less than 100 mO but with correspondingly large 
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shunt capacitances. MOSFETs have a parasitic diode between the body and 
drain. Since three-terminal MOSFETs have the body connected to the source, 
current flows through this diode in the opposite direction to the gate-controlled 
flow. Two MOSFETs in series, back to back, form a bipolar switch. Because 
of MOSFET rON variation, n- and p-channel devices are used together as 
CMOS switches since their variations tend to cancel. The combined rON still 
varies more than for a JFET switch and peaks at the midrange input voltage. 

Discrete diodes and BJTs are sometimes used as gain switches, as in the 
BJT amplifier of Fig. 10.56. The diff-amp emitter resistors are different (Rx ^ 
R2), and gain is selected by activating one diff-amp. The diff-amps are switched 
by switching the emitter-current source to the selected diff-amp. This scheme 
is extendable by adding more diff-amp pairs and current switches. 

Of the two switching modes, voltage and current, parasitic elements in 
switches mainly determine which mode to use. A switch with high rON is a 
poor choice for switching in a voltage divider; rON adds to the divider resistance, 
changing the attenuation. Except for voltage range (compliance) limitations 
on current sources, rON does not affect current-mode switching. An input 
source is selected by current-switching into the virtual ground of an inverting 
op-amp (Fig. 10.57). Current-mode switching also reduces the effects of shunt 
capacitance by minimizing voltage variation. 

VB- 4 k 
1 zw-

«2 
■ν\ΛΛ 

vw—' 
* 2 

■ΛΛΛΛ-

■ve 

FIG. 10.56 BJT gain-switching via the current source of diff-amps with different gains. 
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wv̂ -

WSA-

FIG. 10.57 Current switching at virtual ground of inverting op-amp. 

Sometimes voltage-mode switching is necessary and can be error-free if 
the switch load is an open-circuit. That is, switch current (and voltage drop) 
is zero. A common example is gain-switching in noninverting op-amps (Fig. 
10.58). To keep the op-amp loop from momentarily opening during switching, 
the switches should be make-before-break types. 

10.12 Closure 

This chapter has introduced several new amplifier concepts based on current 
amplification, to get around gain-bandwidth limitations, and the use of com
posite topologies to improve performance. The translinear cell opens a wide 
range of possibilities for improved analog signal processing. Here, we investi
gated amplification and multiplication but function generation is another use 
for it. The study of amplification has been our focus to this point, but with 
the introduction of gain switching, nonlinear analog circuit functions become 
a consideration. 

FIG. 10.58 Voltage switching into open circuit in noninverting op-amp. 
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C H A P T E R 

Signal-Processing Circuits 

Besides amplification and multiplication, various other signal-processing func
tions are a part of the analog circuit design repertoire. Most of these functions 
are nonlinear. We shall survey a variety of these signal-processing circuits. 

11.1 Voltage References 

Stable and accurate voltage sources are needed as references for measurement 
circuits and power supplies. The Zener diode is a simple voltage-reference 
device. Although it has been in use a long time, it is still the most stable kind 
of reference available (other than reference standards such as temperature-
controlled batteries or superconducting quantum-effect devices). A simple 
Zener-based reference is shown in Fig. 11.1a. Zener diodes combine two 
mechanisms, tunneling and avalanche breakdown. Tunneling has a negative 
TC, and avalanche has a positive TC. At around 5 V the mechanisms cancel, 
but the tolerance for 5 V Zeners is not good, making selection necessary for 
low TC. The TC of Zeners increases reliably with Zener voltage Vz above 
about 6 V at about 1 mV/°C per volt, or 0.1%/°C. At a Vz of 5.6 V, the TC is 
that of a forward-biased diode, about - 2 mV/°C. By placing a diode in series 
with a 5.6 V Zener, we get a zero TC 6.3 V Zener reference diode. Manufac
turers' literature shows that low-TC diodes are around 6.3 V. Low-TC Zeners 
at higher voltages are also possible by stacking more diodes in series, but 
tracking makes repeatable manufacture of zero-TC devices more difficult. 

Zener diodes are noisy, especially at low currents. Consequently, they are 
bypassed with a capacitor (Fig. 11.1a). In ICs, high-performance Zeners are 

11 
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vz. 

vz 

rh m 
(a) (b) (c) 

FIG. 11.1 Zener diode voltage references: (a) basic reference, (b) bootstrapped reference with 
scaling, and (c) BJT Zener with series b-e junction compensation of Q2. 

built below the IC surface as subsurface Zeners, which are less noisy because 
surface effects are eliminated. Lateral ion-implanted Zeners have low-tolerance 
voltages (typically less than 1%) and are commonly used as references in IC 
circuits. With a substrate temperature controller on the same chip, monolithic 
references with 1 ppm/°C are commercially available. 

A minimum TC also depends on Zener current Iz, typically 5-10 m A. 
The circuit of Fig. 11.1a is subject to Iz variation with the voltage supply. The 
resistor supplying Iz can be bootstrapped (Fig. 11.1b) with an op-amp. The 
op-amp output, 

Mf; + 1 ) V z (11.1) 

supplies a stable Zener current of ( V R - Vz)/R. This circuit requires a starting 
circuit for the Zener, when power is first applied. A simpler bootstrap circuit 
(Fig. 11.1c) uses a transistor b-e junction as the Zener diode, for which Vz 

is 6-7 V, with a TC of around 2 mV/°C. The Zener Qx is in series with the 
forward-biased b-e junction of Q2- The combination forms a reference Zener 
and has a low TC. Q2 provides shunt regulation to reduce output resistance. 
Zener diodes have resistances of around 10 Ω, increasing with Vz to 100 Ω. 
Thus, their load regulation is unacceptable for high stability and must be 
buffered. Another disadvantage to Zeners is that a smaller reference voltage 
is desired for monolithic 5 V regulators and other devices, such as ADCs and 
DACs, that operate from 5 V. 

A newer kind of voltage reference is based on the temperature characteris
tics of pn junctions themselves. Junction voltage has a negative TC of about 
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- 2 mV/°C. The differential voltage across two matched junctions (as in a 
diff-amp) is 

A V = V T l n £ = — - l n £ (11.2) 

When the current ratio is held constant, Δ V has a positive, linear TC of 

T C ( A V ) = - - l n ^ = ( 8 6 . 1 7 ^ 1 n ^ (11.3) 

By scaling Δ V and adding it to junction voltage V, we obtain an output of 

V o = V + g ( A V ) = V + g V T l n ^ (11.4) 

where g is the gain required to amplify Δ V so that its TC is opposite that of 
V. If the junction areas of Qx and Q2 are not equal, the more general form of 

-*- i -*- [ fê)fâ). (11.5) 

where J is current density and A is the b-e junction area; / = I/A. The TC 
of V0 is 

, , dVQ dV d Δ ν , 
T C ( V o ) = ^ = ^ + ^ · ^ ( 1 1 6 ) 

We can substitute for the TC of V and Δ V, set TC( V0) to zero, and solve for 
the gain g. To find TC( V), we first differentiate V: 

dV 
dT\ 

The expression, 

TC 

d t I\ ( 1 dls\ V mV , 

is the fractional TC(/S). 
From semiconductor physics, saturation current is 

where D are diffusion coefficients, L the diffusion length constants, pno and 
Mpo the equilibrium minority hole and electron concentrations, N the ion 
doping concentrations, μ the carrier mobilities, and nx the intrinsic carrier 
concentration, where 

noPo=n\ (11.10) 

and nQ and p0 are the equilibrium electron and hole concentrations. In (11.9), 
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μ and n\ are temperature dependent; the other constants are fixed by geometry, 
doping, or materials properties. Delving deeper into solid-state physics, we have 

rtfocT3
 e-E*°/kT (11.11) 

where Ego is the semiconductor bandgap energy, linearly extrapolated to 0 K. 
For silicon it is 

£g o=1.205eV (Si) 

Because VT= kT/q, (11.11) can be expressed as 

nKT)oc T3e-Vz»/V-

(11.12) 

(11.13) 

Is also depends on μ(Τ). For silicon, μ(Τ)α: Τ 26. With this value, it follows 
from (11.9) that 

Isoc 1 · I ' 1 e 8° T= 1 e «° τ 

By taking the derivative and dividing it by 7S, we get 

TC%(/s) >.^=^±li 
We now have an expression for (11.8). At 300 K, this is 

TC%(/S)|T-3OO K = 15.53%/°C + 0.47%/°C = 16%/°C 

(11-14) 

(11.15) 

(11.16) 

The dominant effect on TC%(/S) w'th temperature is the first term, involving 
the bandgap. The mobility (second term) affects it only about 3%. 

Returning to (11.7), we can now solve for the value of 

dV 
dT\ ,--(i-S)* + 

V V-V g o -1 .4V T 

iS UM/ T T 

At 300 K and Js = 10"14 A, for / = 1 mA, V = 0.655 V, and 

dV mV mV 
— = -1.95 = -2.0 . 
dT °C °C 

While we are calculating TCs, the fractional TC of / is 

(11.17) 

TC%(,»U = i . ; £ _ 1 ^ s _ l Σ. 
v~h dT~T' VT 

At 300 K and V = 0.655 V, as before, 

TC%(/)|y = 16%/°C-8.44%/°C = 8%/°C 

We already know that 

1 dVT 1 
TC%( VT) = VT dT T 

(11.18) 

(11.19) 

(11.20) 
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At 300 K, TC%(VT) = 0.33%/°C. Returning to (11.6), we must yet find 

—_ = _ I . i n _ 2 (11.21) 

dT T Jx
 v ; 

Substituting (11.17) and (11.21) into (11.6), we obtain 

dV0 
.-Hi^'^m <»* 

(11.23) 

dT 

From (11.17), this can also be expressed in Vgo as 

dVol _VT<ln(f// s) + g l n ( J 2 / J 1 ) - 1 . 4 ) - V t o 

dT], T 

For TC(Vo) = 0, the required gain is 

_(l/Is)(dIs/dT)T-(V/Vr)_Vgo/VT-(\n{I/Is)-lA) 
8 ln(72/i,) 1η(/2/Λ) { ' ^ 

The constraint on achieving a zero TC is that / be held constant. 

Example 11.1 Bandgap Reference Design 

The CA3086 BJT array has /S = 10~15A at 300 K. Let / be 1mA. 
Then V = 0.715 V, and from (11.22), 

dT °C °C \ ° C / / , 

The first two terms have a combined TC of -1.76mV/°C. The gain 
required to null this TC is, from (11.24), 

(0.16/K)(3Q0 K) - (0.715 V)/(25.87 mV) 20.4 
g ~ ln(/2/J,) ~\n(J2/Jx) 

Finally, from (11.4), 

Vo = 0.715V+(20.4)VT = 0.715 V+0.527.V=.1.242 V 

The result for V0 of Example 11.1 is curiously close to Vgo. If we substitute 
(11.24) into (11.4), we get 

Vo= Vgo+1.4VT= Vg= 1.242 V (11.25) 

The output of a bandgap reference is Vg, the ambient-temperature bandgap 
voltage. A concise expression for VQ, in terms of g, follows from substituting 
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(11.5) into (11.4): 

ν°-νΑΰ+°νΑτ)'νΑ(ΰ(τ)'ί <"·26) 
Substituting g from (11.24), we can reduce this to (11.25). 

The gain formula of (11.24) can be expressed more simply using (11.25) as 

V - V 
(11.27) 

This simpler formula for g is expressed entirely in dc circuit voltages. 
A simple bandgap circuit (Fig. 11.2) is the Widlar bandgap reference, after 

Bob Widlar (pronounced "wide-ler"), who invented the bandgap concept. Rx 

sets current Ix through Qx. The current, or current density, of Qx must be 
larger than that of Q2 to create a positive Δ V across R2. Assuming a = 1 for 
Q2, we get the gain VR3/A V= R3/ R2. The application of (11.4) involves VR3 

and VBE3-

Vn= VR VR3= V T l n ^ + ( ^ ) V T l n ^ (11.28) 

and this must equal V0 of (11.25). The junction currents are kept constant by 
bootstrapping their sources from the stable output, supplied by I0. Q3 also 
shunt regulates the output. In this analysis, a error has been ignored, and 
biasing constrains VBE3> VBE1 to keep from saturating Q2. Consequently, 
I2<IX< I3 for equal areas. The topology places a limit on how large Δ V can 
be made. 

m 
FIG. 11.2 Widlar bandgap reference. 
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Example 11.2 Widlar Bandgap Reference 

Based on the topology of Fig. 11.2 and Example 11.1, 7E3 = 1 m A and 
VBE3 = 0.715 V. From (11.25), the output voltage is Vg= 1.24 V. Then 

V R 3 = V o - V B E 3 = 0.527 V 

We must set Ιλ < 7E3 to reverse-bias the b-c junction of Q2, and for 
AV= VR 2>0, 72<7, . For maximum 7,/72, let VcB2 = 0V, the same as 
VCBI. At low currents, the drop across r'c is negligible and saturation of 
Q2 avoided. Then 

V, = VBE3 =Φ / , = 7E3 

By choosing 7l5 we choose AV as 

Let 72 = 100μ,Α· Then 

and 

Furthermore, 

A V - VVln — 

AV= VT In — =59.6 mV 

V0-V 0.527 V 
g _ _ 527 kil 

I2 100 μ A 

R, = — = 595il 
g 

and 

V0-V, 0.527 V 
Ä^-2-—L = -~ -=5.27kf ì 

7, 100 μ A 

Total current is 2.1 m A, considerably less than the zero-TC current of 
typical Zeners. Much lower currents are also feasible. 

The Widlar reference has the disadvantage of a determined output voltage 
Vg that is not optimal for many applications. A bandgap reference with arbitrary 

Output would be better. The differential bandgap circuit of Fig. 11.3 has output 
VR that is set by Rr and R,. Q2 has a higher current density than Qx, so Δ V 
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FIG. 11.3 Differential bandgap reference. 

is the difference of the VBE voltages: 

A V = / 1 Ä = V B E 2 - V B E i = V - V T l n £ = V T l n ^ (11.29) 

The op-amp inputs are kept at the same voltage by feedback so that 

hRx = I2R2 (11.30) 

If J2/J\ is chosen, then Δ V and /, are determined by R. By choosing the b-e 
junction areas, we also determine I2. Thus, Rx and R2 are determined. Then 

V0=(/1 + /2)Äo 

is set by R0. The base voltage is then 

(11.31) 

Finally, the output is 

ν'-ν+^-νΗτ)+(τ)Η)νΑ7) <"·32) 

v.=Vs(,+f;) (11.33) 

For zero TC(VR), we must have TC( VB) = 0. For this circuit, (11.32) has the 
form of (11.4), the basic bandgap-reference equation. VBis V0, V0 corresponds 
to Δ V, I2 = /, and 

-£-®K) (11.34) 
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For TC(VB) = 0, g must satisfy (11.27), or 

Vo= V g - V= V g -V T ln œ (11.35) 

The TC( V0) > 0 and is linear with absolute temperature. 

Example 11.3 Differential Bandgap Reference 

The circuit in Fig. El 1.3 is based on a five-transistor CA3086 array of 
matched transistors with equal areas. The goal is to design a 2.50 V 
reference. For CA3086 BJTs, 

For this design, let 

Jx 

/ s=10" 1 5 A 

10, Ι^βΟμΑ, 72 = 600μΑ 

+5V 

-1_ +5V 

2N3906-L.2N3906 

R 4? 45.3 4 .53^ o 

4.3 V H Î 5 3.2 V | 

+5V 

■VR = 2.50 V 

/?f^ 100 kn 

; <S) 2.5 V adj. 
. 25 Ω cermet 

VB 

1.24 V 

AV flSl.OOkQ 
/? i> 1.00 ka 

FIG. E11.3 
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Then 

R = AV=VT.n(10) = 59:56mA = 9 9 2 i ì J % 

/ , 60 μ A 60 μ A 

We now proceed to find R0 by first calculating V: 

/ 6 0 0 u A \ 
v = = V B E 2 = V T l n ^ _ ^ - j =0.702 V 

Then, from (11.31) and (11.35), 

V0= Äo(660 μΑ) = 1.242 V - 0.702 V = 0.541 V 

Solve for R0: 

Αο = 819Ω => 825 Ω, 1% 

Now calculate R1 and R2 from (11.30). Since this is a ratio, we need 
another constraint to determine actual values. Note that the VCB of Qx 

and Q2 are in series with that of Q3 and Q4. VC3 is a junction drop 
down from the supply of 5 V, or about 4.3 V. But VC4 is less; it is a 
junction drop up from the output of 2.5 V or 3.3 V. And VB is Vg = 1.242 V. 
We split the voltage difference between the series b-c junctions so that 

3.3 V-1.24 V 
V B 3 = V B 4 = + 1.24 V = 2.3 V 

Then 

5 V - 2 3 V 
/?!= :

7— = 45kn => 45.3 kß , 1% 
60 μ A 

and 

# 2 = - i = 4.5 kfì =» 4.53 kii, 1% 
10 

To compensate the diff-amp for bias current, set the source resistance 
equal. This requires a base resistor for Q3 of 

Rm = 45.3 k n - 4.53 kO = 40.8 kù => 43 kil 

The diff-amp emitter bias current is set by JRE. If we choose it to be 
20 μΑ, then base current for β = 100 is about 100 nA, a small fraction 
of 60 μA, The emitter voltage is a junction drop down from VB3, or 
about 1.5 V. Then 

L5V nc 
Ε " 2 0 μ Α " 
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Finally, the feedback divider is 

Rf 2.500 V 
- 1 + 1 = = 2.013 
Ri 1.242V 

Choose Ri^l.OOkil, 1%, a convenient value. Then jRf= 1.013 kil. To 
allow adjustment of the output to correct for parts tolerances, place a 
trim-pot (screwdriver-adjusted potentiometer) in series with 

# f =1.00ki l , 1% 

having twice the remaining resistance, to center the pot, or 

Äadj = 2(1.013 kù- LOO kiì) = 25.8 Π => 25 Ω 

A cermet pot has a low TC, required for the application, but such a low 
value may not be available in cermet, and Rf must be reduced to make 
the trim-pot larger. 

All parts values have now been determined, and the circuit can be 
"prototyped" to verify performance. A prototype was built with the 
following deviations: 

R, = 49.9 k« , 1%, R2 = 439kil9 1%, Α0 = 820Ω, 5% 

The supply measured 5.01 V, V0 was 0.540 V, and VB was 1.242 V. These 
measurements were taken on a warm spring evening in a building without 
air conditioning; the temperature was approximately 300 K. The CA3086 
was heated to about 50°C above ambient temperature with a soldering 
iron, and VB became 1.237 V. The circuit was then cooled with circuit 
cooler (an aerosol); VB was then 1.248 V. A rough calculation indicates 
that TC(VB) is roughly 100 ppm, about the same as the metal-film 1% 
resistors. In a refined design, this discrete implementation should have 
all 1% metal-film resistors (no 5% composition resistors). Better yet, it 
should be an integrated circuit. But for the 30 minutes it took to build, 
it demonstrated the validity of the derived design equations. 

In integrated form, a simple differential bandgap reference can have the 
topology of Fig. 11.4, in which a nonunity emitter-area ratio is used, where 
Al> A2. C?3 is a current mirror, and Q4 and Q5 form a Darlington buffer to 
the output. 

A third bandgap-reference topology (Fig. 11.5) uses an op-amp with inputs 
from the emitter (instead of collector) circuit of the bandgap cell, Qx and Q2. 
The analysis is similar to the previous one. Equations (11.29) and (11.33) are 
valid. So are (11.30) and (11.31), where V0 equals the expressions of (11.30). 
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FIG. 11.4 Discrete BJT realization of 
differential bandgap reference. 

FIG. 11.5 Bandgap voltage reference with 
emitter inputs to op-amp. 

Equation (11.32) is slightly modified: 

V B = v + V 0 = V T l n ( ^ + / 1 Ä 1 = V T l n ^ + ( ^ V T l n ( ^ (11.36) 

By comparison, 

(11.37) g AV R 

and (11.35) also applies. 
Besides these three popular bandgap circuits, various other topologies 

have been used in commercial ICs. 
In some designs, a very simple voltage reference is needed that does not 

require a low TC. A shunt-feedback voltage source is shown in Fig. 11.6a. We 
want V0 to be insensitive to the temperature and supply voltage V for good 
power-supply rejection (PSR). 

This circuit has no closed-form dc solution but can be designed without 
iteration, given V, V0, and Is- Assume that the diode and BJT are matched. 
The supply current is 7E; choose IE. Then 

By KVL, 

VB= VTln-

ν0=ν-Ι^-νΌ=ν-Ι^-νΎ\η^ 

(11.38) 

(11.39) 



534 / 11. Signal-Processing Circuits 

+V 

+ 

(a) 

tfiJk L' I r in 

rin+/?L
 vl RL\\rin+rd 

vo #Ov; *ov0 

-ßo 
Ό 

(b) 

FIG. 11.6 Shunt-feedback voltage reference. 

Applying (11.38) reduces the last term to VB+ VTln a. Then 

V - ( V o + V B + V T l n « ) 
L _ I 

For a = 1, V T lnasO. KVL is applied again to the base circuit: 

V-IERL-VB IE 

R» β + ί 
Solving for RB yields 

RB = (ß + D [m-*] 

(11.40) 

(11.41) 

(11.42) 

The PSR is expressed in small-signal quantities as vjv. The flow graph, 
shown in Fig. 11.6b, reduces to 

fin ^ 1 f\n ' i n 

v rm + (ß + l)RL RL || rin+rd rin + (yS + l)RL' 

where 
rin = ^B + (jÖ + l ) r e 

PSR is often expressed as the PSR ratio (PSRR): 

PSRR =20 l o g 

ia = 0 (11.43) 

(11.44) 

(11.45) 

The TC of the shunt-feedback reference largely depends on TC(/3). The 
output voltage is 

V 0 = V B - V D + / B K B = V T l n a + 
0 + 1 

Kp (11.46) 

Since the junctions nearly cancel, the first term is negligible. In the second 
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term, / B ( ^ 0 varies with ß(T) at about 1%/°C. Less base current is required 
to sustain VL with increasing β. Thus, V0 has a negative TC. For small changes 
in V0 and V, (11.43) is the transfer function; v0 varies inversely with β. 

The dynamic output resistance is reduced from rin due to feedback to 

rin + jRL (11.47) 
l + ßRJir^ + RJ m rin + (/3 + l ) K L 

Example 11.4 Shunt-Feedback Voltage Reference 

The reference of Fig. 11.6 has the following design parameters: 

JS=10~, 5A, ß = 9 9 , matched junctions, V = 5V, V0 = 2.5V 

Let JE = 1 mA. This value is chosen so that any load current is negligible 
in comparison. Applying (11.38), (11.40), and (11.42) yields 

V^Vrlnj^—^OJlSV 

_ 5 V~[2.5 V + 0.715 V+(25.87 mV)(ln 0.99)] = fefì 

1 m A 

[5 V - 0 7 1 5 V Ί 
'- 1.79 ka = 250 kfì =Φ 240 kO 

1mA J 

The PSR is calculated as follows: 

rin = 240 kil + ( 100)(26 Ω) = 243 kÜ 

vQ 243 kO 
v 243kn + (100)(1.8kiï) 

= 0.57 

This does not amount to much power-supply rejection. As PSRR, it is 
only 4.8 dB. The dynamic output resistance is reduced by about the same 
fraction: 

rout = (243 kil)(0.58) = 140 kil 

In this example, the shunt-feedback voltage reference has little advantage 
over a resistive divider because RL is not sufficiently large relative to rin. 
If we choose IE = 100 μ,Α instead, the result is actually better: 

RL=18kO, KB = 2.4 Mil, rin = 50kil, ~ = 0.027, 
v 

r o u t = 1.84 k i l 

The improvement is due to increased l o o p gain resulting from increased 
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Mi 

< / 

(a) 

+ 

(c) 

FIG. 11.7 VBE multipliers: (a) basic circuit, (b) two-stage circuit with additional gain, (c) ideal 
transconductance amplifier realization with voltage reference VR. 

A simple voltage source that is easily floated is the VBE multiplier (Fig. 
11.7a). When driven by a current source, it acts as a shunt-feedback amplifier 
with voltage 

"-«.'.♦v„(.+£)-i£+v..(, + ..£) (... 48) 

where I is the total current. Its main advantage over a current-driven resistor 
is its dynamic resistance, 

= (Ä, + Ä 2 K ) | | r r 
(Rl + R2\\rw\ 

(11.49) 

where rm is the BJT transresistance of rja and r7T = (ß + \)rQ. The first shunt 
resistance is the divider resistance, and the second is the equivalent BJT 
resistance. If the resistive-divider loading is negligible, then 

out ' m l 1 7 / j 

\ VBE/ a IE 

y/i 
E V T ln( / / / s ) a l n ( / / / s ) 

(11.50) 

The numerator is the value of a current-driven resistor; the denominator is 
the improvement factor due to the BJT. 

The voltage source driving this circuit is VBE, which drifts with temperature. 
From (11.48), 

dV -IR, 
dT j8 + l 

TC%(/3) + (1+eS)v" TC%(VBE) (11.51) 

assuming TC(a) = 0. The fractional TC of junction voltage with constant /, 
which is found, in general, from (11.17), is 

TC%(V)|,-1 ■§ rW-iW) <"·5« 
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Then (11.51), with a typical VBE = 0.7 V at 27°C, becomes 

dV -IRX 
typical —— = 

dT ß + \ 
(1%/°C)- (-1) (0.7 V)(0.26%/°C) (11.53) 

and the TC(V)<0. This circuit is commonly used in the base circuit of 
complementary CC buffers, as an alternative in Fig. 9.50a to RXDXR2D2. It 
can be designed so that its TC tracks the CC output BJTs. 

A VBE multiplier with an additional gain stage is shown in Fig. 11.7b. The 
circuit in (c) is the general form of the VBE multiplier. The voltage source VR 

drives the shunt transconductance amplifier across R. With a current of /, the 
voltage across it is 

V = ( / + V R G J 

The incremental dynamic resistance is 

fm.t = R 

R 

J_ 
Gn 

(11-54) 

(11.55) 

Without the amplifier, it is R. For large Gm, it approaches zero. 

11.2 Current Sources 

The three-terminal current-source IC of Fig. 11.8 has a bandgap cell Qx-Q2 

and a transconductance amplifier with an output of 14/0· Each BJT conducts 

FIG. 11.8 Simplified LM334 bandgap current source. 
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/o, and the area of (?, is 14 times that of Q2, or A, = 14A2. With the same current, 

h = 14 (11.56) 

The terminal current at 25°C is 

0 \15f l / \ 1 5 / R 
ln(14) (1.067)(67.77 mV) 72.3 mV 

R R 
(11.57) 

This circuit is based on the National Semiconductor LM334. The data book 
specification indicates that the voltage across R is 67.7 mV. Since / varies with 
VT, it has a TC of 0.336%/°C at 25°C. A shunt RD combination in series with 
this part adds a negative TC. If the shunt R is chosen properly, the TC can 
be set to zero. 

A current source based on the VBE-multiplier concept is shown in Fig. 
11.9. The general topology is given in (a), where the amplifier has voltage gain 
K. Otherwise, the topology is the same as the VBE-multiplier voltage source 
(Fig. 11.7c). The circuit equations are 

or 

and at the output, 

V=K(VR-IR) 

VR-V/K 
R 

RL RL\RL+RJ 

(11.58) 

(11.59) 

(11.60) 

(a) (b) 

FIG. 11.9 Precision op-amp current source (a) and BJT realization (b). 
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or 
/ R. + R\ 

(11.61) -m-
Solving (11.58) and (11.60) for /, we have 

(11.62) 
RL/K + R[(K + l)/K] 

For an op-amp, K -* oo, and 

I\K^OO = ^T (11.63) 

J is independent of the load, as desired. The dynamic output resistance, which 
ideally is infinite, is 

rout = ^JJi.ä^J_R^\ 
out dl dV dl \ / ? L + K / v v " 

As K->oo, rout->oo, as desired. R should be made as small as feasible to 
maintain high rout for small RL. RL begins to affect I significantly as it 
approaches the value of R. 

A BJT realization of the VBE-multiplier current source is that of Fig. 11.9b, 
in which VR is VBE of Qx, and K is the loop gain with VBE1 as input. It is 

„ v RcHiß + Dir^ + RWr^ + RU] 
K= —a (11.65) 

^bel r e l 

R should be made small for load insensitivity and Rc large for high K. Since 
/ oc VR = VBE1 and TC( VBE) = - 2 mV/°C, 

TC%(/) = TC%(VBE1) (11.66) 

In the BJT current-source, the diff-amp input is the b-e junction of Ql9 and 
7E1 also contributes to 7, or 

/ = /EI + /E2 (1167) 

If IEi is chosen, then VBE1 is determined and R calculated from 

R=YiMMIà (11.68) 
7 7E1 

Next, Rc must be chosen to satisfy dc constraints. Given RL and V, and with 
BJT parameter Is, then 

/E2 = / - / E I + - ^ = / - " / E I (1169) 

and 

V B E 2 = V T l n ^ (11.70) 
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Then the current through Rc, corrected for 7B2, is 

, * . 1*2 [β2/(β + ΐ)]ΐΕΙ + ι , 1 1 7 1 . 
iRC = aIEi-\ = (11.71) 

/3 + 1 jß + 1 V ; 

With these calculated values, we can now find R c· 

R c = y - (v B E 2 + y B E 1 + /* L ) ( n 7 2 ) 

Example 11.5 V/BE-Multiplier Current Source 

The current source of Fig. 11.9b has a 1 kÜ nominal load to ground and 
V = 5 V. We want / to be 1 mA. The BJTs have ß = 99 and Js = 10"15 A. 
Then, if we let 

/F, = 100/xA 

100 a A 
VBEI =V T In ^ p ^ = 0.655 V 

Consequently, 

0.655 V 
R= - - 7 2 8 Ω =» 750Î1 

1 mA-ΙΟΟμΑ 

From ( 11.69), 7E2 = 0.901 mA, and VBh2 = 0.712 V. IRL = 1 V. Next, 7RC -
10.80 μΑ, and finally, from (11.72), 

5 V-2.367 V Rc = — - — — 7 - = 24.4kO =» 24 kft 
10.80 μ A 

K is calculated from (11.65) as 80. This makes rout = -34 kO. The negative 
value means that an increase of VL is accompanied by a slight decrease 
in I. Negative resistances can cause oscillations, and instability should 
be evaluated (as in Chapter 7). Since R = RL, this design could be 
improved by a choice of smaller / n i , causing R to be smaller. But since 
IEi is already a tenth /E2, we are at a point of diminishing improvement. 
An op-amp realization would get around the lower limits on R. 

This circuit is quite sensitive to the value of R. It was built using a 
750 il , 5% resistor; the resulting I was about 7% low. With a trim-pot 
adjusted to 728 Ω, the error was about 0.2%. Therefore, a 1% value of 
732 il would be better to use for R. 

An op-amp-based current source was invented in 1963 by Brad Howland 
at MIT. It is the Howland current source, shown with a floating voltage source 
input in Fig. 11.10. This circuit has positive feedback to the noninverting input. 
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VL *2 
■* /vV-

FIG. 11.10 Howland op-amp current source with differential input voltage. 

With a sufficiently large load resistance, the circuit becomes unstable. The 
positive feedback provides a bootstrap effect that keeps the load current IL 

constant. 
Since the op-amp keeps its inputs at the same voltage, they are both at 

the load voltage VL. The same voltage appears at both ends of the input branch 
through which flows the input current, 

V 

This current flows through R2, causing 

R, 
Vo=/ ,Ä 2 +V L = ^ V , + VL 

(11.73) 

(11.74) 

VQ is thus established. It causes a current through R3\ applying KCL at the 
load node and substituting (11.74) gives 

The cancellation of VL in the numerator of (11.75) represents the bootstrapping. 
V0 tracks VL, so IL is independent of VL and hence is a current source. 

Floating voltage sources are usually inconvenient. A more general How-
land circuit (Fig. 11.11) has two voltage inputs, Vl and V2, with differential 
input 

Vi=V2-Vl (11.76) 

What is different is that the currents in Rx and R3 can be different. The circuit 
is solved similar to the previous one. V0 from the inverting side is 

v0= VL+I2R2= ^ + ^ ^ R2={~it) V i + ( f ; + 1 ) VL (1L77) 
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FIG. 11.11 Howland current source. 

On the noninverting side, applying KCL and substituting for V0, 

Ιί = ̂ Ζ^+νοΖ^/_^\νι+Υ1+/_Βί__±\νί (1178) 
R3 R4 \ R]RJ A3 \RXRA R3/ 

This general expression for IL is not independent of VL, as required of a 
current source. The coefficient of VL is set to zero under the condition 

^2 ]_ _^2 _ R± _ .. ^2 ^4 
R\R4 Λ3 Λ4 /V3 

Under this condition, (11.78) reduces to 

current source IL = -

or 

V, 
R, 

Ri Ri 

R> 

(11.79) 

(11.80) 

The output resistance is found by regarding the dc quantities of (11.78) as 
variables, and then differentiating and inverting: 

R4 
r °u t siL \ ( — — ) — 

\RXR4 R3/ R2 

(11.81) 
M*M ^ 3 / ^2/ R\ — RJ Ri 

Under the condition of (11.79), rout is infinite. 
The modified Howland source of Fig. 11.12 has an additional resistor R4 

and a buffer between the load and noninverting input. This increases compli
ance (load-voltage range) and load-current range because R5 can be made 
small while R4 satisfies the gain requirement of a current source. If 7R4« JL, 
the buffer can be omitted and R4 connected to R5. For this circuit, we assume 
finite op-amp gain K and apply superposition to the op-amp inputs: 

(11.82) 

(11.83) 
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FIG. 11.12 Precision Howland current source. 

The op-amp output voltage is 

V0=K(V+-V.) = 

When K^oo, V0 is 

K 
[(Rt +R2)/R,] +K (VoU-o) 

The load current then is 

IL = R, 

(11.84) 

- ' - (^) fâM^)M^H «·« 
(11.86) 

Substituting (11.85) yields an expression in Vl9 V2,and VL. When the coefficient 
of VL is set to zero, the current-source condition results. Not surprisingly, it 
is the same as (11.79) because the feedback topology is the same as the previous 
circuit. Then 

'-(t)Hf) 3 / K 5 
(11.87) 

where V\= V2-Vi. When the buffer is omitted, IL is reduced by 7R4. 
Figure 11.13 shows an inverting current-gain amplifier that uses positive 

feedback, a variation on the Howland topology. Since the voltages at the 
op-amp inputs are kept equal, R} and R2 drop the same voltage. It then follows 
that 

Io=R1 

U R2 
(11.88) 

An application of the inverting op-amp current amplifier (Fig. 11.13b) reverses 
the DAC output-current polarity and scales it for input to the inverting op-amp. 
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* 1 

Ό 

VSAA-
(a) 

(b) 

FIG. 11.13 Current inverter (a) and its use in a DAC interface to an op-amp. 

The voltage output is negative. Of significance is the DAC output node, which 
is kept at the same voltage as the virtual ground (inverting input) of the 
op-amp, meeting the constraint of a limited-compliance DAC. 

The noninverting current amplifier of Fig. 11.14 applies to R2, through 
the x l buffer, the same voltage that is across RY. The current gain is 

Ir Ä i τ"+τ2 
(11.89) 

wv-
(a) 

■R2 

Ό \ > 

nt> 
kR vw-

h 
(b) 

FIG. 11.14 Precision current shunt (a) and its use as an amplifier output-current booster. 
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*2 

< 

■AMr 
Ό 

FIG. 11.15 Precision current divider or attenuator. 

In (b), this current amplifier is used to boost the output current I0 of an 
amplifier by k times. 

In Fig. 11.15, by reversing the buffer, current gain becomes attenuation, 
a precision floating current shunt. This circuit is similar to the current source 
of Fig. 11.9a; VR is removed, and R is driven by /, instead. The current gain 
is the current divider formula, 

/, ~ Rt + Rj 
(11.90) 

Example 11.6 Bipolar Simulated Resistance 

A circuit with similar topology to the Howland current source (Fig. 
El 1.6) also uses positive feedback. This circuit provides a precision, 
adjustable, bipolar input resistance and can be used in the one-op-amp 
diff-amp in place of the grounded resistor (R2 in Figs. 9.13 and 9.20). 
This is sometimes necessary due to unavoidable parasitic resistance in 
the ground return path. Applying KCL twice gives 

*-M'-£H 
where R2 and R4 include the trim-pot resistances. 

(El) 

vl
 Ri * 2 

vW—f-vVA-

FIG. Ε1Ί.6 
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When R, = R3 = R, then 

Ri = R + ( R 4 - R 2 ) (E2) 

When the trim-pot is centered, R2 = R4, and Ri = JR. If we set R2 = Ri , 
the trim-pot allows adjustment of Ri around R as center value. 

Example 11.7 Inverting Howland Current Source 

The goal in this example is to design an op-amp current source based 
on the bootstrapping action of the Howland source but with an inverted 
output. In Fig. E11.7 is a proposed circuit. The x ( - l ) amplifier can be 
an inverting op-amp. Then 

^=-β,=-[Β,-(ΐΓΠζ)(,"--0, )] 
(—LA (2R-R*\ (El) 

The load current is, by KCL, 

i i . = ■ v2-vL vL-vt 
R* R-R* 

(E2) 

Substituting for v2 and reducing, we find that the coefficient of vL is zero, 
as required for a current source. Then iL depends only on i>, : 

'L = 
2o, 
«s 

(E3) 

This circuit therefore functions as a current source. 

rÎ>rB>n 
R-Rs 

FIG. E11.7 
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II* 

Π7 

Π7 

FIG. 11.16 Precision voltage-to-current converter. 

A common way to generate a current I0 from a given voltage Vx is to use 
an op-amp voltage-to-current ( V/1) converter (Fig. 11.16). The op-amp keeps 
Vx across R so that 

•°-i (11.91) 

The FET can be replaced by a BJT or Darlington, but it avoids error due to 
a loss. This circuit need not be grounded. Ground can be replaced by - VEE 

or, for the complementary V/I converter using the opposite polarity of 
transistor, by + Vc c . 

The current mirrors of Section 2.12 are current-gain amplifiers and can be 
used as current-driven current sources. For high precision, the mirror of Fig. 
2.13b should have a junction in the collector of Q2 for electrical symmetry 
between Qx and Q2, especially if Rx and R2 are not used (Fig. 11.17a). An 
application for the complementary form of this current mirror, in (b), is similar 
to that of Fig. 11.13b except that the output is a bipolar current. The total 
DAC output current is 

/ f s = / l + / 2 

Dx keeps Q3 out of saturation when D2 conducts. 

11.3 Filters 

Filters are characterized generally by their transfer functions in the complex-
frequency domain. As rational functions of s, numerator and denominator can 
be factored into first- and second-order factors. Higher-order filter polynomials 
are products of these lower-order factors. Filter responses can be categorized 
broadly as low-pass (LP), high-pass (HP), or band-action filters, which are 
either band-pass (BP) or band-reject (or "notch") filters. 
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+V 

(a) 

i'° 

g-HÎ 

Ώ' sv=i M \ 

(b) 

I'» 
FIG. 11.17 Thermally balanced Wilson current source (a), applied as differential-to-bipolar DAC 
interface (b). 

In Chapter 5, amplifier analysis assumed a low-pass response. In Chapter 
10, we saw some use for high-pass filters in composite amplifiers. In radio 
communications, highly resonant, or tuned, circuits are used as band-pass 
filters. These circuits have low ζ or high Q (Q= \/2ζ). Their complex poles 
are very underdamped and have dominant imaginary components. That is, 
they lie near the }ω axis (Fig. 11.18a.) The conjugate pole-pair ρλ and p2 is: 

Pia-
I 2 ωη "V1"^ (2QY 

(11.92) 

For Q » 1, the poles have imaginary component ±jcod = ±jcon. The steady-state 
sinusoidal (or^'co-axis) response is found (as in Section 5.9) from the zero-vector 
lengths divided by the pole-vector lengths. Note thatjw - /? , varies significantly 
in both magnitude and angle around ]ωη, where peaking of the magnitude 
response occurs. At7*o>d =]ωη, |[/ω -px || is minimum and the band-pass transfer 
function is maximum. There, /L{jw-px) passes through 0°, an indication of 
resonance. From the geometry of Fig. 11.18a, variations \η]ω around ]ωά have 
little effect on the length or orientation of the conjugate pole vector, 

j(x) -p2=j<On-( -j*>n) = 2 > n , JO) =j(On (11.93) 



11.3 Filters / 549 

(b) 

FIG. 11.18 Narrowband approximations: (a) high-Ç) circuit response near resonant frequency; 
(b) geometric tuned-circuit bandwidth derivation. 

Similarly, the zero at the origin does not change by much either, so the net 
effect of the conjugate pole and zero is 

J<» 
Jv-Pi 

(11.94) 

These narrowband approximations assume that the poles are near ±/ωη and 
that the frequency range for jw is around jwn. The second-order resonant 
response is consequently reduced to a first-order approximation of the pass-
band response: 

scon 

(s-p])(s-p2) 
1 
2 jo)-px 

(11.95) 

Application of the narrowband approximations effects a band-pass to low-pass 
filter transformation. The first-order result is the response centered around jwn 

instead of the s-plane origin. 
A critical parameter of tuned circuits is their bandwidth relative to their 

resonant frequency. The less damped a resonant circuit is, the narrower its 
bandwidth and the more selective its response to a particular frequency 
channel. In Fig. 11.18b, a closer view of the s-plane near px is shown. As 
previously defined, bandwidth was the frequency at which the magnitude of 
the response rolled off to l/\/2 of its low-frequency value. In this case, two 
frequencies are centered about jwd where roll-off to 1/V2 occurs. For bandpass 
response, bandwidth is defined by those frequencies. The magnitude of (11.95) 
rolls off to bandwidth magnitude when ||./ω-/?2|| = \[2 (Fig. 11.18b). At this 
vector length, the pole angles are 45°, and by geometry the bandwidth frequen
cies are j(a)a + a) and j(wd-a). Under the narrowband assumption, the 
bandwidth frequencies are 

j(u=j(ion±a) (11.96) 
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The bandwidth is consequently 

wbw =j((on + a)-jwn = a 

and the width of the passband is 

Δω = j((on + a) -j(ù)n- a) = 2a = 2(oh» 

Now from (11.92), 

IQ V 2α Δω 

(11.97) 

(11.98) 

(11.99) 

In this formula, the significance of expressing ζ as Q is made explicit; Q is 
the selectivity. The larger Q is, the narrower the band-pass width relative to 
the center frequency. 

A geometric interpretation [see Angelo (1969) in the reference list] in the 
5-plane also eases locating the frequency of maximum magnitude or gain o)m 

for a complex pole-pair (Fig. 11.19). When the pole vectors form a right angle 
at φ, the vertex on th^jœ axis is at jcom. Let the vectors be px and p2, as shown. 
Then we seek to maximize the magnitude response 

„ " " „ (11.100) 
IIP1IIIIP2II 

It is maximum when ||p,|| ||p2|| is minimum. From geometry, the area of the 
triangle that is formed by p1? p2, and the vertical (dashed) line between the 
poles, of length 2wd, is 

A = 5· α(2ωα) = αω<, = 5||ρ1||||ρ2|| sin φ (11.101) 

As the jo* vertex moves, the area remains constant. The magnitude response 
is thus 

sin φ = sin φ = Q sin φ 
2αωά 2α 

(11.102) 

J(Om 

FIG. 11.19 Geometrie derivation of ω, 
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When φ = 90°, sin φ is maximum as is the response. At wm, the peak magnitude 
is Q. From the Pythagorean theorem, 

ωη 
2 _ 2 2 ω2

ά-α2 (11.103) 

The triangles themselves are not physically significant but are a mnemonic 
device for reasoning in the s-plane. 

Cascaded stages of identical tuned circuits improve selectivity. This scheme 
of synchronous tuning has a bandwidth reduction factor previously calculated 
as (8.14). The factor is, for n stages, 

y2T 7 7 r^T 

In this case, bandwidth reduction is desirable because it improves selectivity. 
A shunt RLC is a parallel resonant circuit with an impedance of 

sL s/C 
s2LC + s(L/R) + \~ s2 + s(\/RC) + \/LC Z?= 2T„ , , r t n s , , = , 2 | _ „ , π ^ , *tr„ (11-104) 

with parameters 

<on=l/yfLC, Q = - ^ = = - ^ , Zn=\l^ (11.105) Q~4LC~ZX: Z n V C 

The band-pass width is Δω = 1/ RC and is not affected by L. Thus L can be 
adjusted to tune the circuit without affecting Δω. These parameters describe 
a circuit in which Zp is driven by a current source. For example, it can be a 
collector or drain load of a tuned amplifier stage. 

A more accurate model of an LC parallel-resonant ("tank") circuit, 
commonly found in radios, includes the series resistance of the inductor Rs. 
We then have three parallel branches with admittance, 

Y = sC+ + — (11.106) 

sL+Rs Rp 

Solving for Z = \/Y gives 

s(L/Rs) + l 
s2(LC) + s[(L/Rp) + RsC] + l 

As usual, ωη = 1/vTC, but Q is now 

Z = (Rs || Rp) · 2/r^ t ;r/r/„ x , „ ^ , , , (11.107) 

Q-jmi*.+RjJw: (1U08) 

Q is infinite when Rp is infinite and Rs is zero. 
For large Q, (11.105) suggests that L must be small or C large. Parasitic 

elements associated with components limit the practical range of values of L 
or C. Also, interstage loading resistance can be too small to allow high Q. In 
these cases, impedance transformation in the resonant circuit is often the 
solution. In Fig. 11.20a, a tapped inductance transforms load resistance Rp/n2 
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(a) (b) 

FIG. 11.20 Impedance transformation in parallel resonant circuits with (a) tapped inductor or 
autotransformer and (b) capacitive divider. 

to Rp across the shunt LC. The inductor is an autotransformer with a high 
coupling coefficient (k = 1). The mutual inductance causes the LC voltage to 
be n times that across the resistance, where n is the turns ratio of the top to 
bottom windings. The current is reduced n times, causing Rp to appear 1/n2 

times smaller across the shunt LC. 
In Fig. 11.20b, a capacitive divider is used in a similar way except that 

the capacitors do not have a mutually coupled field. The impedance from the 
inductor terminals is, for ω » 1/(Rp/n)(Cx + C2): 

1 1 
Z = + 

sCx sC2 

R 1 
n i iC . l lQ) 

Rp /C i + c 2 \ (11.109) 

The impedance shunting L is a series CXC2 branch shunting Rp. If the 
equivalent shunt LC resistance is Rp, as assumed, then n must be 

-m (11.110) 

We now examine two of the most popular op-amp second-order filters, 
the Sallen-Key and multiple-feedback LP and BP filters. Figure 11.21a shows 
a Sallen-Key LP filter, which can be analyzed as a feedback amplifier for 
voltage gain or by application of KCL and divider formulas. The transfer 
function is 
Vn 1 1 
Vi~ K s2(RlR2CìC2) + s{[(K-l)/K]RlCì + (Rì + R2)C2} + l 

If we let the amplifier be a x l buffer, (11.111) collapses to 

Vo = 1 
Vi s2(/^Ä2C1C,

2) + s(Ä1 + Ä 2 ) C 2 + r 
K = ì 

(11.111) 

(11.112) 

An op-amp need not be used for the buffer; in some cases, an emitter-follower 
is good enough. The resonant frequency is at 
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(a) 

(b) 

FIG. 11.21 Sallen-Key low-pass filter (a) and band-pass filter (b). 

and 

/(*i Il R 
V (Rx + R 

2ÎÇ, 
2)C2 

(11.113b) 

For minimum waveform distortion, a Bessel or MFED response requires a Q 
corresponding to a pole angle of 30° (£ = >/3/2) or 

V3 
0(MFED)= — = 0.577 (11.114) 

and, from (11.113), (Rx \\ R2)CX/{RX +R2)C2 = \. 
The band-pass filter of Fig. 11.21b has the same topoiogical form as in 

(a) but with transfer function 

S Λ ι A T C I C-2 

Vi s2(RlR2ClC2) + s{RlCl + [(K-l)/K]R2C2} + l 

For K = L· 
s RXR2LXL2 

Vi s2Rx R2CXC2 + sRxCx + \ 

Compared with the LP filter, ωη is the same and 

K = \ 

Q = 
[R^c~2 

(11.115) 

(11.116) 

(11.117) 
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(a) 

(b) 

FIG. 11.22 Multiple-feedback low-pass filter (a) and band-pass filter (b). 

The multiple-feedback topology has two feedback paths, as in the LP filter 
of Fig. 11.22a and the BP filter of (b). These circuits cannot achieve high Q 
values without appreciable attenuation of the input signal, but they provide 
a simple second-order filter with good phase linearity. For infinite op-amp 
gain, the LP filter transfer function is 

V0 « 3 
V R f 

1 

_(|+1)*2+Ä3]c2} + i 
For the BP filter, 

Vo 5ÄIC?(Ä1||Ä2)Ä3C2 

Vi s2(Ä, II Ä2)Ä3C, C2 + s(Ä! || Ä2)(C1 + C2)-hl 

(11.118) 

(11.119) 

In the multiple-feedback topology, all elements affect both ωη and Q. In 
practice, Q is limited to about 20. 

The state-variable filter topology gets around the design difficulty of 
interacting filter parameters at the expense of additional circuitry. This 
approach is that of the analog computer; cascaded integrators output state 
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(a) 

X1 

(b) 

FIG. 11.23 State-variable filter block diagram (a) and op-amp realization (b). 

'LP 

variables that are weighted, combined, and fed back or output. One topology 
(Fig. 11.23) produces HP, BP, and LP outputs. A quad op-amp IC suffices for 
gain blocks. Op-amp A is an input summing block, B and C are op-amp 
integrators, and D is a scaling feedback block. The transfer functions for the 
three filter types are 

Y^=A . ! 
V; V° (5/<02 + ( l / ( > n ) S + l 

V; " v o ' ( 5 /o0 2 + ( l / 0 n ) 5 + l 

VHf (S/Un? 
(s/a»n)2 + (l/Qû>n)5 + l 

where 

_R 1_ 
A™~~R; Wn~Rnc' Q = Rn 

(11.120) 

(11.121) 

(11.122) 

(11.123) 
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In the characteristic equation, RQ occurs in the linear term but not the quadratic 
term, thus leaving it free to adjust Q independent of ωη. Its adjustment has 
the locus of a semicircle centered at the origin (case 1 of Fig. 5.13). State-
variable filters can achieve a high Q relative to multiple-feedback filters. 

A similar filter topology is the biquad filter, named for the biquadratic 
form of the transfer function: 

s2 + ds + e 
s2 + bs + c 

(11.124) 

It is similar in form to a state-variable filter, but damping is adjusted within 
the cascaded loop of blocks at A in Fig. 11.24. This topology, like the state-
variable filter, has multiple filter outputs: Both BP and LP are available. By 
weighting and combining outputs from two or three of the op-amps in a fourth 
op-amp output stage, we obtain the biquadratic filter function. 

For the filter of Fig. 11.24, 

and 

Vi 

V L P . 

*1. 'W/W 
> / ^ 2 ^ 2 ^ 5 ^ l \ / R2C2Rs 
\ R4/R3 ) S \ (Ä4/Ä3)Ä, 

+ 1 

Rs 
Ri R4/R3 J 

The filter parameters are then 
Ä4/Ä3 

+ 5 {(RJRJRi 

(11.125) 

(11.126) 
+ 1 

f~R~4 / * 3 

c,c' 
Q = RiClcon (11.127) 

The biquad filter has an advantage over previous filter topologies in that the 
band-pass Δω is adjustable independent of center frequency ωη. From the 
expression for Q in (11.127), 

Δω = — = 
Q * . C , 

(11.128) 

Vi A V -

* 1 

Γ 
l E Î V ^ 

*5 

c2 

Γ 
V I P * 3 

Γ> 
FIG. 11.24 Biquad filter. 
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V,- γ ^ ï$> 
/77 

FIG. 11.25 Phase-shifter, an all-pass filter. 

Since ωη is independent of Ri9 it independently adjusts Δω. The band-pass 
function can be simplified to 

*r sRfC 

where 

Vi Ai s^RfCy + slRrCiRr/RM + l 

R2 ~ ^ 5 ~~ -* f̂ ? R4 — ^ 3 ? ^ 1 — ^ 2 — C 

(11.129) 

(11.129a) 

Gain is independently set by R^ and Δω by R{. 
One other filter is shown in Fig. 11.25, an all-pass filter that operates as 

a phase shifter. Its transfer function is 

V0 2sRC sRC-l -sRC + l 
Vy~sRC + \ ~sRC + l~~ sRC + \ 

The delay time through the filter is 

td = 2RC 

(11.130) 

(11.131) 

and phase can be adjusted by adjusting R. This can be done electronically 
using a CMOS DAC or FET. 

11.4 Hysteretic Switches (Schmitt 
Triggers) 

Comparators are usually inadequate in providing a single output transition 
when the input polarity changes. Slowly changing input signals with some 
noise causes the output to "dither" between the high and low states near the 
input threshold. This dithering is reduced or eliminated by an input deadzone 
or deadband, an input range around the threshold where no output change 
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> 
Rf 

(a) (b) 

FIG. 11.26 Inverting Schmitt trigger or hysteretic comparator (a) and clockwise hysteresis loop 
describing circuit behavior (b). 

can occur. Furthermore, if the deadzone is state dependent, the effect is called 
hysteresis. Figure 11.26b shows a characteristic square hysteresis loop. The 
accompanying circuit is an inverting hysteretic comparator, or Schmitt trigger 
circuit. The state dependence is achieved by use of positive feedback. In effect, 
the Schmitt trigger is a bistable memory device. 

Assume that the output is in the high state; then v0= νυ. Thévenize the 
divider Rl9 R2 so that its Thévenin voltage is VT, the threshold voltage, and 
its resistance is Rx : 

*-(ϋ£ζ)"· Ri — Ri II R2 (11.132) 

With v0 high, v+ is set from the feedback divider Rf, Rx. When υλ increases 
to where the comparator inputs are equal, the output changes to a low state. 
This input voltage is VH, the upper hysteresis threshold. By setting v+ = VH, 
by superposition, we obtain 

Once vQ is low, then u, must decrease to VL, the lower threshold, before v0 

becomes high. By letting v+ = VL and again applying superposition, we get 

The deadzone size is the width of the hysteresis loop. This hysteresis window is 

inverting Δ», = VH - VL = ( ^ " ^ ) ( ̂ u - VD) (11.135) 
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(a) (b) 

FIG. 11.27 Noninverting Schmitt trigger (a) with counter-clockwise hysteresis loop (b). 

A noninverting form of hysteretic comparator (Fig. 11.27) has a similar 
hysteresis loop, but it is traversed in the counterclockwise direction. The circuit 
has a positive feedback divider and can be analyzed by superposition. When 
v0 is either high or low, the threshold for v+ is fixed at VT. Hence, we must 
solve for VL and VH after applying superposition. The results are 

and 

MfMf+ ih 
with the following input hysteresis window: 

noninverting Ai;T = V H - VL = Ì ^ Ì ) ( V U - V D 

(11.137) 

(11.138) 

A two-transistor discrete realization of a hysteresis comparator is the emitter-
coupled Schmitt trigger of Fig. 11.28. This is a diff-amp with positive feedback 
from the collector of Q} through a voltage translator Vz to the base of Q2-
The hysteresis loop goes clockwise (Fig. 11.26b). The additional inversion at 
the collector of Q2 reverses the direction of the loop at vQ- Vz provides an 
additional degree of freedom in setting the thresholds. 

This circuit introduces another facet of hysteretic comparators; as the 
input approaches the threshold, the diff-amp transconductance increases. Away 
from the threshold, one of the diff-amp transistors is cut off, and diff-amp 
transconductance is low. As a result, loop gain is low. But when the threshold 
is approached, the cut-off transistor begins to conduct, and loop gain increases. 
When it reaches unity, the positive-feedback loop becomes unstable and 
transitions to the other state. To find the threshold voltages accurately, an 
iterative solution is required since diff-amp gain changes with input voltage. 
In other words, a large-signal analysis is necessary using (9.87). 
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FIG. 11.28 Two-BJT Schmitt trigger (a); redrawn emitter current source and Zener diode voltage 
translator (b). 

Since the hysteretic comparator is a positive-feedback amplifier, it is 
inherently unstable. But this instability must be controlled in the design; 
instability is only allowed for changing state. If the loop gain has peaking, 
then as the input voltage approaches the threshold, unity loop gain is reached 
first at (om, the frequency at which the loop-gain magnitude peaks. Before the 
output changes, the loop oscillates with frequency o>m. Therefore, otherwise 
stable loops require a loop gain without peaking. 

11.5 Discrete Logic Circuits 

Even analog designs are likely to require some logic functions. In discrete 
designs, it is often unnecessary to add logic ICs to perform simple logic 
functions. Figure 11.29 shows a variety of diode and BJT logic circuits using 
only two diodes or one transistor. In Fig. 11.30, two more circuits are shown, 
using four transistors, to realize an exclusive-or gate (a) and an and-or-invert 
(AOI) gate (b). These circuits have no particular merits other than their 
simplicity. 

11.6 Clamps and Limiters 

Nonlinear circuits that modify waveforms in some manner involving limits 
are called clamps or limiters. Depending on the particular application, they 
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FIG. 11.29 Discrete logic circuits. 

(i) 

might have other names. In Fig. 11.31a, diodes are used to limit the range of 
Vi by "clipping" the signal outside the range of ± V. This circuit is commonly 
used as an input protection circuit in MOS ICs and oscilloscope trigger inputs. 
It is sometimes called a clipping circuit. Figure 11.31b shows a type of clamp 
that establishes an ac signal at a given dc level. An application is as a baseline 
restorer in video signal processing. The negative extremes (sync tips) are 
established near ground by the clamp diode. 
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(a) 

+ V 

AB+CD 

—I— 
(b) 

FIG. 11.30 Four-transistor discrete logic circuits: exclusive-NOR gate (a) and AOI gate (b). 

An important application of clamps is to keep transistors from saturating. 
Small-signal saturated transistors have excess charge in their base from being 
overdriven. This charge must be removed to turn the transistor off, and with 
limited base-current drive the base storage time increases. This causes a delay 
in turn-off. Fall time is not significantly affected. 

In large-signal (power) transistors, although excess base charge is a storage-
time factor, another effect dominates, causing fall times of undamped transis
tors to be larger. With large collector currents, a BJT operates in the high-level 
injection region, where the collector minority-carrier concentration (majority 
carriers from the base) approaches that of the collector majority concentration. 
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FIG. 11.31 Bipolar diode clamp (a); video sync clamp or baseline restorer (b). 

Under strong high-level injection, the collector side of the b-c junction 
actually inverts in charge polarity due to a dominance of carriers from the 
base. This Kirk effect causes conductivity modulation of the base since the 
base width effectively increases. This effect occurs at a uCE just above saturation, 
in the quasisaturation region, and causes excess rounding in the collector 
family of curves at low uCE (of a few volts). (A related effect, called crowding, 
is due to ohmic vBE drop laterally across the base, which causes less conduction 
in the center of the base than in the outer ring closer to the base contact.) 
Conductivity modulation also affects the fall time. As excess charge is swept 
out of the base, the excess base width begins to decrease, and turn-off com
mences. By decreasing excess base drive, conductivity modulation also 
decreases, along with both storage and fall times in power transistors. 

The Baker clamp prevents saturation by adding two diodes to a BJT (Fig. 
11.32a). Because the b-c junction is a diode, it is in series with Dx. Together, 
they conduct with a voltage drop of two junctions. D2 shunts them and conducts 
sooner, with one junction drop. Thus, D2 clamps the Dx-b-c path and keeps 
it from conducting. 

Quantitatively, by KVL, 

VCE = ^ B E + t>Dl - ^ D 2 = *>BE (11 .139) 

For approximately equal diode voltage drops, vCE is clamped at vBE or with 
vCB ~ 0 V. Transistors with appreciable r'c or large collector current may require 
an additional diode in series with Dx to clamp vCB at about a junction drop. 
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FIG. 11.32 Baker clamp circuits: (a) basic clamp; (b) clamp with base turn-off diode; (c) BJT 
IC realization; (d) Murphy clamp; (e) second emitter operates as a collector in (d). 

The disadvantage of the Baker clamp is the higher on-state vCE, typically 
a half volt. The Schottky clamp has reduced uCE(on). It is a variation of the 
Baker clamp and is very simple; a Schottky diode, with forward voltage of 
about 0.4 V, shunts the b-c junction. When vc decreases to 0.4 V below the 
base voltage, the Schottky diode turns on, clamping vCE at about 0.3 V. In 
Schottky logic output stages, this clamp prevents hard saturation while allowing 
lower üCE(on) than a standard Baker clamp. 

Since Dx is in series with the b-e junction, no turn-off path exists without 
a shunt b-e resistor or, as in Fig. 11.32b, a diode shunting Dl and reversed 
(or antiparallel) relative to Dx. If a complementary CC driver is used to drive 
the clamped transistor, as in (c), only one added diode is required for the 
Baker clamp. The b-e junction of Qx takes the place of Dx in (b) and the b-e 
junction of Q3 for D3. The diodes themselves also must have suitably fast 
turn-off recovery capability. 

The feedback clamp scheme of Fig. 11.32d, used in ICs, is a form of the 
Murphy clamp, shown in (e). A second emitter is added to the transistor to 
operate as a clamp. In (e), this antisaturation emitter is connected back to the 
base. Since the b-c junction, as a diode, also points outward (like the emitter 
arrow does), the second emitter can be regarded as a second collector, as 
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shown. It is more heavily doped than the collector and shunts current from it 
at low vBC. When the collector voltage decreases to near saturation, the second 
emitter dominates; for the same reverse bias, it has more minority carriers to 
inject into the base. As a result, the b-c junction does not conduct heavily in 
the forward direction, avoiding hard saturation. 

In Fig. 11.32d, Q3 avoids saturation by its second emitter. This emitter is 
reverse-biased by vBE2, allowing uCB3 to decrease to vBE2 before the antisatur
ation emitter takes effect. In addition, the shunted collector current is taken 
from the input drive current. The current gain of Q2 amplifies this limiting 
action, resulting in a "sharp" limiting response. 

Diodes and op-amps are combined in the precision clamps of Fig. 11.33. 
They use the op-amp input as a comparator when the loop is open and diode 
nonconducting: in (a), when υλ< VL, and in (b), when υλ> VH. For the input 
ranges where the diodes conduct, the op-amps operate as x 1 buffers. In effect, 
these clamps are half-wave rectifiers with programmable limiting voltages. 

A common limiter in power supply circuits is the foldback current limit, 
with one realization of it in Fig. 11.34. As load current iL increases, the voltage 
drop across Rs increases until the b-e junction of Qx is turned on. The transistor 
conducts, diverting base drive from the series regulator Darlington. The current 

v̂* 
-Δ. vL 

(a) 

N * vo » \y vH 

(b) 

FIG. 11.33 Precision diode clamp: minimum voltage limiter (a); maximum voltage limiter (b). 
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FIG. 11.34 Foldback current limiter (a) and v-i characteristics (b). 

is limited to 

max iL = R* 
(11.140) 

where i;BE(on) is the vBEX for which the loop gain is barely sufficient to sustain 
the limiting value of iL. The maximum current depends on vs, graphed in Fig. 
11.34b. The current limit decreases or "folds back" with reduced voltage so 
that a short conducts reduced current and thus power dissipation. As the short 
"clears" (load resistance increases), more current is allowed. 

11.7 Multivibrators and Timing Circuits 

Multivibrators (MVs) are positive-feedback (or regenerative) switching circuits 
with analog timing of switching behavior. They can be bistable, having two 
stable states (such as Schmitt trigger circuits); monostable, having one stable 
state; or astable, having no stable states. Monostable multivibrators (MMV) 
are also called "one-shots"; they change output state upon input of a trigger 
signal. This quasistable state lasts for a timed interval (until the MMV "times 
out"), at which time it reverts to its stable state. MMVs are used to generate 
a triggered pulse of a given duration. Astable MVs are digital oscillators, or 
clock generator circuits and sometimes are called "free-running" MVs. 

The standard astable MV topology consists of two capacitively coupled 
CE stages (Fig. 11.35). When vC2 goes low, the negative transition is coupled 
through Cx, cutting off Qx. Since Ru Cx form an RC differentiator, vBX begins 
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FIG. 11.35 Classic astable multivibrator. 

to increase exponentially as Cx charges through Rx. (We assume that the b-e 
junction of Qx is not in reverse breakdown.) When vB reaches vBEX(on), Qi 
conducts, causing its collector to transition to near ground. This cuts off Q2 

for the second half-cycle of oscillation in the same way Qx was cut off. For 
identical CE stages, the duty-ratio, 

D = -
Îon+f0 

' on 

T 
(11.141) 

is 50%. When Qx turns on and drives Q2 off, vC2 goes high (to + V), and Cx 

is charged in the other direction through RL2 and the b-e junction of Qx. This 
recharging time constant must be shorter (at least 5r) than RXCX to fully 
recharge the capacitor. Therefore, Rx, R2 must be at least five times RLX, RL2. 

MV frequency is increased by reducing coupling capacitor C. To analyze 
the effect of Cbe on timing, assume that the base timing resistor R is a current 
source / instead. This assumption is valid for off-times that are much less than 
the time constant RC when the exponential base voltage can be approximated 
as linear. Then C and Cbe form a capacitive voltage divider so that a negative 
input step of - V causes vB to step down to 

C 
* Β ( 0 + ) = - ν ( ^ ) + ϋ Β Ε ( 0 ) (11.142) 

Without the effects of Cbe, the timing ramp of vB has a slope of I/C and 
times out at 

,-fv (11.143) 

With Cbe) 

fBE(0 = ( c +
7

c y-vB(0+), f > 0 (11.144) 
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FIG. 11.36 BJT Cbe does not affect time-out. 

The offset of vBE(0) does not affect timing since it is also the voltage threshold 
for determining tx (Fig. 11.36). If we set UBE('I) = ^BE(O) and solve for tl9 it 
is the same as in (11.143). Therefore, Cbe does not affect timing. 

The previous analysis assumed zero fall time of the negative input step. 
To examine this assumption, consider the effect of switching time on timing 
by approximating the negative transition at the collector with a linear approxi
mation to the waveshape and its average slope m. Let the transition time be 
if. Then, from Fig. 11.37, the slower the transition, the smaller the negative 
excursion of the timing voltage -t>f; thus, 

C 
(11.145) 

and 

t V = - ( - + ™ U (11.146) 

with m = -V/tf. Substituting into (11.145) and solving for r,, we obtain 

U = - ! — + — Iif+ir = - V (11.147) 
C/-I V\ C 

Therefore, when tf<tl9 the falltime has no effect on timing. 
The final timing analysis determines the effect of collector resistance rc of 

the conducting transistor. From Fig. 11.38, although the slope of vB(t) is 

vBE(0) 

vBE(0)-vff — 
v B E ( 0 ) - V 

Input transition 

FIG. 11.37 BJT switching time does not affect time-out. 
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FIG. 11.38 Collector resistance decreases time-out. 

independent of rc, the initial step size is not. With rc, I causes an opposing 
step of Irc that translates into a time error of 

Δί ,= i/c = rcC (11.148) 

The fractional error is IrJ V. Consequently, to minimize rc, the BJTs must be 
driven well into saturation by Ri and R2. 

The classic astable MV timing is independent for each half-cycle. This 
makes adjustment of half-cycle timing easy, but since the period depends on 
both half-cycles, each can contribute to period error. Two separate timing 
circuits are not necessary. The astable MV in Fig. 11.39, based on an open-
collector comparator such as the LM393, has only one timing capacitor. This 
single-supply clock generator uses regenerative feedback through Rr to effect 
a hysteretic comparator while the timing is done by R and C. When v0 = Vy 

(high state), the timing waveform at V- is increasing and crosses VH at the v+ 
input. Then v0 goes low (to VD), and the timing waveform decreases toward 
it while v+ = VL. When it reaches VL, v0 switches high again. 

For single-supply operation, Ri and R2 set a voltage around which the 
input hysteresis limits of VL and VH are chosen. When v0= Vv, the timing 

R2: 

>*L 

Frt> 
V/A-

■ v 0 

Ì77 

FIG. 11.39 Astable MV using comparator as Schmitt trigger with RC integrator for timing. 
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resistance is 
Rv = R + RL || (Äf + Ai), Ai = Ä, II fl2 (11.149) 

Vu and VH are calculated from the divider formed by RL, Rr, and Rt. The 
timing voltage u_ begins at VL and heads for Vy. The high-state time duration 
is 

tH = RVC In 
V V U - V H / 

(11.150) 

During the low output state, v0=VO and v+=VL. The comparator BJT 
saturates, and VD = 0V. Then υ_ decreases from VH toward VD, and 

Finally, the output period is 
T=tH + tL (11.152) 

One of the most versatile MV circuits is the timer, notably the 555 bipolar 
and 7555 CMOS ICs, with block diagram in Fig. 11.40. This timer is mainly 
applied as a MMV or clock generator. It consists of two comparators with 
trigger (TR) and threshold (TH) inputs. The other inputs are taken from a 
resistive divider from the supply, Vc c . For the bipolar version, R = 5 kil; the 
CMOS version R > 100 kil. The threshold-comparator input threshold is at 

VH = §VCC 

+^cc 

THO 

FM 

TRO 

I 

555 

ι-Ο2*' 
S) 

FIG. 11.40 555 timer IC block diagram. 
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and the trigger-comparator is at 

vL = | v c 

The comparator outputs drive a NOR-gate RS flip-flop (FF). The trigger input 
overrides the threshold input for control of the output. When TR is asserted 
[u(TR)< VL], the output is forced high. The reset input RES, however, over
rides all other inputs. A separate transistor (BJT in 555, MOSFET in 7555) 
with open collector (or drain) marked DIS (for "discharge") is an alternative 
output for MV control. 

An astable MV circuit using the timer is shown in Fig. 11.41a. Initially, 
TR is low and the output high. The discharge transistor is off. C charges 
through Rx and R2 until the timing voltage crosses VH. The output goes low, 
DIS sinks current, and C discharges to ground through R2. When the timing 
voltage crosses VL, the cycle repeats. The time duration for a high output is 

r H ^ ( ^ 1 + / ? 2 ) C l n ( ^ c c ~ ^ L ) ^ ( / ? 1 + ^ 2 ) C l n 2 ^ ( 0 . 6 9 3 ) ( ^ 1 + ^ 2 ) C 

(11.153) 
and for a low output, 

tL = R2C In ί — J = R2C In 2 = (0.693)R2C (11.154) 

The period is therefore 

T=tH + tL = (Rl + 2R->)Cln2 = (0.693)(Rl + 2R2)C (11.155) 
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FIG. 11.41 555 timer connected as an astable MV (a); square-wave generator topology using 
7555 (b). 
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with duty-ratio 

D #! + #;> 
R,+2R2 

(11.156) 

Since tL<tH, a duty-ratio of D<0 .5 is not possible with this circuit. An 
alternative circuit achieves a longer tL by placing an additional resistor in 
series with DIS. In tL, R2 is replaced by R2+R3. For RX = R3, D = 0.5. A 
CMOS alternative with accurate 50% duty-ratio is shown in Fig. 11.41b. The 
output is used instead of DIS to control timing, and the timing elements are 
the same for both half-cycles. The period is 

T = 2RC\n2=l.3S6RC (11.157) 

A timer-based MMV (Fig. 11.42) is triggered by a negative-going pulse. 
It sets the output high, and C begins to charge through R. The initial voltage 
on C is 0 V, and it charges to VH. The time-out is thus 

'H = * C l „ ( l - ^ ) = *ClnQ)-Ì.ÌRC (11.158) 

If the trigger pulse duration exceeds tH, the output is kept high until the trigger 
goes high (Fig. 11.42b). 

An MMV that begins its time-out after the trigger pulse goes high is shown 
in Fig. 11.43a. The additional PNP transistor keeps C discharged until the 
trigger releases. This MMV is retriggerable in that the output remains high as 
long as trigger pulses continue to occur before time-out. Each new pulse resets 
the timing and retriggers the MMV. 

The FM terminal (pin 5) gives control of the comparator thresholds in 
Fig. 11.43b, where a positive transition on the FM terminal triggers the MMV. 
The TR input is biased at Vc c /4. The trigger-comparator divider voltage is 
raised by the positive step of the trigger to the point at which it exceeds Vcc/2 
and starts the time-out. 

TR 

OUT 

"I 

_r 
(a) (b) 

FIG. 11.42 555 timer monostable MV (a) and timing diagram (b). If trigger input stays low 
longer than time-out, the output remains high. 
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FIG. 11.43 555 timer circuits: (a) retriggerable MMV; (b) positive-edge trigger drives threshold 
divider; (c) improved topology for leaky timing capacitors and long time-outs. 

For long time-outs, either a large R, a large C, or both are needed. For a 
large R, timer-comparator bias currents can cause timing error. The bipolar 
timer has an NPN diff-amp input stage in its threshold comparator and a PNP 
stage for the trigger comparator. The bias currents (Fig. 11.43c) place a limit 
on the minimum charging current. For large C, electrolytic capacitors are likely 
to be used. Their limitation is their leakage current. If C is placed as in (c), 
its leakage current IL path is modeled by a shunt resistance Rp, shunting the 
timing resistor R. The maximum limit on R is thus set by Rp. This circuit has 
less timing variation (jitter) because the target voltage of C is 0 V instead of 
Vcc, the same voltage that Rp would discharge C to. When C is ground-based, 
Rp opposes charging instead of aiding it. 
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11.8 Capacitance and Resistance 
Multipliers 

Timing circuits with long time-outs often require large capacitors. For accurate 
timing, these capacitors are plastic. Large-value plastic capacitors are 
volumetrically large and expensive. The capacitance multiplier is a circuit that 
uses gain to make a small capacitor appear electrically large. One realization 
is shown in Fig. 11.44. Here, a current source drives the C-multiplier to generate 
a ramp waveform. The x l buffer causes Rt and Rr to form a current divider 
because it keeps the voltage across Rr the same as across Ri. The charging 
current is a fraction of the input current, or 

* f t_c = 

The equivalent capacitance Ceq is based on the relation 

[ — ^ e , 
dv0 

at 
h dv0 

at ' C 

The last equality follows because v0= vc. Applying (11.159) gives 

MÖHHc 

(11.159) 

(11.160) 

(11.161) 

This is a "transcapacitance" multiplier because v0 is not across the same 
terminals that ιΊ flows through. The input is Ceq in series with Rf \\ R,. 

A true capacitance multiplier can be based on the Miller effect (Fig. 11.45). 
The x l buffer drives an inverting op-amp with a gain of -Rr/R,. Applying 
Miller's theorem, we obtain 

C - ( * ♦ ■ ) c (11.162) 

Above the bandwidth of the amplifier branch, the input is no longer purely 
capacitive but also has a shunt RL in series with Ceq. 

■e- vi ve ΐ> ■ V 0 

■vw-
FIG. 11.44 Capacitance multiplier based on current divider. 
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FIG. 11.45 Capacitance multiplier based on Miller effect. 

Example 11.8 Timer with Capacitance Multiplier 

The threshold-terminal bias current of a 555 timer limits its useful timing 
range as a MMV. A capacitance multiplier of the kind in Fig. 11.44 is 
used to extend the time-out fH by connecting it as in Fig. El 1.8a. The 
TH input is now driven by the op-amp output, eliminating bias-current 
error from TH but introducing op-amp offset current and voltage error. 
An equivalent circuit in (b) is derived as follows. The op-amp circuit 
with Rf and R{ is Thévenized and floated on vc. The op-amp offset 
voltage Vos is divided by the resistors so that its Thévenin voltage is 

SUf+lJ 

rn 
(a) (b) 

FIG. E11.8 
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in series with Rf || JRj. Since the op-amp has x l gain, V0s also is in series 
with the TH input. In addition, V0s at the op-amp output contributes 
Vos/ Rr to the timing current. From this model, timing error is calculated. 

For significant multiplication of C, R{» Rf. The series Thévenin 
voltage source is then about V0s, and the Ios term in the error current 
dominates. 

Capacitance multiplication is achieved in the preceding circuits by apply
ing bootstrapping to a current divider. The idea can be extended to resistance 
multiplication. A previous instance is the bootstrapped CC of Fig. 2.6c, 
described by (2.54) and (2.56). A more deliberate and precise resistance 
multiplier, in Fig. 11.46, uses an op-amp buffer instead of a CC or CS. Solving 
the circuit for rin gives 

ηη = / ^ 1 + | ^ + Κ 3 (11.163) 

11.9 Trigger Generators 

A trigger generator is a kind of precision synchronizer. In television deflection 
systems, horizontal and vertical scans or sweeps of the CRT are synchronized 
to the video signal by perturbing a free-running oscillator with the synchroniz
ation (or sync) signal, forcing it to lock to the sync frequency. The sync pulse 
also corrects the phase each cycle. 

FIG. 11.46 Resistance multiplier based on voltage bootstrapping. 
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In synchronous digital systems, asynchronous events must be synchronized 
to the system clock. This is usually done using a flip-flop (or flop) clocked by 
the system clock; the asynchronous pulse is the data input to the flop. The 
problem with this scheme is that if the data pulse changes state too soon before 
the active edge of the clock, the flop setup time is insufficient, and the output 
state is indefinitely indeterminate. A second flop cascaded with the first can 
reduce the indeterminate time skew at the expense of one clock period of 
delay. Of course, the first flop output may remain indeterminate for longer 
than one clock period, but the probability diminishes rapidly with time. 

This synchronizing problem is especially acute in oscilloscopes. The ver
tical signal is fed to an event processor. On a selected slope and at the voltage 
of the trigger-level control, a comparator generates an event, an output transi
tion that is used to start the sweep. When the sweep reaches the right end of 
the CRT screen, the CRT beam is turned off, and the beam retraces back to 
the left side, where it settles to the same starting position. 

During sweep retrace, a hold-off pulse keeps input signals from firing the 
sweep until it is settled in its starting position. This hold-off pulse is asyn
chronous with the trigger events. If an event occurs while hold-off is releasing, 
time skew occurs in starting the sweep; this trigger jitter causes successive 
traces to be horizontally misaligned; the trace appears fuzzy, and multiple 
traces can be observed. 

The trigger generator of Fig. 11.47 reduces jitter by synchronizing the 
trigger events, TR, and hold-off pulses, HO. The circuit consists of two D 
flip-flops and a delay device, such as a digital delay-line or the propagation 
delay of some logic devices. The flops are clocked on positive (rising) edges 
by TR. The sweep gate is asserted low (as GATE) and lets the sweep generator 
operate. The negative (falling) edge of GATE must occur consistently at a 
fixed delay time relative to the rising edge of TR. Assume HO is low; TR 
clocks flop A. As its Q output settles, TR is delayed and then clocks flop B. 
If the delay is long enough, flop A output becomes valid and sets up the D 
input of flop B for its setup time. Then when the delayed TR clocks B, the 
output edge time is determinate. Most of the time, HO does not violate flop 
A D-input setup time, but when it does, flop B is required to synchronize its 
release with the trigger event. 

This trigger generator is adequate for oscilloscopes of up to about 50 MHz 
bandwidth. For higher performance, the faster trigger generator of Fig. 11.48a 

HO 
TR "̂""" 

D A Q 

/— 

—c ) ' 

>Q 
GATE 

FIG. 11.47 A dual D flip-flop trigger generator, which synchronizes asynchronous input HO 
with clock TR to produce jitter-free output GATE. 
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FIG. 11.48 High-performance oscilloscope trigger generator (a) and timing diagram (b). 

is implemented as an IC with ECL logic. The comparators are ECL gates. The 
D flops of Fig. 11.47 are replaced with faster RS flops or latches: a gate latch 
(corresponding to flop B) and an arm latch (corresponding to flop A). The 
trigger signal drives both trigger and arm comparators. The trigger event out 
of the trigger comparator sets the gate latch high {GATE is high) if A was 
low. If so, the sweep runs, and its end is detected, causing HO to assert. HO 
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forces reset of the arm latch; A is forced high. This forces GATE low and 
resets the gate latch. When HO goes low, before GATE can assert gain, A 
must be asserted low by setting the arm latch from the arm comparator. Then 
the gate latch is "armed" and can be set by the trigger comparator. 

The detailed sequence of events is shown in Fig. 11.48b. HO has become 
low. When the input signal goes below the arm-comparator threshold VA, the 
arm latch is set (A is low) through gate 3. The range of time when arming can 
occur is shown in (b) as the negative half-cycle of the input signal. It crosses 
the trigger-comparator threshold VT, is delayed, and attempts to set the gate 
latch by asserting T high. If A has been low long enough, GATE goes high 
without jitter. 

The hysteresis in Fig. 11.48b is the difference in comparator thresholds. 
Since the signal has a finite slope, a time delay is generated between the latest 
possible arming A and the earliest trigger T The additional gate delay in the 
trigger path lets A settle to a valid level at the gate latch input. 

The relative time delay of the trigger and arm paths is critical to proper 
synchronization. Otherwise, two trigger anomalies can occur: trigger jitter and 
double triggering. 

Consider first the case in which the trigger-path delay is too short relative 
to the arm path. A low logic level at A must be established through the arm 
path preceding trigger-path assertion at T (of a high level). With insufficient 
delay in the trigger path, T could assert before A is settled. This occurs when 
the input signal, on its positive slope, is crossing VA just as HO releases at 
the latest possible arming time. Gate 3 of the arm latch will be driven by a 
quick pulse, barely enough to cause the arm latch to change state after some 
time. This leaves A indeterminate. When the trigger-path input to gate 2 goes 
low, A causes an uncertain starting edge at GATE. Trigger jitter is the result. 

Now consider the case in which the trigger-path delay is too long relative 
to the arm path. When the negative slope of the input signal decreases through 
VT, the trigger path propagates a low level at T Meanwhile, the arm path also 
propagates, through the arm latch, a low level at A. This arming of the gate 
latch must be preceded by a low level at T. If the trigger-path delay is excessive, 
the release of the gate latch at A occurs while T is still high, causing GATE 
to go high. This produces an extra GATE or double trigger. Under correct 
operation, only the positive slope asserts GATE. Double triggering occurs 
when HO releases just as the input signal crosses the arm comparator threshold 
at the earliest possible arming. On the screen, the waveform appears to be 
triggering on both slopes. 

The optimal delay between the paths is somewhere between these two 
extremes. Delay-time tolerance is provided by the comparator threshold hyster
esis and finite slope (or slew rate) of the input signal. Since the trigger path 
to gate 2 is one gate longer than the arm path, the hysteresis delay on the 
negative slope of the signal must be at least one gate delay, tpd9 to avoid 
double triggering. An approximate maximum tpd can be calculated by assuming 
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a maximum amplitude sinusoidal input of frequency/max. The gate propagation 
delay must be 

hysteresis _ VT - VA 

slew rate 27rVfs/m 
tpd< _, = „ \, r (11.164) 

A hysteresis adjustment of the comparator threshold on the trigger comparator 
allows the trigger generator to be adjusted for maximum-frequency fault-free 
triggering. 

Trigger jitter can be observed on an oscilloscope screen (Fig. 11.49). 
Spurious signals to the left of the main signal are due to late triggering. A 
signal that is advanced in phase (hence, late) appears shifted to the left. This 
may seem counterintuitive since later time is to the right on the screen. But it 
is GATE that is late relative to the signal. If the sweep gate had started on 
time, the waveform would not have advanced as far in phase. 

Slew-rate limiting of the input signal in the trigger system causes it to shift 
in time on the screen as the trigger level is adjusted. The limited signal is time 
distorted, and its phase error varies with amplitude relative to the vertical 
signal. A time-domain test of trigger-generator performance is to let the input 
signal be a pulse of varying width. The minimum width that achieves a stable 
trigger is an index of generator speed capability. 

In Fig. 11.48, the function of gate 5 has not yet been described. The auto 
trigger mode causes the sweep to run at a low rate (typically <50 Hz) to 
display a trace on the screen when no signal is present (or when the trigger 
controls are not adjusted properly). An auto-mode retriggerable MMV is driven 
by GATE. If the sweep has not run for a while, the auto-MMV times out and 
gates the sweep on directly. When a triggered gate occurs, the MMV is reset 
and the free-run mode turned off. Now, if HO were the input to gate 4, at 
high sweep speeds, it would be difficult to get out of the free-run mode without 
gate 5. 

At high sweep rates, HO has a large duty-ratio. That is, it takes much 
longer to retrace and recover from a sweep than the sweep time. If a slow 
trigger signal is applied with a period much greater than the sweep time (when 
HO is unasserted), the probability is low that during the sweep the signal 

FIG. 11.49 Trigger jitter as displayed on oscilloscope screen. 
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would cross the hysteresis window. To escape the free-run mode, a GATE 
pulse is needed to reset the auto-MMV. The autodefeat gate (gate 5) is added 
to provide the pulse. 

When HO unasserts during free run of the sweep, if the trigger signal is 
below VA, the arm latch output A goes low. Since the sweep was run by the 
auto-gate signal, GATE is low, GATE is high, and gate 5 thus blocks HO 
from resetting the arm latch. This allows the input signal time to cross VT and 
set the gate latch on its next half-cycle. If it does while HO is low, a triggered 
gate is asserted and the auto-MMV reset. More likely, if HO is high, gate 5 
allows HO to reset the arm latch, and A goes high, resetting the gate latch 
low. GATE is high for the propagation time around the loop of gates 2-5-4-3-2. 
This is a few nanoseconds, enough time to reset the auto-MMV. 

Another approach to auto triggering, autolevel, is to generate a triangle-
wave with a counter and DAC and sum it with the trigger-level control output. 
The triangle-wave scans the level through the input range. When it intersects 
the input signal, a trigger event is generated, and triggering then occurs. If no 
signal is present, it autogenerates a trigger when the dc input level is crossed. 
An alternative approach to automatic triggering, peak-to-peak auto, uses posi
tive and negative peak detectors to generate dc voltages at the extrema of the 
input signal. The trigger-level potentiometer is then placed between these peak 
voltages so that its control range is always within the signal range. 

11.10 Ramp and Sweep Generators 

Oscilloscope time-base systems consist of a trigger generator followed by a 
sweep generator. The sweep generator is a gated ramp or sawtooth generator 
that drives the horizontal deflection amplifier. Ramp generators are also used 
in magnetically deflected CRT display systems to generate deflection-coil 
currents. Pulse-width modulators also require sawtooth ramps. 

A bootstrap ramp generator (Fig. 11.50) uses the bootstrapping technique 
to maintain a constant voltage across a timing resistor R. As C charges, the 

FIG. 11.50 Bootstrap ramp generator. 
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top end of R follows it, driven by the buffer. The result is a linear ramp output. 
With floating voltage source V, the ramp slope is 

dv 
dt~~ 

V/R 
C 

V 
RC 

(11.165) 

This perfect scheme is spoiled by shunt resistance Rx (due to the capacitor 
and buffer input), buffer output resistance R0, and buffer gain deviation from 
unity. Let V be gated on at t = 0 as 

V(s)= Vu(t) 

Then solving the circuit in s, we get 

Vc(s) Rt 

v(s) K + flo+o-JOKi m)l·] 

(11.166) 

(11.167) 
C + l 

where K is the buffer voltage gain. The bootstrap effect appears as the increase 
in effective resistance of R + R0 by 1/(1 - K). This increases the time constant 
by the same factor; in effect, the ramp is generated as the initial segment of 
a long exponential curve. K, R0, and R{ all contribute to the time-constant 
deviation from RC. 

Another approach to ramp generation is to use an op-amp integrator. This 
Miller ramp generator (Fig. 11.51) has a transfer function of 

Vois) 
V(s) 

= -K 
1 

s(l + K)KC + l 
(11.168) 

For an op-amp, X-»oo, and the transfer function approaches -1/sRC, an 
ideal integrator. With finite gain, the output is an exponential with time constant 
multiplied by (1 + K)\ the early part of the curve is approximately linear. The 
fractional deviation from linear response is 

fractional nonlinearity = — ( 11.169) 
2r 

where τ is the effective time constant. Equation (11.169) was derived by 

FIG. 11.51 Miller ramp generator. 
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series-expanding the response exponential to the quadratic term, subtracting 
the (ideal) linear and constant terms, and dividing by the linear term. Error 
grows with time as the exponential becomes increasingly sublinear. This error 
formula applies to both bootstrap and Miller ramp generators since the 
responses of both are exponentials. 

Finite gain also causes a slope error in the Miller integrator. In (11.168), 
let V(s) be that of (11.166). Then (11.168) corresponds to the normalized 
time-domain response of 

dVo(t)/V 
dt 

Applying the initial value theorem gives 

dv0(t)/V\ = lims(-K·-, \— ) = _ ( — * - ) — (11.170) 
,= 0

 s-°° \ s(\ + K)RC + \) \\ + KjRC dt 

The initial slope of the ideal ramp response, -1/sRQ is -Ì/RC. Thus, 

fractional slope error = — (11.171) 
1 "I- K 

Fast Miller ramp generators are driven by an input current source instead 
of a voltage source and R. This produces a more linear response and reduces 
the effect of input impedance. The ideal response of — 1/sC is only approximate. 
More precisely, 

y.w_ 
,M~sC 

1 / K(s) \ 1 
/l + K(s)\~\l + K(s))sC (11.172) 

V K(s) ) 
The ideal response is multiplied by the s-domain equivalent of the fractional 
slope error. To approach the ideal, the op-amp must maintain high gain at 
high frequencies. This is a major limitation, especially since the op-amp output 
impedance gyrates inductively. For 

K(s)=—^- (11.173) 
STb w+l 

* ( ' ) / * o \ 1 _ / * o \ 1 m m i 

1 + X(5) \ l + X0/s[Tb w/( l + ^ 0 ) ] + l \ 1 + X J S T T + 1 l * } 

The op-amp adds an additional pole at its unit-gain frequency fT. 
An improved ramp generator is based on the simplicity of a gated current 

source charging a capacitor, followed by a buffer amplifier. Feedback loops 
are avoided, and the step response is faster than for the previous two schemes. 
Bruce Hofer has recognized the topological equivalence of this current-source 
ramp generator with the Miller generator, compared in Fig. 11.52. The 
difference is in where the ground is put. In the Miller, the BJT is a CE; in 
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\*A 

(a) (b) 

FIG. 11.52 Topological equivalence of Miller generator (a) and current-source ramp generator 
(b). 

the current-source, a CC. In the Miller, any anomalous switching voltage at 
the FET gate is coupled through C to the output; in the current-source, it is 
bypassed by C to ground. 

11.11 Logarithmic and Exponential 
Amplifiers 

Logarithmic amplifiers are useful for compressing a wide dynamic-range signal, 
for multiplying, and for function generation. Figure 11.53 shows a simple 
log-amp based on a BJT b-e junction characteristic, (2.1). The input current 
/, is the BJT collector current, and the output voltage 

üo = -t;BE = - V T l n ^ = - V T l n ( ^ - ) (11.175) 

This log-amp reflects the temperature sensitivity of the b-e junction and drifts 
due to both VT and 7S· 

FIG. 11.53 A logarithmic amplifier based on BJT transconductance. 
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Detailed expressions for ic and iE [see Gibbons and Horn (1964) in the 
reference list] indicate that several error terms vanish when vCB is zero. The 
logarithmic relation extends to lower currents for ic (because vCB = 0 and 
vBE9^0) and is accurate over about nine decades. The high end (typically 
10 mA) is limited by ohmic voltage drops in series with vBE and at the low 
end (typically 100pA) by Is. From (11.175), 

vBE = VT In ic + VT In als 

The slope of vBE versus In ic is linear with a slope of 

(11.176) 

dvu dvB d In ic 

d(\ogic) d(\nic) d logic = VT 
1 mV 

- = 5 9 . 5 6 — (11.177) 
log e dec 

For each decade of change in i c , vBE changes by about 60 mV at 300 K over, 
typically, nine decades of i c . 

The effect of Is can be eliminated with a matched pair of BJTs, as in the 
log-ratio amplifier (Fig. 11.54). Assuming equal Js, we have 

ΔϋβΕ — ^ B 2 — Ü B E 2 ÜB E 1 

The output is vB2 scaled by the divider, or 

*-G) (11.178) 

The second op-amp B functions similar to A in keeping iC2 = JR, a reference 
current. For h<IR, vo>0. Op-amp B controls the emitter currents I'I + /R , 
while op-amp A controls vB2 to keep ic i = ι,. RE is selected so that the output 
voltage range of B can span the range of I'I + JR. 

This circuit eliminates dependence on Is but is subject to VT. The 0.33%/°C 
TC of vB2 is sometimes compensated by making R} a positive TC (PTC) 
thermistor. Its TC is found by differentiating v0 with respect to T, setting it 

FIG. 11.54 Log-ratio circuit. 
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to zero, and solving for dRJdT. The fractional TC equation is 

1 dv0 

v0 dT 
1 1 dRJ R2 \ 

4-T C %^^) (11180) 

WhenTC%(uo) = 0, 

TC%(Ä0 = ( y ) ( ^ ^ ) ^ ( 0 J 3 % / X ) ( ^ ^ ) a t 3 0 0 K (11.181) 

Example 11.9 Log-Amp Design 

A log-amp based on Fig. 11.54 is to have an input range of 0.1 μΑ to 
1 mA with minimal temperature drift. The output must be 0 V at an input 
of 1 mA (fs) and 4 V at 0.1 μA (zs). 

The scaling is 4 V per four decades of 1 V/dec of /,. The divider 
must be 

\K , / 60 
V/dec 

' = 16.8 
mV/dec 

PTC thermistors with 1 kü values are available, so let Rx = 1 kü. Then 
from the divider ratio, R2 = 15.8 kü, 1%. The TC of /?, must be, from 
(11.181), 

vO" TC%(Ä,) - (0.33%/°C) ( jz- I = (0.35%/°C) 

For v0 = 0 V at 1 mA input, IR = 1 mA. This can be supplied from a 
voltage reference of 5 Vthrough a 4.99 kü, 1% resistor. When /, is supplied 
from Vi through a 100 kii, 1% resistor, the input range is 10 mV to 100 V. 
Finally, for a minimum op-amp B output voltage of about -4.7 V, 
KE = 4V/2mA = 2 k a . 

Op-amp input capacitance C, can destabilize the log-amp. A feedback 
capacitor Cf forms a pole with collector resistance rc. The loop gain is 

K rc s r M C f +l 
GH = · , ™ ' ( 11.82) 

STb w+l rM src(CfH-Ci) + l 

where K and rbw are op-amp open-loop gain and bandwidth, and rc is collector 
resistance: 

rc = (ß + \)r0 (11.183) 
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FIG. 11.55 Exponential amplifier. 

Also, 
re+K ή 

a a (11.184) 

The zero depends on r'c, which varies with i c . For stability, the poles must be 
separated and the zero placed for lead compensation near unity loop gain. 

The inverse function, exponentiation, is achieved by modifying the log-amp 
(Fig. 11.55). In this exp-amp (or antilog-amp), op-amp A maintains a constant 
*o = IR- Then 

VBi={-^)Vi=VBEi~v^=v^n{t) 
and at the output, 

V0= RfiC2 

Solving for iC2 in (11.185) and substituting yields 

v0 = RfIRcxp 
.\Ä1 + Ä 2 / \ V T / J 

(11.185) 

(11.186) 

(11.187) 

Temperature compensation is also required due to VT. 
Log-amps, exp-amps, and amplifiers combine to form function-generating 

circuits. Four op-amps and matched BJTs combine in Fig. 11.56 to form a 
multiplier or divider based on the relation: 

xy = log-1 (log x + log y) = exp(log x + log y) (11.188) 

The BJTs are connected with b-e junctions in series so that 

vTl„(A) + vTl„(i) = vTln(|) + vTln(|) 
or 

hh 

(11.189) 

(11.190) 
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FIG. 11.56 Log-antilog multiplier: U—hhlh-

In practice, the basic log-amp is stabilized, and voltage input and offset (for 
bipolar operation) are provided, as in Fig. 11.57. 

VT can be temperature compensated with a thermistor, but a more exacting 
approach uses two log-ratio amps and a divider. The first log-amp has inputs 
ii and IR, and the second is a temperature compensator; it has inputs of IR 

and kIR, where k is a scale factor. The log output is the quotient of the two 
log-ratio amp outputs: 

VTln(i',/JR) Ini/ , / /R) 
VT\n(kIR/IR) ink 

A log-ratio amplifier with output 

i>o = VTlni— j 

(11.191) 

(11.192) 

FIG. 11.57 Log-amp with frequency and bias-current compensation. An offset input adjusts scale 
for bipolar operation. 
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log fV^-r-i exp | — iO = iY|7^ 

FIG. 11.58 This circuit raises a ratio of inputs to a power and multiplies by a third input, a 
versatile function module. 

and an exp-amp with output 

io=ÌYe(v>/v-)=iYexp(y^ (11.193) 

are combined with an amplifier of gain k in Fig. 11.58. The output is 

For fc<l, the amplifier is replaced with a voltage divider. This function is 
quite versatile since scaled powers of ratios include squares, cubes, square 
roots, and truncated power series of transcendental functions. For example, 

X 3 77 
sinx = x - , 0 < x < - ±1.35%error (11.195) 

With fractional powers, a better approximation is [see Nonlinear Circuits 
Handbook (1974) in the reference list]: 

X 2 ' 8 2 7 77 
sinx = x - , 0 < x < - ±0.25%error (11.196) 

6.28 2 
Also, 

tan l x = 
77 X 

1.2125 

2 1 + x 1 2 1 2 5 

- 1 / 

(11.197) 

The inverse function / (w) of a function circuit f(y) can be realized by 
placing f(y) in the feedback path of an op-amp (Fig. 11.59). The output y is 

or 

y = K(x-f(y)) 

x=f+f(y) 

(11.198) 

(11.199) 

FIG. 11.59 Inversion of f(y) by placing it in the feedback path of an op-amp. 
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y=V*" 

a a_ 
b b 

.y = <s[T 

(a) (b) 

FIG. 11.60 Square-root circuits: (a) inversion of the squaring function using a multiplier; (b) 
implicit root-taking using a divider. 

For infinite K, x=f(y), or y=f~l(x). This is useful in generating functions 
implicitly. In Fig. 11.60a, a multiplier (indicated by the Π symbol) is in the 
feedback path of a noninverting op-amp. The circuit outputs the square root 
of the input: 

y = K(x-y2) i-*s (11.200) 

For infinite K, x = y2 or y = \[x. Implicit function generation, as in Fig. 11.60b, 
is often more accurate for the same complexity of function blocks because the 
range over which intermediate variables must maintain accuracy is reduced. 

This is especially true of the commonly used root sum of squares (rss) 
function, the vector magnitude function or Pythagorean formula: 

» I, _ 1 

(11.201) 

The range of x\ can be large but need not be if computed implicitly. An 
implicit formula is derived from (11.201). Squaring each side, adding yxn, 
factoring, and dividing, we get 

y=i:xi+yxn=irxi+xn(y+xn)=rr^i+Xn (11202) 
y + x„ y + xn yxn 

In this formulation of y, it is fed back to divide x\, thus reducing the required 
input dynamic range. 

A function describing the output of a bridge circuit with a sensor in one 
branch is 

More generally, 

y = \ + x 

Axk 

\ + Axk 

y = x(l-y) 

■(A-y)xk 

(11.203) 

(11.204) 



11.12 Function Generation / 591 

Finally, a two-term power series with y(0) = 0 is 

y = Ax + Bx2 = Ax + x(Bx+ Cy) = Ax + Bx2 

l-Cx 
(11.205) 

11.12 Function Generation 

Function generation by log-amp circuits is based on the logarithmic nature of 
BJT junctions. The translinear cell of Section 10.10 is also a basis for function 
generation. The basic cell can be generalized by placing an arbitrary number 
of junctions in series in either the input or output side of the cell. To illustrate 
by simple example, the current squarer of Fig. 11.61 has two junctions in series 
on the input side. As we did with translinear-cell analysis, assume that ß is 
infinite. The output current is derived from the circuit equations: 

i>BE3 = 2 V T l n 

I'O = h exp 

(t) 
\VT) h 

(11.206a) 

(11.206b) 

More generally, m series input junctions results in i™ output. The translinear 
cell is not dependent on Is as this circuit is. In Fig. 11.62, the improved current 
squarer adds Q3, biased at a constant current I3. Its additional junction drop 
provides the needed correction for Is: 

vB4 = VT In (^j = vB3 - vBE3 = 2 VT In ( £ ) - VT In (^j 

or 

io = h 
(11.207) 

ύ j«, 

FIG. 11.61 A current squarer based on 
the translinear concept. 

FIG. 11.62 Compensated current 
squarer. 
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This circuit concept can be extended to m input diodes and m — 1 stages like 
Q3 with currents /, to Im-X. The output current is then 

(11.208) 
hh Irr 

A more general scheme is shown in Fig. 11.63. Here, two stacks of diode 
junctions drive the BJT. The stack biased by IR is buffered to keep BJT current 
separate from 7R. Applying KVL to the loop and eliminating VTln gives 

ra — 1 · m 

h \h) U !o = / IM — 1 
R 

(11.209) 

Fractional powers result by exchanging i, and i0 (Fig. 11.64), with appropriate 
modifications. The BJT is moved to the former input string, and its first diode 
is now at the new input. Applying KVL and discarding VT In gives 

\IS) U/U/ -I/m r(m-ì)/m 
1 R io=h (11.210) 

A rss circuit based on a generalized translinear cell (Fig. 11.65) can be 
extended to three or more inputs. The voltage at the emitter, across the common 
diode, is 

ϋ Ε = ν τ 1 η ( ^ ) (11.211) 

Applying KVL and removing VT In gives 

h h \ / s / U + 'V \ / s / \ii + i2/ 

(11.212) 

ΓΠ 

FIG. 11.63 Precision generator of an 
integer power. 

m-\ < 

> m-\ 

m 
FIG. 11.64 Precision generator of an 
integer root. 
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rn m 
FIG. 11.65 A rss (vector magnitude or polar converter) circuit. 

The output current is 

*o = h + h = >//χ+ί (11.213) 

A log-antilog approach to a rss circuit (Fig. 11.66) has common output 
current 

io = h + h 

and two loops to which KVL is applied to yield 

' s / \ J s / \ J s / 

These equations reduce to 

ix = i\io and * Y = / 2 ' O 

(11.214) 

(&<m - ©Mixt) <■-> 
(11.216) 

O 

■AAV 

r > 

^Ηχ1 ^—Ιχ3 δ>ί—£ 

ΐ> i£>i Ί 

-H- 5-
D. «Î Φ 

FIG. 11.66 Op-amp realization of rss circuit. 
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Adding them results in 

' θ 0 Ί + * 2 ) = * Ο = * Χ + « Υ => «0 = > / ί χ + ϊ (11.217) 

A rms circuit similar to these rss circuits consists of three cascaded blocks: 
a squarer, averager (integrator), and square-root block. The rms circuit requires 
the intermediate averaging function. 

11.13 Triangle-Wave Generators 

Function generators are a low-cost and versatile signal source. Their oscillator 
is a kind of multivibrator combined with a dual-slope ramp generator. This 
triangle-wave generator (TWG) outputs both triangle and square waves. TWGs 
are voltage-controlled oscillators (VCOs); their frequency can be accurately 
controlled over several decades by an input voltage, designated voltage-
controlled frequency (VCF) or voltage-controlled generator (VCG) on com
mercial function generator (FG) instruments. This makes them useful for 
frequency sweeping or modulation. An external phase-locked loop (PLL) can 
make them accurate frequency sources as well. 

An early approach to triangle-wave generation coupled a Miller ramp 
generator with a bistable MV or Schmitt trigger (Fig. 11.67). The bipolar square 
wave from the switch is integrated by the op-amp, producing a triangle wave. 
For a symmetric (50% duty-ratio) output, the magnitudes of the square-wave 
levels must be equal for equal triangle-wave slopes. The frequency can be 
adjusted, as shown, by varying the amplitude of the square-wave input to the 
integrator. Like ramp generators using an op-amp integrator, this approach is 
both speed- and precision-limited. For a VCF range of three decades and a 
full-scale square-wave amplitude of 10 V, at zero scale (the low-frequency end) 
the square-wave amplitude is 10 mV. For 1% waveform symmetry, the integrator 
input offset error must be less than 100 /xV. 

Speed-wise, for a high-frequency limit of 1 MHz, triangle-wave amplitude 
of 10 V and triangle nonlinearity of less than 1%, the slope magnitude is 

dvTW V< 
dt 

SQ V T W 

RC~ T/4 
10V 

250 ns 
(11.218) 

Frequency^-«— 

1 
x l 

F £> ■Q OJ 

A / 
FIG. 11.67 Low-performance triangle-wave generator (TWG). 
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where VSQ a n d VTW a r e square-wave and triangle-wave amplitudes and T their 
period. Since VSQ is also 10 V, then RC = 250 ns. The integrator op-amp gain 
requirement for the specified nonlinearity is calculated from (11.169): 

nonlinearity = η = 
T/2 

2{\ + K)RC 
=» K = 

V4RC - 1 (11.219) 

or K must be at least 999 at 1 MHz, an almost 1 GHz unity-gain bandwidth. 
To achieve better performance, current-source ramp generation is used 

with a bipolar current source (Fig. 11.68a). Two matched current sources are 

Φ 

S4 
\ 

V 
'Φ 

X 
E> 

i— \ 

(a) 

(b) 

ru 

FIG. 11.68 Balanced current-source TWG block diagram (a) and high-speed realization (b). 
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used to achieve bipolar charging of C. The positive (source) and negative 
(sink) currents are alternately switched into C each half-cycle. This scheme 
is much faster and more precise than the first one but requires matching of 
current sources for time symmetry and symmetric hysteresis thresholds for 
voltage symmetry. 

A more concrete circuit realization (Fig. 11.68b) is a fast TWG, capable 
of over 100 MHz oscillation. The hysteresis-switch and current-switch driver 
Qi-Q4 can be implemented with a single ECL NOR gate. The diode bridge 
is switched by Q3 and is limited mainly by diode shunt capacitance. Sometimes 
a Faraday shield is placed between the left and right halves of the diode bridge 
to decouple the square-wave node vE3 from the triangle-wave node at C. Since 
the input resistance of the Schmitt trigger is not high, appreciable nonlinearity 
results. If we add a good buffer, its additional delay slows the loop. Speed 
and precision are, as usual, in conflict. 

A variation on the bipolar current supply uses only one current source 
for charging C This eliminates the matching problem between sources. The 
Signetics NE565 FG and NE566 PLL both have TWGs designed this way (Fig. 
11.69). Q, and Q2 form a current source or V/I converter with input vF, the 
VCF input. It generates / through R, the timing resistor. Switching of / is 

Φ 

r, è 

FIG. 11.69 Balanced-current topology 
in the Signetics NE565 and NE566 uses 
current mirror to generate negative 
current. 

FIG. 11.70 1-21 triangle-
generator topology has only one 
current switch. 
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controlled by Q5. When it is off, D2 conducts 7, and C charges (positive). 
When Q5 is on, i?C3 < vC4, and Dx conducts I through Q3, where it is replicated 
in Q4 as -I. Thus, C is discharged with the same magnitude of current as it 
is charged. Symmetry depends on current-mirror matching. 

It is not necessary to switch both current sources. To simplify switching, 
the 1-21 scheme is used (Fig. 11.70). Only one current switch is required, but 
now the I and 21 sources must be matched at an accurate ratio of 2. 

A more recent approach to better symmetry is to control one current source 
based on the triangle-wave slope generated by the other. In Fig. 11.68a, instead 
of connecting node A to ground, it charges another capacitor of value C Its 
triangle-wave is inverted relative to the one at node B. The two waveforms 
are then summed. Ideally, the sum is zero, but any difference is an error voltage 
that is applied to one of the current sources to correct the slope of the waveform 
it is generating to match the other. This scheme increases symmetry enough 
at low currents to extend the VCF range an extra decade. 

A conceptually similar approach is taken in the Exar XR2206 FG IC, 
shown in simplified form in Fig. 11.71. The triangle-wave is developed differen
tially across C and requires a diff-amp pick-off. Qi-Q4 are the timing-current 

^sw« 

Pbül 
ΓΚ 

Qs\ 

φ'- Φ 

*sw 

VH 

ft ι vy 
Ql off 0 2 on 

FIG. 11.71 Differential TWG with current-switch BJTs as part of Schmitt trigger. Only one timing 
current source is required. 
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switches, but there is only one timing-current source. Q,, Q2, Qi, and Qs are 
the hysteresis switch. The b-e junctions of Qi-Q2 sense the waveform and 
switch on when vE is reduced sufficiently. On one half-cycle, Q, and Q4 

conduct; on the other half-cycle, Q2 and Q3 conduct. 7Sw sets the hysteresis 
thresholds. If the Rsw are matched, the levels are symmetric. A disadvantage 
in this scheme is that the switching voltage is added to the capacitor ramp 
voltage at nodes A and B, as shown. It is difficult for a diff-amp to common-
mode reject these fast switching edges, and some "glitches" appear in the 
triangle-wave output. 

The performance of a TWG loop depends on the subsystems within the 
loop. The timing capacitor must be of sufficient quality (plastic), and for 
multiple frequency ranges, a matched set is usually required. The triangle-wave 
buffer must be fast, have low input-voltage offset and bias current, and high 
input resistance. The current switches must be fast and have low current leakage 
when off. Transistors are generally superior to diodes in both leakage and 
switching characteristics and are used as switches as shown in the TWG loop 
of Fig. 11.72. A minimum of two switches is required in a balanced two-source 
scheme, as shown. The switching scheme here consists of complementary 
diff-amps. Two BJTs switch the current-switch BJTs. 

The timing-current generators also must be capable of operating accurately 
over as many decades of current as the VCF range because output frequency 
is proportional to timing current. Complementary V/I converters, such as in 
Fig. 11.16, are commonly used to supply both polarities of current. These 

FIG. 11.72 High-performance BJT current switch with diff-amp current switching. 
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FIG. 11.73 Typical hysteresis switch: two comparators and RS flop. 

converters must be driven by precision circuitry that establishes symmetric 
voltages at their inputs. These circuits need only the bandwidth required of 
the FM VCF signal. Sometimes BJTs are used as the current-source transistors 
in V/1 converters instead of FETs for their higher output impedance. When 
a source is supplying the timing current through a diode bridge, the triangle-
wave is at its output. Whatever parasitic output capacitance the current source 
has affects the timing. The additional isolation offered by a BJT switch over 
a diode minimizes this problem. 

The final subsystem is the hysteresis switch. Schmitt triggers of the regen
erative MV kind are sometimes used, but their thresholds are often not accurate 
enough. The dual-level comparator circuit of Fig. 11.73 is more accurate. The 
comparator outputs are asserted (high) only momentarily as the ramp crosses 
a threshold at a peak. The RS flop, made of NOR gates, is set to alternating 
states. This is not the fastest circuit since it consists of several stages of 
processing and can be used up to about 20 MHz. 

Not only must the thresholds be symmetric, a hysteresis switch must have 
little delay because the total loop delay determines the maximum operating 
frequency. As loop delay time td becomes an appreciable fraction of the period 
T, the ramp increases in magnitude beyond the threshold before the slope 
changes. The triangle-wave amplitude thus begins to increase with frequency. 

In Fig. 11.74, the effect is graphed. VM is the low-frequency triangle 
amplitude and hysteresis threshold. But due to delay, it increases as vM(f). 
For a ramp slope of m, 

vM= VM + mid 

where the slope is 

m =-
vM 4i;N 

T/4 

(11.220) 

(11.221) 

Substituting into (11.220), we get 

vM= VM + -
4 tv 

*H = \-(4td/T) \-{ω/ωάΥ 
ωά = ^~ (11.222) 

ztd 
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FIG. 11.74 Triangle-wave amplitude versus frequency for TWG loop delay of ωά = π/2ίά. VM 

is the comparator threshold and low-frequency amplitude. 

With the approximation, 

then we have 

1-x 
1+x, 

vM
l ■(•♦3-

x « 1 

ω « ωά 

(11.223) 

(11.224) 

This equation also results from assuming the low-frequency slope of 

4 V 
low-frequency m = ~~zr (11.225) 

in (11.220). The period increases over its low-frequency value by 4td. From 
(11.224), ωά is like a zero break frequency for vM ; but from the exact expression 
(11.222), vM is vertically asymptotic at w d .Asw approaches ωα, td dominates 
T. A td of 10 ns breaks at 

Λ-3Γ 
4 id 

(11.226) 

or 25 MHz. 
Because νΜ(ω) is nonlinear, a nonlinear compensator is required to make 

^ινι(ω) = VM. Since transfer-function compensation is based on linear analysis, 
another approach is required. This is an adaptive control problem since a 
parameter VM must be varied to achieve ideal compensation. The amplitude 
error is 

ΔνΜ = νΜ- VM = 
ΥΜ{ω/ωά) 
1-(ω/ωά) — ( ä — ( A ) ,11'227) 

If VM is replaced by VM-AvM or if the triangle wave itself, vTW, is modified 
to fTw + ΔϋM , then vM is a constant VM. Since the TWG frequency is determined 
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by the VCF voltage uF, we can derive frequency information from it to set the 
comparator thresholds. The slope of i?TW is I/C. If / is generated by a V/I 
converter by VCF voltage vF across timing resistor R, then, 

m=J£ (11.228) 

For ω « ωα, (11.225) applies. Equating it to (11.228), we get 

/ = ^ ( 1 L 2 2 9 ) 

and the adaptive VM is 

adaptive VM-> V M -Au M = V M - / T / ,.. w " ^ , , x — ~ = v™~vAl[F) (VM/vF)(RC/td)-\ 

(11.230) 

This is an instance of model-reference adaptive control and is based on a priori 
knowledge of the circuit model, (11.229). When R or C are switched to change 
frequency ranges, the model changes. Switching of RC in (11.230) is required 
for the model to represent the circuit. 

Another approach to TWG-loop compensation is to place in the loop a 
time advance to cancel td. In the s-domain, the delay is e~s'd and a compensating 
advance is es'd. Since time advances are not realizable in physical (causal) 
systems, this form of compensation can only be approximated. The power-
series expansion of the time delay is 

e-s,*=l-std + ̂ - S - ^ + · - -^l-std^—[— (11.231) 
2 6 std 4-1 

The single-pole approximation to a time delay suggests that a phase-lead 
compensator with zero at 1/ td and higher-frequency pole provides approximate 
compensation. 

A rational approximation to the time advance is the Padé approximation. 
A first-order approximation is 

„ st J 2+1 
' - s i d / 2 + l 

(11.232) 

It is a nonminimum-phase transfer function. A second-order Padé approxima
tion is 

r, s2n + 6std+\2 
-Λ3-6*α+ΐ2 ( 1 L 2 3 3 ) 

It can be factored, which results in 

,2 = ( £ ) ( 3 ± 7 7 3 ) , Pi,2 = ( f ) ( - 3 ± j V 3 ) (11.234) 

The pole-zero placement is symmetric about the origin and represents an 
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all-pass filter. This is consistent with the delay function since it effects only a 
shift in time with no amplitude change. The pole and zero pairs have an angle 
of 

(/> = c o s _ 1 — = 55° Ψ 3 

Besides being rational approximations, these delay compensators are linear 
whereas the circuit is nonlinear. Frequency-domain analysis assumes sinusoids, 
not triangle waves. For ω « ωα, the nonlinearity is not too severe and can be 
approximated as linear, and the phase error in the rational approximations is 
minimal. 

The versatility of the FG is partly due to its wide VCF range. For frequency-
response or Bode magnitude plots, a logarithmically swept VCF directly 
produces a log-frequency plot on an oscilloscope display. A simple way of 
producing a logarithmic sweep is shown in Fig. 11.75. On each cycle of the 
FG output, the MMV is triggered. It gates on a current source for a fixed time, 
transferring a fixed charge to the VCF capacitor CF. This increments vF by a 
fixed amount, causing the output frequency to increment. As the frequency 
increases, the rate of increase of vF increases along with it and is exponential. 
The resulting frequency sweep, when displayed, is stepwise logarithmic. 

Quantitatively, let the MMV time-out be τ<Τ= \/f. During a given time 
interval At, η periods of the output occur. Then 

AvF_n{IFr/CF) 
At nT 

In the limit, for small AvF or infinite n 

AvF dvF 

•-<m (11.235) 

lim 
at -m 1/ 

As a voltage-to-frequency (V/F) converter (VFC), 

(11.236) 

(11.237) 

MMV 

τ 

f n - 1 

Π 

> 
VF 

> 

7 

TWG 

FIG. 11.75 Log-sweep FG uses output frequency of FG to change VCF input voltage propor
tionally. 
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Substituting into (11.236) and solving gives 

vF=vF(0)e{I^/c^' 

The sweep-rate constant is (/Fr/CF)/cF, and the sweep time is 

ln( / / / (0)) 
ίς \νρ — " (7Fr/CF)/cF 

(11.238) 

(11.239) 

where / (0) is the starting frequency and / the ending frequency. The VFC 
constant kF can be found from the TWG parameters. For triangle-wave ampli
tude of VM, the slope is 

V M _ I _vF/R 
C T/2 C f \2RC Vj VF 

1 1 
2RC V» 

(11.240) 

Besides VCF, the TWG current sources can be individually controlled for 
variable symmetry or duty-ratio. A voltage-controlled symmetry (VCS) input 
allows pulse-width modulation (PWM) of the output waveforms. 

A third waveform available on FGs is the sine wave. This function is not 
generated by the TWG loop but by a sine converter circuit. Most commonly, 
this is a multiple diode clamp that performs a piecewise-linear waveform 
shaping of the triangle wave. The better shapers use diode bridges for symmetry 
and diode drift cancellation. The initial part of the triangle and sine waves 
has the same slope (Fig. 11.76). For sine amplitude of VA, the slopes are 
equated: 

T/4 VACO 1.59 (11 .241) 

FIG. 11.76 Triangle-to-sine conversion amplitude ratio for equal slopes of triangle and sine wave 
at v = 0. 
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The most significant anomaly of these sine-shapers is the triangle-wave peaks 
in the sinusoid. At the peaks, the derivative of the triangle wave is discontinuous 
and is difficult to remove entirely from the sine wave. Typically, three-break
point sine-shapers produce less than 0.25% THD in the audio range. 

Another approach is to use the hyperbolic tangent function of the BJT 
diff-amp as an approximate sine converter. This approach has somewhat more 
distortion than the multiple-clamp circuit. MOS diff-amps have a quadratic 
transfer function and also approximate a sine output with adjusted parameters. 

A more elegant approach is to return to the translinear cell concept. By 
stacking diodes with diff-amp pick-offs, arbitrary power series expansions can 
be realized, as in Fig. 11.77 for three terms of a sine expansion. The Taylor-series 
expansion is 

. h x x 
sin —= sin x = x 1 

U 6 240 

(11.242) 

The truncation error is less than 0.07%. For two terms, the error is 0.14%, still 
favorable relative to the other approaches. The sine converter in Fig. 11.77 
operates over an input range of x from 0.5 to 2. 

The two-term sine shaper of Fig. 11.78, with a topology similar to a Gilbert 
gain cell, passes the linear term through Q5-Q6 while Qi-Q2 develop the 

FIG. 11.77 Triangle-to-sine converter based on Gilbert gain cell topology. 



11.14 Precision Rectifiers / 605 
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FIG. 11.78 Two-term sine power-series generator based on generalized translinear cell. 

second term of the output. Together, 

where 

io=h 

l\ — h hi lo~ h *4? 

2 / Q / / , Q/ 'i 

l + (ii/2/,)2J 
(11.243) 

27, = i, + i2, 2 / Q = J c l + iC2 (11.244) 

The ratio 2IQ/1, is adjusted for minimum THD of less than 0.1% when the 
ratio is about 1.5. 

11.14 Precision Rectifiers or 
Absolute-Value Circuits 

A full-wave rectifier performs the absolute value function: 

W = {-x, *<0 
A half-wave rectifier performs the function 

/ ( * ) = 
(x, x>0 
[0, x<0 

(11.245) 

(11.246) 

Half-wave rectification is mainly applied as an ac-to-dc conversion technique 
in low-power power supplies or AM demodulators. Rectifiers can be designed 
to output either polarity; the positive outputs of (11.245) or (11.246) could 
instead be - | x | or -f(x). For signal processing involving mathematical func
tions, |JC| is more commonly needed. 

A single diode can half-wave rectify (Fig. 11.79a). Two diodes are used 
for full-wave rectification with a ground-based differential input (b) and a 
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FIG. 11.79 Rectifier circuits: (a) diode half-wave; (b) diode full-wave with ground-referenced 
differential input; (c) diode bridge full-wave with floating input; (d) MOSFET half-wave syn
chronous rectifier. 

diode bridge for a floating input (c). A more recent addition to rectifier circuits 
is the synchronous rectifier. It uses active devices, usually MOSFETs, that are 
switched by the input itself. These circuits are associated with power conversion 
and are commonly found in power supplies, both linear and switched. The 
precision clamps of Fig. 11.33 are half-wave rectifiers. 

Absolute-value circuits can be designed many ways. The common con
straint is that the gain magnitude for υ, < 0 be the same as for u, > 0, so that 
-Av_ = Av+. The most common of these circuits is in Fig. 11.80. It has similar 
frequency responses for positive and for negative inputs. On the positive 
half-cycle, Dx conducts, and op-amp A operates in the inverting configuration. 

FIG. 11.80 Standard op-amp absolute-value circuit. 
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FIG. 11.81 Absolute-value circuit with one diode. 

Op-amp B converts this output to a single-ended signal v0. The gain expressions 
are 

/ R2\( R5\ A ( R3\\(R2 + R4)\i R5 \ , 

Equating Av+ to —Av_, the constraint on resistor values is 

R3 = R5, R2 = R4 (11.248) 

Since Ri is unconstrained, it can set the gain. Op-amp B must have a fast 
large-signal response to follow the discontinuities in the waveform it amplifies. 

The circuit in Fig. 11.81 uses only one diode. Op-amp A functions for 
negative inputs as the first stage of gain in the forward path, cascaded with 
op-amp B, a x l buffer. The gain is 

A —± 

For positive inputs, op-amp A is disconnected from B, and υλ is applied directly 
to the input of B through R3. The value of R3 does not affect gain; its purpose 
is to limit current from op-amp A when the diode conducts. Thus, positive 
inputs bypass A and are merely buffered by B with a gain of Av+ = 1. The 
constraint is simply that Av_ = - 1 : 

RX = R2 (11.249) 

The positive-gain path involves only one op-amp and has a faster response 
than the negative-gain path for negative inputs. 

A similar kind of circuit with only one op-amp (Fig. 11.82) requires 
matched diodes Dx and D2 and current sources as a trade off for fewer 
components. In IC form, this is attractive. The positive-gain path is through 
D, and the op-amp, with a gain of unity. D2 also conducts, causing the inverting 
op-amp input to also follow the input signal. For negative inputs, Dx is off, 
D3 is on to satisfy the current source, and the op-amp inverts with a gain of 
— R2/Rx. D2 conducts all the time to balance Dx. The constraint is (11.249). 
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FIG. 11.82 Absolute-value circuit with one op-amp and matched diodes and current sources. 

Another variation on this theme, which allows adjustment of gain at the 
output by means of R4, is that of Fig. 11.83. The gains are 

κ2 *—(ψ) (11.250) 

and (11.249) again applies. Since R4 is not constrained, it can be used to set 
the gain. D2 clamps op-amp A input to virtual ground for positive signals so 
that Rx does not affect Av+. 

The absolute-value circuits of Figs. 11.84 and 11.85 have high-impedance 
inputs. They use the same number of components, but in Fig. 11.84 is con
strained to unity gain. For it, Av+ = 1 and 

R\ «2 
■Wv̂ -

D2 

*—M-

* 3 

■vw-

R4 

■VW 1 

l>-Wì> 

FIG. 11.83 Absolute-value circuit with gain adjustment at output. 
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FIG. 11.84 High-impedance input absolute-value circuit limited to unity gain. 

The constraint is 

R4 = 2 R1R3 

R, 

One combination of resistors satisfying (11.252) is 

R\ — R2 ~ 2/^3 = /v4 

For Fig. 11.85, 

with constraint 
ί<1 

K, ( f i 3 /* 2 +0 

Λ 3 

R2 

R2 ( Ä 3 / Ä 2 - l ) 

Implicit in (11.255) is the additional constraint that R3> R2. 

(11.252) 

(11.253) 

(11.254) 

(11.255) 

FIG. 11.85 High-impedance input absolute-value circuit with arbitrary gain. 
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FIG. 11.86 Absolute-value transconductance circuit using FETs. 

Not all absolute-value circuits must be designed by matching gains of 
positive- and negative-gain paths. The circuit of Fig. 11.86 resembles an 
instrumentation amplifier, but its output current is unipolar. For i>i>0, Dx 

and Q2 conduct. D, reverse-biases Qx. The negative-gain path is through D2 

and (?!. The circuit is symmetric and has output current 

R 
(11.256) 

Finally, Fig. 11.87 shows a circuit with a rectifier section similar to Fig. 
11.80 but with gain set by R5. The positive-gain path is through A, then B; 
the negative-gain path is through R3 and B. For negative inputs, D2 conducts 
through R6, a current-limiting resistor, forcing the noninverting input to virtual 
ground. R4 and R2 then shunt the input of B, but this does not affect the gain. 

Some op-amps have inherently unipolar outputs and can be fashioned 
into precision rectifiers. When current mirrors, CMOS inverters, and other 
elemental circuits are also used, the collection of absolute-value circuits 
becomes extensive. 

* i 
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FIG. 11.87 Absolute-value circuit. 
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FIG. 11.88 Diode peak detector. 

11.15 Peak Detectors 

Finally, we consider a class of circuits that extract the extrema of waveforms. 
These peak detectors are essentially rectifier circuits with a memory. A simple 
example is the rectifier-filter combination of power supplies (Fig. 11.88). The 
rectifier conducts to charge the filter capacitor whenever its output exceeds 
the capacitor voltage. The capacitor charges to the peak input voltage. 

Fast, simple detectors of maxima (positive peaks) and minima (negative 
peaks) are shown in Fig. 11.89, using a CC that charges C. Slower, more 
precise peak detectors (Fig. 11.90) are reset through FETs that discharge the 
capacitors. Ideally, after C has been charged to the peak voltage, it retains its 
charge indefinitely. (In this respect, peak detectors are similar to S/H circuits 
of Chapter 12.) The capacitor must have low leakage (high insulation resist
ance) to minimize the discharge rate. It must also have low dielectric absorption 
so that when reset, it retains 0 V until recharged by the input signal. These 
requirements suggest a plastic capacitor. 

This applies also to its load, including the reset FET, and to the op-amp 
bias current. Load leakage is minimized by using a high-impedance buffer 
with low input bias current. When it drives the input op-amp, as in Fig. 11.91, 
its offset-voltage error is compensated by being in the loop. The feedback loop 
also effectively reduces the time constant routC by the loop gain, where rout is 
the resistance in series with the diode. Fast peaks are thus detected more 

\ ^ 

vo > 0 vx 

(a) (b) 

FIG. 11.89 Fast peak detectors using CC: (a) positive and (b) negative. 

v O < 0 
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FIG. 11.90 Op-amp peak detectors with reset function: (a) maximum and (b) minimum. 

accurately. To avoid overcharging, the feedback response must not be under-
damped or overshoot occurs. Op-amp B must be faster than A to minimize 
loop delay and avoid overshoot. That is, a single dominant pole in the loop 
due to A yields a damped response. Because of the output loading of C and 
the additional pole it causes, op-amp A usually must be frequency com
pensated. 

If op-amp A has limited output current, a CC buffer can replace the diode. 
This increases charging current by the ß of the transistor and slew-rate increases 
by iß. 

D2 and R are added to keep op-amp A from being driven into saturation 
when Dx is off. R limits D2 current. This enables the op-amp to respond more 
quickly since its output now follows the input signal. This also keeps its output 

Reset 

wv 
FIG. 11.91 Peak detector with feedback and output buffering. 
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Reset 

FIG. 11.92 Circuit of FIG. 11.91 with differential capacitor compensation. 

from quickly switching to its saturation limits when D, cuts off, thus minimizing 
transient feedthrough to the hold capacitor via Dx shunt capacitance. 

To further minimize bias-current error, a similar capacitor can be placed 
around op-amp B (Fig. 11.92). Both capacitors are charged by the bias current, 
resulting in the same Δυ across each. The error voltage on the feedback 
capacitor subtracts from the hold-capacitor voltage, thus compensating its 
error. The feedback capacitor, however, must also be reset; two reset switches 
are required. 

Finally, the diode must have a low reverse saturation current to minimize 
leakage when off. Reverse current varies with reverse voltage and is minimized 
by minimizing the voltage across the nonconducting diode. This can be done 
by, again, using the versatile technique of bootstrapping (Fig. 11.93). D3 and 
R2 have been added to Fig. 11.91. Since v0 follows the capacitor voltage when 
holding, R2 applies this voltage to the anode of D3, reducing its voltage to 
zero. D, blocks this node from the signal-varying output of op-amp A, but its 
leakage is not critical for low values of R2. When C is charging, R2 isolates 
the diode node from the output of op-amp B. With this approach, special 
low-leakage diodes can be avoided in most applications. An alternative is to 
replace D, of Fig. 11.91 with a JFET. Its gate-source junction typically has 
lower leakage than discrete diodes. 

D2 

Ύ. ? i^esei 

■AWv-

FIG. 11.93 Bootstrapped diode reduces leakage by minimizing its reverse voltage. 
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This bootstrapping technique of leakage decoupling can be applied to the 
reset switch also. Two switches are placed in series, with a resistor from the 
output connected to them. Both switches are driven by the Reset signal. 

Bootstrapping can also decrease acquisition time if input impedance is not 
critical. In Fig. 11.91, we add a resistor in series with υλ and a bootstrap diode 
from output to the op-amp noninverting input so that it conducts from output 
to input. Then the first fast peak charges C. Through the bootstrap diode, the 
output of op-amp A is now driven to this voltage, which is near the peak. 
The next fast peak has less voltage over which to slew the output to further 
charge C. 

Most of the charging time occurs when op-amp A output is near the peak 
voltage because it is not required to supply the large slew-rate-limited currents 
that a large voltage difference causes. Feedback then increases response time 
if routC corresponds to frequencies at which the loop gain is still high. 

The hold capacitor size is chosen as a trade off between hold time and 
acquisition time. For fast peaks, a small C is preferred for faster charging. 
But a smaller capacitor develops hold error at a higher rate than a large C. 
Therefore, C is chosen as a compromise between acquisition and hold-time 
requirements. A two-stage peak detector mitigates the trade off. The first stage 
is optimized to be fast whereas the second stage has a long hold time. 
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C H A P T E R 

Digitizing and Sampling 
Circuits 

12.1 Electrical Quantities Both Encode 
and Represent Information 

An electrical quantity in time x(t) is a signal when it encodes information. 
The information is interpreted according to a representational theory, such as 
logic theory for digital signals or transforms based on analogy for analog 
signals. The theory of representation is independent of the encoding scheme. 
In communications theory, encoding is called modulation. What the modulating 
signal represents is independent of its encoding. A thermometer output, for 
example, can be encoded in analog or digital form but represents temperature 
regardless. 

Another way to think about encoding information is that two levels of 
representation are employed. The encoding scheme is a representation at the 
electrical level, and the encoded information represents a quantity that is 
independent of electricity. This "higher" level of representation has to do with 
the application. Consequently, electronics is useful in domains that have 
nothing to do with electronics because both signals and their processing 
operations have meaningful interpretations for the application. 

Information can be encoded as discrete or continuous functions of either 
an electrical quantity (usually voltage or current) or of time. The information 
to be encoded and the encoding scheme can be either discrete or continuous. 
The compatibility of an encoding scheme with the encoded information is a 
design consideration. For example, discrete functions are often best represented 
by digital encoding. Engineers sometimes diflfer over the relative merits of 
discrete versus continuous encoding and processing of information. The 
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difference between discrete, or digital, and continuous, or analog, encoding 
is so important that each constitutes a major subdiscipline within elec
tronics. 

A digital signal is discrete in both Λ: and t. Binary encoding is by far the 
dominant digital encoding of x, where xe{XL, XH}. These two values or 
"levels" are named low (XL) and high (XH) and represent binary logic states 
of true and false; or in Boolean algebra, 0 and 1. Whether the low level 
represents true or false depends on the polarity of the logic; a low level is 
false in positive logic and true in negative logic. Digital encoding can have 
more than two levels. The number of levels equals the modulus or base of the 
number representation. For example, decimal numbers can be encoded in a 
10-level scheme. As the modulus increases, the representation approaches a 
continuous form. 

An example is the output of DACs. For an 8-bit DAC, 256 discrete levels 
may adequately approximate a continuous function in some applications. The 
DAC could, however, be considered an encoder of base-256 numbers. In this 
sense, continuous signals are of infinite modulus, and analog engineers are 
actually digital engineers who specialize in infinite-base encoding. 

Discrete functions can also be encoded in time. Frequency-shift keying, 
a kind of binary FM used in modems, is one way. More common to computer 
electronics is synchronous and asynchronous serial encoding of alphanumeric 
characters in ASCII. Many other purely digital encoding schemes make digital 
encoding and communications a specialty in itself. 

Continuous functions can also be encoded purely in time as the width of 
a (binary) pulse (pulse-width modulation) or by its position relative to another 
event in the signal (pulse-position modulation) or simply by the pulse 
frequency, as is the output of voltage-to-frequency converters. 

Finally, signals that are continuous in x and discrete in t are sampled 
signals. These signals are of great importance in association with analog-to-
digital (A/D) and digital-to-analog (D/A) conversion and with sampled-data 
systems in general, systems that contain discrete-time signals, such as a motor 
servo controller with a digital position encoder or any system with sample-and-
hold circuits. 

12.2 Digital-to-Analog Converters 

Digital-to-analog (D/A) converters (DACs) convert digital input codes to 
output voltages or currents. The transfer curve for a unipolar 3-bit DAC (Fig. 
12.1) has discrete voltages at the discrete (integer) values of the digital input 
code d. The digital code is an ordered set of bits that represent integers. Various 
number representations are possible, but the most common are shown for 
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FIG. 12.1 Unipolar DAC transfer characteristics. 

three bits in the table: 

integer offset binary two's complement sign-magnitude 

3 
2 
1 
0 

-1 
-2 
-3 
-4 

ill 
110 
101 
100 
Oil 
010 
001 
000 

L, 

011 
010 
001 
000 
111 
110 
101 
100 

Î 
nverted M S B 1 (sign) 

000 
> k 

0+ 

on 
010 
001 

101 
110 
111 

1 = =>-

100 
A 

0" 

+fs 

zs 

-fs 

These are signed (bipolar) representations of integers. The most common 
number representations are two's complement and offset binary. They differ 
only in the polarity of their sign bit. Binary-coded decimal (BCD) is also 
sometimes used, in which the first 10 binary numbers represent a decimal 
number. 

In the table, the positive full-scale (fs) value is 3, and the negative fs value 
is —4, one greater in magnitude. This asymmetry results from assigning a state 
to zero. Sign-magnitude coding is symmetric, but it has two zero states. In 
general, for n bits, there are 2" states. The transfer characteristic for a unipolar 
n-bit DAC is 

v0 -*(£) (12.1) 

where VR is the DAC reference voltage. The fs voltage is less than VR because 
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the 
maximum d = 2" - 1 (12.2) 

Accordingly, 

Vft = V R ( ^ ) = V*-y= V*~ VLSB (12.3) 

That is, the fs output is less than VR by VLSB, the quantum voltage: the voltage 
difference corresponding to a difference of one input state. Since VLSB is the 
smallest output voltage difference of the DAC, it is also its resolution, its 
minimum Δν0. 

The DAC input often represents a continuous function, but because it is 
discrete (or quantized), for values between integers the DAC output remains 
constant. In Fig. 12.1, v0 is zero over the interval [0, 1). (This is the least-integer 
function). At 1", infinitesimally below one, vo = 0V, though the correct value 
is infinitesimally less than VLSB- The output is in error by VLSB at 1~ and has 
no error at zero. The magnitude of the error can be split so that the error range 
is ±|VLSB by offsetting v0 by |VLSB (Fig. 12.2). Then the DAC output fs 
magnitudes are also equal. 

Quantization error causes quantization noise, which is a sawtooth function 
that cycles between - VLSB/2 and 4- VLSB/2 between each state (Ad = 1). The 
rms value of this noise vn is 

™s»-VaOW:7^=7f*o j v L s · (ΐ2·4) 

A signal-to-noise ratio definition for n bits is 

SNR = — — = 2 ' VL™=VÏ2-2n=3A6'2n 

rms vn VLSB/V 12 

In decibels, this is 

SNR(dB) = 201og(7Ï2 · 2") = 20 log^12 +20« log 2= 10.8 + 6.02« 

VO 

Vfs + -

^LSB 
2 i 

- 4 - 3 - 2 · 0 
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• 
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> 

1 2 3 d 

-Vfs_ 

(12.5) 

(12.6) 

FIG. 12.2 DAC transfer characteristic, offset to reduce quantizing error. 
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The dynamic range is about 6n dB, and quantization noise is about 10.8 dB 
independent of the number of bits. Since each additional bit increases the 
range by x2, an octave, this is 6 dB/octave, the slope of a Bode plot zero. 

A different characterization of the SNR is as the ratio of rms signal to rms 
noise for a sinusoidal signal. The rms value of a sine of amplitude V is (>/2/2) V. 
Then 

S N R - - g ^ - ( y / 2 ' - ' ^ V " - 2 - ( g ) . . . a - 2 · ( . 17 , rms noise vL S B/vl2 \ 2 / 

In dB scaling, this is 

SNR(dB) = 20 logi — j +20 log 2" = 1.76 + 6.02« (12.8) 

The dynamic range remains the same under this definition of SNR, but the 
signal is less relative to the noise. This explains why the constant term of 
1.8 dB is less than in (12.6). 

In actual DACs, the step size of quantum VLSB is not constant, which 
affects the linearity of v0/d. A measure of this nonlinearity is the differential 
linearity error (DLE), or differential nonlinearity, the amount a step differs from 
VLSB: 

DLE = A!WP-VLSB (12·9) 

If DLE exceeds VLSB, the transfer curve is nonmonotonic, decreasing in output 
value with increasing d. This behavior can wreak havoc in control system 
applications. DACs also have offset and scaling (gain) errors, but these are 
nulled by external adjustment; the DLE cannot be. 

DACs often output functions of time, v0(t)\ their dynamic response is 
important. This is characterized by the settling time to within \ VLSB of error. 
A dynamic anomaly of DACs is that when a large number of bits change in 
d, the effects of individual bits on the output are not exactly synchronized. At 
the output, momentary pulses or "glitches" appear until all the bits settle. This 
phenomenon is especially evident at midscale, when d changes from 011 to 
100 (for a 3-bit DAC). The change in most-significant bit (MSB) must be 
cancelled by the combined changes of all the other bits, to within VLSB, the 
correct Δι;0. 

When glitches are unacceptable, as in CRT display systems, the DAC is 
followed by a deglitcher. These are either hf limiters or samplers with a delay. 
In delayed samplers, the DAC output is allowed to settle. Then it is sampled, 
and this value is output. The sampling control signal is delayed from the clock 
that changes DAC input states. 

DAC designs are mainly either BJT (bipolar) or CMOS. Both achieve 
binary weightings of voltage or current for each bit by a resistive network. 
Unless the number of bits is few (^4), these are R-2R or resistive ladder 
networks. Otherwise, a set of binary-weighted resistors suffice. A 4-bit binary-



12.2 Digital-to-Analog Converters / 621 

4-bit CMOS register 

FIG. 12.3 Discrete CMOS 4-bit DAC with binary-weighted resistors. 

weighted resistor DAC is shown in Fig. 12.3, voltage-driven by a CMOS 
register. The output is a function of each of the bits bx of d: 

v0- <f b> + 2R ~ AR 
Y* 
SR ■»■)--(£)* (2-V,), 

1 = 0,1,2,3 (12.10) 

where b0 is the LSB and VR is the CMOS register supply voltage, the DAC 
voltage reference. (CMOS digital outputs accurately approach the supply rails.) 
The resistors must have sufficient precision to minimize DLE. The resistor 
requiring the most precision is at the MSB, R, since it must be within 

Afl 1. 
R ~±2 

( n - 1 ) = ±2" (12.11) 

A four-bit DAC must have a tolerance on R of 6.3%. A 5% resistor suffices. 
For 8 bits, the tolerance is 0.4%. This is difficult to achieve in monolithic form 
when the resistor values have such a wide range. A standard alternative is the 
voltage-switching R-2R network of Fig. 12.4, another 4-bit DAC. 

In general, the binary weighting, 

W(d) = £2-,"6n_i (12.12) 

is the heart of DAC function. This weighting is achieved in the R-2R network. 
Beginning with b0, if it is 1, Q0 output is VR; if 0, then the output is 0 V. For 
b0= 1, the Thévenin equivalent circuit is shown in Fig. 12.5. At each stage of 
an R-2R network, the input resistance is 2R and the voltage of the previous 
stage is halved. From the input end of the network, the b0 voltage is con
sequently halved four times. At the output, the op-amp is driven by a source 
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FIG. 12.4 Discrete CMOS 4-bit DAC with R-2R network. 
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FIG. 12.5 R-2R network equivalent circuit at LSB. 

MSB 

FIG. 12.6 CMOS DAC. 
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resistance of R (another series R was not added to the network to make it 
2R) and voltage of W(d)VR. 

CMOS DACs are typically designed as in Fig. 12.6, with CMOS switches 
at the output and VR at the input. This reversal does not change the operation 
except that the DAC outputs must be kept at ground (or virtual ground, as 
shown) to avoid errors in output current. This current-switching R-2R network 
is still voltage-driven, and the output is - WVR with op-amp feedback resistor 
R. IC DACs often include this resistor to ensure its match with those in the 
network. The outputs are complementary currents that sum to a full-scale 
current, 

*o + Ό — ^fs— 
V R - V L 

R 
(12.13) 

Switch resistance must be minimum (or binary-ratioed) for minimum network 
error. MOSFET switch areas are scaled to achieve equal voltage drops across 
all switches. 

CMOS DAC output impedance changes with d. The two extremes are 
with all zero and all one bits (Fig. 12.7) for an AD7520, a 10-bit DAC with 
jR = 10kH and leakage current /L of 200 nA. Response compensation for 
op-amp input capacitance can only be based on an average or worst-case input 
state. Since output resistance varies extremely, op-amp bias-current compensa
tion is also suboptimal. 

Typical BJT DAC design is based on a current-switching R-2R network 
(Fig. 12.8). An input op-amp establishes a reference current IR in one of several 
BJTs with emitters connected to an R-2R network. The emitter areas are 
ratioed with the current each conducts, to maintain the same VE for all BJTs. 

/ L 
200 nA Φ 

m 

lO 
«ΙΟΙ^Ω 

ZfI37pF 

rf = 0000 

Π7 

«lOkQ 

2n \±) 

lo 
7L z £ l l 2 0 p F 

'200 nA 

/L 
200 nAV 

m 

Φ T37pF 
Ό 

d= 1111 

m 
(a) (b) 

FIG. 12.7 Outputs of CMOS DAC for inputs of all zeros (a) and all ones (b). 
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MSB LSB /r 

Current switches 

FIG. 12.8 BJT (bipolar) DAC with R-2R binary current generator. 

The BJT collectors drive current switches. These can be diff-amps with logic-
compatible inputs. Their collectors are connected to either the iQ or ι'ό outputs. 
CMOS DAC outputs have no voltage compliance, but the BJT current outputs 
from collectors need not be held at a fixed voltage. 

The R-2R network is not switched but is a multiple binary current divider. 
The voltage in the series-/? string doubles at each successive stage toward the 
termination at the LSB. The reference current is established by the op-amp 
circuit as VR/ RR. The output is 

io=W(d)IR 

and complementary output 

(12.14) 

(12.15) 

Equation (12.13) applies here. The relationship between IR and 7fs is the same 
as for the CMOS DAC: 

_ / 2 " - l \ 
As = ( jn ) IR — R̂ ~~ ^LSB 

The complementary output current is also related to W(d) as 

i'o= W(d)-IR 

(12.16) 

(12.17) 

where 

W(d) = Σ 2~%-i9 K-i = logical complement of *>„_,· (12.18) 

That is, W is the complementary weighting, the result of the bitwise negation 
(or one's complement) of d. 
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FIG. 12.9 Scaled-emitter technique for DAC LSBs. 

Monotonicity among the LSBs, achieved with a scaled-emitter technique 
(Fig. 12.9), is used with the ladder network. The LSB terminating current of 
the ladder network, instead of being grounded, is fed to a second branch of 
emitter-scaled BJTs that switch the three LSBs. Monotonicity is ensured by 
branching. 

For DACs with a large number of bits, the branching idea can be realized 
in a different topology. The segmented DAC, shown in Fig. 12.10 for a two-bit 
segmentation, does current weighting with two networks. The input network 
is driven by a reference current as before. The two MSBs are decoded by a 
segment decoder. They switch four equal currents either to output or to the 
branching input of an R-2R network of the remaining m LSBs. A segment 
decoder successively switches more segments with larger MSB codes to i0 as 
the m LSBs divide the current from one segment (s, in the figure) between i0 

and ι'ό. The remaining segment currents go to i'0. For m = 2, when d < 0011, 
all segments except s0 are switched to i'0. When d =0100, s0 switches to iQ, 
and Si switches to drive the branch DAC, as shown. The remaining switches 
stay on i'0. 

Although the branching effect assures monotonicity, the transfer curve 
linearity can be much worse than the DLE. But in many applications, the DLE 
is all that matters for linearity. The match of the segment currents does not 
determine DLE, only the overall linearity. The segmented DAC uses fewer 
resistors since each segment requires only one resistor, not two as in a ladder 
network. 
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FIG. 12.10 Segmented DAC. One of four segments supplies current to m-bit DAC for m LSBs. 

A very simple DAC design is the serial-output DAC, easily realized by 
one filtered output line of a computer. A PWM generator, either in hardware 
or software, drives a low-pass filter with break frequency far below the PWM 
frequency. The average output voltage is proportional to the duty-ratio. The 
disadvantage of this scheme is that it is slow and inherently noisy due to ripple 
from the filtered pulse. But if the pulse amplitude is accurate and the transitions 
are fast, a high-resolution output is achievable in direct trade-off with response 
time. 

The ripple amplitude varies with pulse duration, which depends on the 
duty-ratio D. For high or low D, ripple is least and is highest at D = 50%. In 
steady-state, the ripple extends from vL to vH around the average, DV. The 
ripple amplitude, 

kv = vH-vL 

is derived from the decaying exponential, when the pulse is low: 

vH-vL Δν ( 1 - D ) T / T _ 

DV 
(12.19) 

The approximation assumes that ripple is small relative to average output 
voltage and that vH = DV Also, r is the filter time constant. Solving (12.19) 
for the ratio of PWM frequency to filter break frequency for 1 LSB of ripple, 
we obtain 

/PWM 2<7r( l -D) 

fb\ l n ( l - 2 ~ 7 D ) ' Δϋ= V, (12.20) 
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FIG. 12.11 A switched-capacitor serial-output DAC. C, = C2 

For four bits, / P W M must be 23.5/bw at D = 0.5 and 401/bw for 8 bits. At 10% 
duty-ratio for 4 bits, the frequency ratio is only 5.8 and is 8.7 for 90%. (At the 
extremes of £>, the approximation fails. At D = 2~n and D = 1, the ratio is 0.) 
Other pulse waveforms from rate-multipliers or statistically biased digital 
pseudo-random noise have less ripple for the same clock-to-filter frequency 
ratio but are harder to generate. 

A serial-input DAC is shown in Fig. 12.11, with three switches and two 
equal capacitors C, = C2. A serial digital input begins with the LSB. The DAC 
operates in two phases for each successive bit. On phase 1, switch 53 is open, 
and a serial input bit closes either Sx (for b = 1) or 52 (for b = 0), charging Cx 

to 

^ = CÒ,VR (12.21) 

On phase 2, Sx and 52 are open, and S3 is closed. 52 contains the net charge 
from previous cycles. On the /cth bit on phase 1, this charge is 

On phase 2, 53 closes, and 

V; = = — b.H 
2C \ 2 / ' 2 

For n bits, the voltage is 

- (T ) * + ( (^ - + ( ( 0 -= 
This iterative equation reduces to the closed form of 

vn = (YJ2-ib„.AvR=W(d)VR 

) ) ) 

(12.22) 

(12.23) 

(12.24) 

(12.25) 

After n bits, vn is the converted voltage. It must be stored separately for output 
during the next conversion. The number of bits of monotonie conversion is 
limited by capacitor matching and switch leakage. 
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(a) 

v0-<'o-£)*f 

v0 = Uo-'6)R 

(b) 

FIG. 12.12 DAC interface circuits: (a) offset binary and (b) symmetric outputs. 

12.3 Digital-to-Analog Converter 
Circuits 

In Fig. 12.12, digital-to-analog converters (DACs) are used as components in 
circuits. The DAC schematic symbol is used, with a small circle at ι'ό to indicate 
the complementary output, after the convention of logic symbols. In Fig. 
12.12a, the op-amp output is bipolar and is offset by /R/2 by a resistor of 2R, 
where R is the current-reference resistor. Without this offset, v0 is unipolar, 
ranging from 0 V to IfSRr. If we shift iQ down by 7R/2, v0 at negative fs is one 
^LSB greater in magnitude than positive fs. JR/2 corresponds to the midscale 
or zero state of d. The output is 

offset-binary v0 = ( i0-y J Rr= ( W-^\ IRRr (12.26) 

Some output values for a 4-bit d are tabulated: 

d IV-1/2 

1111 
1000 
0111 
0000 

7/16 
0 

-1/16 
-1/2 
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A two's complement coding of d produces the same results when the MSB is 
inverted. 

In Fig. 12.12b, the output range is symmetric about zero. The op-amp is 
driven differentially by the DAC output so that 

v0 = i0R - i'oR = (io-i'o)R = ( W-W)IRR = (2i0-Ifs)R (12.27) 

The expression for v0 in terms of W follows from (12.14) and (12.17). 
Compared with the offset-binary ouput, the symmetric-offset output range and 
step size are twice as large because ι'ό is used. The last expression of (12.27), 
compared with (12.26), has twice the gain (2i0) and a comparable offset 
difference of 

/ LSB 

2 2 2 
(12.28) 

This leaves the symmetric v0 with a VLSB/2 positive offset relative to the 
offset-binary output. Some 4-bit output values are the following: 

w- w 

1111 
1000 
0111 
0000 

15/16 
1/16 

-1 /16 
-15/16 

The extreme states have outputs of equal magnitude while zero is offset by 
^LSB/2. An inverted output results from exchanging the DAC outputs. 

A DAC bipolar current source with a current mirror is shown in Fig. 11.17. 
Another circuit that does not require a current mirror, Fig. 12.13, has similar 
topology to a Howland current source but is simpler in operation. The load 
current is 

* i . = -
R* 

i0Ri-i'0R2 i0Rl — iO(R2+Rs) lo = ιό = R* R* 
(12.29) 

FIG. 12.13 DAC output bipolar current source. 
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"ίΟτ̂ Ξ 

This reduces to 

FIG. 12.14 Reverse DAC configuration. 

ÌL = (^J0O-ió) , Rl = R2 + Rs (12.30) 

The differential current output from the DAC is converted into a bipolar 
single-ended current output. 

Since CMOS DACs are switched ladder networks, they can be used 
"backward" as in Fig. 12.14. The reference voltage is applied across the iQ 

terminals, and the voltage output is taken from where the reference voltage is 
normally applied. This scheme is similar to that of Fig. 12.4 without the op-amp. 
Because the CMOS switches are driven from the supply voltage Vc c , minimum 
switch resistance (and linearity error) results by keeping VR well below Vcc. 

rn 
(a) 

(b) 

FIG. 12.15 PGA using DAC in feedback path (a) and as input attenuator (b). 
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In Fig. 12.15, DACs are combined with op-amps to provide programmable 
gain. The PGA in (a) has a high gain but can have significant voltage offset errors, 
whereas in (b) the op-amp gain is limited to x 2. In both circuits, R is included in 
the DAC IC and matches and tracks the ladder resistances. The noninverting 
configurations are similar in concept. For applications in which the digital input is 
a dynamic signal and not merely a scale factor, it is multiplied by vx\ the DAC 
multiplies a digital by an analog quantity. 

12.4 Analog-to-Digital Converters: 
Parallel Feedback 

The inverse function of D/A conversion is analog-to-digital (A/D) conversion, 
performed by A/D converters (ADCs). We consider here four categories of 
ADCs, which include many variations. Approximate ranges for conversion 
rate and precision are given: 

ADC type conversion rate precision, bits 

integrating O.lHz-lOHz 14-20 
cyclic (serial) 1 kHz-100 kHz 10-16 
parallel-feedback 50kHz-5MHz 8-10 
parallel (flash) 5 M Hz-500 MHz 4-8 

Parallel-feedback converters are based on a concept similar to that of 
placing a function block in the feedback loop of an op-amp to achieve the 
inverse function. Figure 12.16 shows two realizations of the ramp converter. 
In (a), the digital form, a counter driven by a clock generates a digital sawtooth 
output. It drives a voltage-output DAC that outputs the ramp in analog form. 
When it crosses vx, the comparator output clocks the register and holds the 
digital count. When the counter overflows, the DAC output resets to its 
minimum value, and the comparator output goes low, completing the cycle. 
The comparator output is also an end-of-conversion signal indicating valid 
register data. 

In Fig. 12.16b, the same concept is realized with an analog current-source 
ramp generator. The counter overflow turns on the reset switch, discharging 
the capacitor at the end of the conversion cycle. The analog circuit is subject 
to errors in ramp slope relative to the clock frequency. The digital form in 
(a), although not having these timing errors, must have an accurate DAC 
reference voltage. 

A third realization of the ramp converter (Fig. 12.17) makes use of a 
microcomputer (μ€) (or any computer) and minimal additional hardware: 
an «-bit DAC and a comparator. The /xC must have one digital input bit from 
the comparator and n output bits to drive the DAC. The software algorithm 
for ramp conversion uses software variable, VX, to hold the digitized value 



632 / 12. Digitizing and Sampling Circuits 

(a) (b) 

FIG. 12.16 Ramp ADC: (a) digital and (b) analog realizations. 

of vx, and OUT to hold the DAC output value. The procedure is 

0. Ramp ADC 
1. Set OUT to zero: OUT^O. 
2. Input the IN bit. 
3. If IN = 0, then VX <- OUT; go to 1. 

Else increment OUT: O U T ^ O U T + 1 . 
4. Output OUT; go to 2. 

OUT 

IN 

n 
DAC 

< 

\ 
/ 

v x 

FIG. 12.17 General μC-based parallel-feedback ADC. 
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Conversion time is usually limited by the μ€, but for many applications, it is 
fast enough; and the few additional components are an advantage. The ramp 
ADC is a poor technique and is seldom used. The conversion time varies but 
can take up to 2" clock periods. 

Parallel-feedback converters have a generalized topology (Fig. 12.18). The 
type of logic block used determines the type of converter. The ramp ADC 
uses a simple counter. A slightly better ADC is the tracking converter. Its logic 
is a bidirectional (up/down) counter. As vx changes, the comparator output 
causes the counter to count up if the DAC input d is low and down if it is 
high. The counter servos the DAC to minimize input error at the comparator. 
Since the counter counts either up or down, the error is always ±1 LSB. For 
a dc input, a converged counter dithers by one state around the correct value; 
the comparator output alternates logic levels each clock cycle. 

The tracking ADC is an improvement over the ramp ADC because it can 
be used to follow an input signal, digitizing it as it occurs (that is, in real 
time). For small input changes, the counter must change only a few states. 
This is done in a few clock periods, and conversion is fast. For large input 
changes, such as a square-wave step, the converter shows slew-rate limitations 
and a longer conversion time. The DAC output slew-rate, if limited by the 
counting rate, is 

Vfs tracking ADC slew-rate = — · fCLK (12.31) 

The clock frequency is limited by the loop delay time: the DAC settling time, 
comparator delay time, and counter clock-to-output time. For a sinusoidal 
input, 

vx(t) = —sin <ot (12.32) 

its maximum slew-rate is wVfJ2 = 7r/Vfs. Equating to (12.31) and solving for 
the maximum fs sine frequency gives 

maximum fs s ine / ~U2") / c L K (12.33) 

CLK 

Ramp ADC: counter 
Tracking ADC: up/down counter 
Successive-approximation ADC: SAR 

FIG. 12.18 General parallel-feedback ADC. The logic block determines the converter type. 
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The tracking converter can be implemented with the same hardware as 
the ramp converter. Figure 12.17 also applies generally to parallel-feedback 
converters. Instead of hardware logic, the software logic distinguishes among 
parallel-feedback ADC types. A tracking ADC procedure, based on the same 
software variables as the ramp ADC, is 

0. Tracking ADC. 
1. Output OUT. 
2. Input IN. 
3. If IN = 0, then decrement OUT: O U T ^ O U T - 1 . 

Else, increment OUT: OUT«-OUT+l. 
4. Set VX to OUT: VX <- OUT. 
5. Go to 1. 

This procedure is not more complicated than that for the ramp converter but 
has the performance advantages of the tracking ADC. 

The tracking ADC is useful as a track-and-hold (T/H) circuit. The digital 
output follows the input signal until the clock is gated off or the count clocked 
into another register. Then the input value, in digital form, is held indefinitely; 
no analog hold circuit can do this. As we shall see about sampling circuits, 
and as we saw for peak detectors in Section 11.15, a capacitor can accurately 
maintain its charge for only a limited time. 

The circuit of Fig. 12.18 compares DAC voltage to vx at the comparator 
input. Current-output DACs require an additional / / V converter stage. In 
Fig. 12.19, a current-output DAC of either bipolar or CMOS type forms a 
voltage difference with vx by dropping i0R in series with it. The comparator 
now senses this difference against 0 V. This current-mode comparison works 
with bipolar inputs. The inputs of the comparator must be reversed from 
voltage-mode comparison, or the complementary current output of the DAC 
must be used instead. 

A third parallel-feedback converter is the successive-approximation (SA) 
converter, a very common conversion technique and the most popular of the 
parallel-feedback converters. It takes n + 1 clock cycles to convert n bits using 

νχ VsAA 

FIG. 12.19 Current-mode comparison at input of comparator. 
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a bitwise algorithm. It determines one bit per block cycle after an initialization 
cycle. 

In Fig. 12.18 its logic block is a successive-approximation register (SAR). 
This register can be realized by an M-bit shift register (SR) and n latches. [A 
latch is a kind of flop with a level-sensitive clock input. When the clock is 
asserted (high), its output follows its input; when the clock is unasserted, the 
output remains with the value at the falling edge of the clock.] At the start of 
conversion, the SR bits are cleared and the MSB set. The latch feeds this 
digital midscale value to the DAC. If vx is larger than midscale, the comparator 
output is high. When the clock goes low, the MSB is latched. The next clock 
edge shifts the 1 bit in the SR to the n - 1 bit position, and the cycle is repeated. 
In effect, beginning with the MSB, n decisions are made, each of which narrows 
the range of possible values for vx by half. The convergence rate of this 
procedure is on the order of log n, and the conversion time is independent of vx. 

The generic hardware of Fig. 12.17 is again used to implement a /xC-based 
SA ADC. The procedure is only slightly more complicated than previous ones 
but is usually well worth the speed increase. Besides the IN and OUT address 
locations, the software model is shown in Fig. 12.20. SAR is a variable that 
emulates the SAR latch. Variable SR emulates the shift register, which has an 
additional "carry-bit" stage that is included in the shift loop, as shown. This 
formulation suggests the efficiency of assembly-language programming because 
most /iCs have a carry bit and a "rotate right" instruction that includes the 
carry bit (C). Both software variables can be μC registers. In the following 
procedure, bitwise logic operations of AND, OR, and NOT (logic negation) 
are used and are μθ instructions. For /^Cs without a NOT instruction, X is 
complemented by using the exclusive-OR (EOR or XOR) instruction with 
binary 1111 . . . (all binary ones, a two's-complement - 1 , or hexadecimal 
FFF . . . ) and X. 

0. Successive-approximation ADC. 
1. Clear SR and SAR: SR*-0; SAR^O. 

Set C to one: C«- l . 
2. Rotate SR right. 
3. If C = l, then return. 
4. Output SR OR SAR to OUT: O U T ^ S R OR SAR. 

c SR Shift register 

Carry bit SAR SA latch 

FIG. 12.20 Software registers for successive-approximation ADC algorithm. 



636 / 12. Digitizing and Sampling Circuits 

5. Input from IN. 
6. If IN = 1, then go to 2. 
7. Else, set SAR to SAR AND SR: SAR^SAR AND (NOT SR). 

(Alternative: SAR<-SAR AND (SR EOR 1111. . . ). 
8. Go to 2. 

The 1 bit, initially in C, is shifted right, into SR, one bit per iteration. When 
it gets back to C (step 3 checks this), the procedure is done. Step 4 sets the 
SR 1 bit in the SAR. If the comparator (IN) is high, vx is still greater than 
the SAR value, and this test bit is left set. If IN is low, the set bit made the 
SAR value too large, and it is cleared in step 7. Each bit, beginning at the 
MSB, is tested and then left set or cleared in SAR. 

A speed enhancement for SA converters is to increase the clock rate after 
the first or second bit is determined. These bits have the most range and require 
the most slew time of the loop hardware. The less-significant bits cause less 
comparator voltage change and can be determined more quickly, allowing an 
increased clock frequency at the expense of more digital hardware. 

The ramp and SA converters do not function correctly unless vx is constant 
during conversion. For dynamic inputs, a sample-and-hold (S/ H) must precede 
the ADC. 

12.5 Integrating Analog-To-Digital 
Converters 

A second category of ADC integrates vx and outputs its average value over 
the conversion period. The dual-slope ADC of Fig. 12.21a is an instance. The 
input to an op-amp integrator is switched between input vx < 0 and positive 
voltage reference VR. The integrator output zero-crossing is detected by a 
comparator, and the count of a free-running counter is clocked as the digitized 
output. The conversion starts when the counter is reset and vx is switched into 
the integrator. The ramp output has a slope of -vx/ RC and ramps up until 
the counter overflows. For an n-bit counter, this phase lasts 2" clock cycles 
or T amount of time. In the second phase, the reference is integrated instead. 
Since its polarity is opposite that of vx, the slope changes polarity (Fig. 12.21b). 
When the integrator output crosses zero, the comparator latches the count. 
The second phase lasts for tx time. The converter then begins another cycle. 

Since the change in integrator output voltage Δν0 is the same for both 
phases, 

^^τ=^·'^Άν)τ (ΐ2·34) 

For a constant-frequency clock, the counts relate to the times by 

N = / C L K - A / (12.35) 
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v x . 

VR 

Toggle flop 
Counter 
overflow 

(a) 

NX 

ii 
C REG 

\n 

;CNTRC ■CLK 

(b) 

FIG. 12.21 Dual-slope integrating ADC topology (a) and dual-slope waveform (b). 

Therefore, the output count is 

M?> (12.36) 

Dual-slope converter accuracy is not dependent on long-term drift in R, C, 
or/cLK, only VR. What this analysis assumes is a perfect op-amp and compara
tor. Their input offsets and delay times degrade converter accuracy. 

Most actual dual-slope converters correct for offset by introducing a third 
auto-zero phase before phase 1. In addition, for digital voltmeters (DVMs), 
a high input impedance is desired, and a buffer amplifier is added before the 
integrator. An alternative is the noninverting integrator (Fig. 12.22). If the 
DVM ground is "floating" (not connected) to the measured source, then the 
x l buffer provides high input impedance as it supplies the charging current 
for C through R. 

Bipolar inputs require another reference, — VR. Reference selection is 
determined by the comparator output at the end of phase 1. Another design 
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FIG. 12.22 A high input-impedance integrator for a floating circuit. 

option for bipolar inputs is to exchange the input terminals by switching. This 
scheme, however, has difficulty with vx near zero. Offsets can cause the readings 
for + vx and -vx to have different magnitudes. More significantly, when offsets 
dominate the input, the converter can integrate with the wrong (shallow) slope. 
When the reference is integrated, it is of the same polarity, and v0 never 
crosses zero. To avoid switching in the wrong polarity of reference, hysteresis 
around zero is sometimes added. But all of this is avoided with two references. 

Another input circuit is a V/1 converter and a current reference. This 
eliminates R from the integrator and could also eliminate the op-amp in some 
designs. 

The accuracy of the dual-slope ADC is extended by the triple-slope ADC. 
An additional comparator senses that v0 is approaching 0 V and switches in 
a smaller reference and another counter. The slope magnitude decreases for 
this next phase and the time duration is extended. The extra counts contribute 
additional LSBs. 

At somewhat less speed, the simpler modified dual-slope converter (Fig. 
12.23a) uses only one switch and integrates the input during both phases. In 
phase 1, the negative reference - VR is integrated along with the input. If we 
assume VR> |ux|, the integrator output has a positive slope. When it reaches 
comparator threshold voltage Vc, the reference is switched off, and vx 

integrates until the counter overflows at T. The integrator voltage, v0, at this 
time depends on vx. The next conversion cycle thus begins at a different initial 
v0. 

The conditions for convergence of v0 (and a steady digitized value) are 
found by solving for v0(i) where i is the cycle index. For the new cycle, 

O0(i + l) = v0(i) + utx(i) + d[T-tx(i)] (12.37) 
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NX 

νχ ^ W — f - ^ Ïï^-W 
Q s 

R 

RSflop 

(a) 

v 0 ( « + 1) 

(b) 

C REG 

I n 

TCNTRC ■CLK 

FIG. 12.23 Modified dual-slope ADC topology (a) and dual-slope waveform (b). The input is 
integrated for both slopes. 

where the slopes are 

vx- VR VR~ VX 
u = 

VX 

RC RC ' d = ~ ^ ^ V R > ° ( 1 2 3 8 ) 

Also, from Fig. 12.23b, 

txii)=^z^=Y±z«âii.RC 
u VR-VX 

Substituting for tx in (12.37) gives 

Vo(i+D = yf) v0(i) + \ Vc ( 1 -£\ + dT\ 

(12.39) 

= av0(i) + b (12.40) 

This difference equation is solved by expanding several iterations, beginning 
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with i = 0. The resulting recursion equation for / + 1 = n is 

v0(n) = anvo(0) + (γ^Α b9 \a\ < 1 (12.41) 

and is attained by using the geometric-series formula 

N-\ \-zN 

Σ^=~ > M<1 (12.42) 
k = o 1 _ z 

The series converges only when \z\ decreases with increasing k. For the 
converter, the convergence condition is 

< l => -d<u => — < RC =Φ ι ^ χ < γ (12.43) 

That is, i;x must not exceed half the reference voltage VR. Or, in time, tx < T/2. 
The converged (or steady-state) value of v0 can be found by letting n go to 
infinity in (12.41) or by setting 

v0{i + \) = v0{i) 

in (12.40) and solving for v0: 

( ud \ 
steady-state v0= Vc + I I T (12.44) 

where the second term is always negative, as required for v0< Vc. With νθ9 

we can now find tx from (12.39): 

steady-state tx = ( — 7 ) T= ly-j T (12.45) 

But this is the same as (12.34), and the digital output is expressed by (12.36). 
The modified dual-slope converter has the same transfer characteristic as the 
dual-slope ADC, though its dynamic response is first-order and takes a few 
cycles to converge. 

In this realization of the modified dual-slope ADC, the Rs must match. 
Vc need not be accurate, only stable during convergence. Both Rs can be 
eliminated by driving the integrator with a V/1 converter for vx and replacing 
R and - VR with IR. The switch must then be a current switch. This can be 
accomplished by letting the flop output divert IR through a diode. For low 
leakage, a transistor is used instead. The RS flop consists of two cross-coupled 
NOR gates. The other two gates in a quad NOR-gate IC implement the clock 
generator. 

Since tx must be kept less than T/2, the fs tx is set at T/4 by adding two 
additional bits to the counter (for n + 2 bits total). This wastes 50% of the 
available integration time but is easy to implement (by a dual flop IC) and 
gives the converter a near-100% overrange capability—an additional half-
digit. Besides the register and counter, the total parts count is less than a dozen 
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v x — A V f * 

FIG. 12.24 Quantizing ADC. The logic block changes from the RS flop of Fig. 12.23 to a D flop. 

to implement a three-digit DVM. (A featureless converter such as this is usually 
called a digital panel meter (DPM) instead.) 

Dual-slope ADCs require a large v0 range to achieve precision. An idea 
that is the digital analog of the virtual ground is realized in the charge-balancing 
(or quantizing or delta-sigma) ADC of Fig. 12.24. The circuit topology is very 
similar to the modified dual-slope ADC, but it works differently. The big circuit 
difference is that the flop driven by the comparator is clocked, a D-type flop 
instead of an RS flop. 

On a given cycle of the clock, the reference is switched in or out of the 
integrator to keep v0 near ground. The comparator output gives the sign of 
the error. In other words, v0 is nulled by discrete-time feedback. The number 
of clock cycles that the flop was high, Nx, over the total number of conversion 
counts N, indicates vx. 

The transfer characteristic is calculated by constructing the charge-balance 
equation for the total charge from vx and - VR input to the integrator. For 
v0 = 0, they must be equal, or 

QX = QR (12.46) 

(12.47) 

These charges are the sums of the per-cycle charges: 

</x = ( f ) r C L K , 9R = ( ^ ) T C L K 

The total charge of each depends on the number of cycles each is integrated. 
Then 

Qx = qxN = (jf)NTCLK, QR = q*Nx = (j^)NxTCLK (12.48) 

Then substituting into (12.46) and solving for the output, we obtain 

"»-(?>-(?> (1M9) 
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for an «-bit conversion-time counter. This result is, again, the same as for the 
previous converters. 

The charge-balancing circuit we have analyzed is also used as a modulator 
for serial digital telecommunications (in CODEXs) and speech processing. 

An advantage of the integrating ADC is its measurement of the average 
vx. By integrating, it has inherent noise rejection and does not need a S/H 
circuit. The noise rejection capability is quantified by beginning with a dc Vx 

with sinusoidal noise added: 

vx= Vx+ VNsinwNi (12.50) 

The integrator averages vx over the conversion period Γ, so that 

1 
avg vx = -

V 
vxdt=Vx + ̂ -(l-cos<üNT) (12.51) 

o ω Ν Γ T 

The normal-mode rejection (NMR) of the noise is 

input noise V^ ωΝΤ / 1 0 C ^ 
NMR= — = ττ—, — =r = - (12.52) 

output noise ( νΝ/ωΝ.Γ)(1 — cos ωΝΓ) l - coscu N i 
Since ωΝ = 2nfN, and 1 — cos 2x = 2 sin2 JC, then 

π/ΝΤ 
sin2(77-/N7) 

NMR= . 2 ; r ^ (12.53) 

In the decibel scale this is 

NMR(dB) = 20 log NMR = 20{log(ττ/Ν T) - log[sin2(77-/N T)]} (12.54) 

A t / N = n/T, for whole-number n, NMR is infinite. In practice it is typically 
about 60 dB of rejection. An exact number of noise cycles fit the integration 
interval T, and the sum of the areas of their positive and negative half-cycles 
cancel (Fig. 12.25a). As / N varies from n/T, the half-cycles of noise at the 
ends of the interval are truncated and contribute some fraction of a half-cycle. 
Figure 12.25b shows the worst case, in which an entire extra positive half-cycle 
is integrated a t / N = 1.5/ T. For rejection of power-line noise,/N is often chosen 
to be a multiple of the power-line frequency. 

More significant are the NMR minima of π/ΝΤ. They occur midway 
between the maxima, a t / N = 1.5η/ Τ. As / N increases, according to (12.54), the 
NMR minima increase at 20dB/dec. At noise frequencies of about n times 
1/T, about n cycles of noise occur during T. The more half-cycles, the less 
each contributes to the integrated total. Thus, a fraction more of a half-cycle 
contributes less error the higher/N is. Note that NMR is the reciprocal of the 
integrator frequency response, which rolls off at 20 dB/dec with periodic notch 
filters. 
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(a) 

(b) 

FIG. 12.25 Integration filters out harmonics of integration period (a). The worst case (b) is the 
net addition of an entire half-cycle of noise. 

12.6 Voltage-to-Frequency Converters 

A special kind of integrating ADC converts input voltage or current to a pulse 
frequency. It is a kind of linear VCO or FM modulator with digital output. 
The topology of the voltage-to-frequency (V/F) converter (VFC) is similar 
to previous integrating ADCs (Fig. 12.26a). As with parallel-feedback conver
ters, the topological variations among integrating ADCs is in the logic block 
driven by the comparator. For the asynchronous VFC, a MMV replaces the 
flop of the charge-balancing converter. 

The operation resembles the modified dual-slope ADC. When the 
integrator output v0 goes below Vc, the comparator output goes high, triggering 
the MMV and turning on the reference switch. The MMV time-out is th, the 
time that the output pulse t?f is high. During th9 v0 ramps up with a slope of 
u. When the MMV times out, the reference is switched out, and vx > 0 causes 
v0 to ramp down with slope d. Slopes u and d are the same as those in (12.38). 
The change in v0 over one cycle is 

kv0=uth = - vx 
RC 

From this, 

-*?-(£-)* 

(12.55) 

(12.56) 
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v x—vW T * 

LU 
(a) 

(b) 

FIG. 12.26 Asynchronous VFC. The logic block is a MMV (a). Integrated waveform and digital 
output pulse timing (b). 

The output period is the sum of the half-cycles, or 

/ VR \ VR 

Finally, the output frequency is 

/ = I /Mi 
T \vjth 

(12.57) 

(12.58) 

This formula is similar to that of previous integrating ADCs except that it 
depends on th, the MMV time-out duration, instead of a counter overflow 
period. Since th is typically set by an RC circuit, asynchronous VFC accuracy 
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is limited by it. The accuracy also depends on the matching of the R, but the 
analysis could have been based on an input current ix and reference current 
IR instead. The resistors are implementation dependent and not fundamental 
to the operating principle. 

The LM331 is an 8-pin VFC IC (Fig. 12.27a). Instead of using an op-amp 
integrator, it avoids op-amp error by integrating with a shunt RC that is 
maintained at vx. The shunt RC voltage v0 must be kept small to avoid 

LM331 

R< Cit: 

«RC 

(a) 

FIG. 12.27 LM331 8-pin VFC IC (a) uses charge-balancing at v0 (b). Δι>0 must be kept small 
to avoid nonlinearity. 
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nonlinearity. If the exponential waveforms of v0 (Fig. 12.27b) have a time 
constant RC that is much larger than fh, they are approximately linear. By 
keeping f0 = ^x, the LM331 performs charge balancing at v0. The charge 
through R over T must be the reference charge during T, or 

- 2 . T s - ^ . T = / R / h ) th<<RC 

Solving for / = 1/ T gives 

/ th« RC 

(12.59) 

(12.60) 

This result is also valid for a charge-balancing VFC with a linear integrator 
but without the constraint. The typical fs frequency is 10 kHz at an output 
duty-ratio of 50%. Unlike the modified dual-slope ADC, no convergence 
condition exists, but as t{ approaches zero, the fs frequency asymptotically 
approaches \/th of 20 kHz. Since the MMV timing is based on a threshold 
voltage of fVcc, then 

ih = Ä h C h l n 3 - l . l Ä h C h (12.61) 

Also, JR=1.9V/f lR . 
A more precise analysis, calculated from the exponential v0, yields a 

period of 

T=RC\n fe>-" /RC\ ■1) + 1 (12.62) 

For th«RQ 

(e-'»'RC-l) = 0 

We now apply the approximations 

ln( l+ *) = *, x = 0; ex = l + x, x = 0 

to (12.62): 

T=RC mm-(fh th« RC 

(12.63) 

(12.64) 

This period is consistent with (12.58). For applications in which a compressed 
scale for vx is desired, the nonlinearity of this converter can be advantageous, 
thereby invoking the addage "if you can't fix it, feature it." 

The VFC is most sensitive to noise at zs, when the downslope d is 
shallowest, causing comparator output jitter among crossings of its threshold, 
and thereby jittering / However, the VFC is an integrating type of ADC 
because a frequency measurement requires counting vf over a known period. 
This counting function is the digital equivalent of integration. The longer the 
count interval, the more the input is averaged, the greater the precision, and 
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also the slower the conversion rate. For faster conversion at the same precision, 
the fs frequency must be increased. By changing count intervals, we can make 
speed-precision trade offs without a converter change. 

The drift in MMV th can be averted by using a digital timer with an 
accurate clock. Then th would, on the average, be accurate. Since the clock is 
asynchronous with the comparator output, the timer has phase jitter and the 
time-out varies up to a complete clock cycle. Elaborate schemes have been 
devised to synchronize a digital counter with an asynchronous trigger to 
produce an accurate time-out. One simpler scheme combines an analog ramp 
generator with a counter. The ramp slope is set to Vc/TCLK, where Vc is a 
comparator threshold. The trigger starts the ramp. It runs up until the active 
clock edge occurs. The ramp output is held constant until the counter overflows. 
(More likely, it is a down counter that underflows.) The ramp is restarted. 
When it crosses Vc, the comparator signals the time-out. The counter counts 
one less cycle than is required for the time-out because the ramp generator 
adds a cycle. Its slope error affects the time-out as an error in only one clock 
period. 

Instead of substituting a clocked timer for the MMV, the synchronous (or 
clocked) VFC operates similarly to the charge-balancing ADC except that the 
reference is turned on for only one clock cycle at a time. The comparator 
output switches the reference only at the active clock edge (Fig. 12.28). The 
D-flop input is gated to enable its output to be high for the cycle, thus generating 
the output pulse. In commercial synchronous VFCs, the flop output triggers 
a MMV that sets the output pulse width. 

The dual-slope waveform of v0 is synchronous with the clock only at 
discrete values of vx. For vx between these quantum levels, the average level 
of v0 slowly drifts due to accumulating phase error (Fig. 12.29). The comparator 
edge drifts relative to the clock, causing the reference on-time to change 
linearly. This causes the average level of v0 to ramp up or down. When the 
phase between comparator and clock outputs drifts by a full clock cycle (or 
2π radians of phase), the comparator and clock are again in sync; v0 has 
drifted to a quantum level where the phase error is zero. Since comparator 

(a) 

Comparator | 
output 

CLK "LTLTL 

(b) 

FIG. 12.28 Synchronous VFC logic block. The output also drives the reference switch and is 
allowed to be high for only one clock period at a time. 
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φ delay = 0 

' φ delay = (2ττ)" 

Comparator 
output 

CLK 

FIG. 12.29 Timing waveforms for synchronous VFC show effect of asynchronous comparator 
input. Phase φ drifts linearly from cycle to cycle, but average error (over many cycles) is zero. 

and clock edges can coincide, the output can be indeterminate for some time, 
causing frequency jitter. (See Section 11.9.) A kind of trigger-generator circuit 
is required for high performance. 

12.7 Parallel and Recursive Conversion 
Techniques 

The fastest ADCs are parallel or flash converters. They have a resistive-divider 
string of 2" resistors for an n-bit converter. Each resistor drops VLSB and sets 
the reference input on one of 2" latching comparators that drive an encoder. 
A clock stores the data as 2" decisions are made simultaneously: 2n -1 for n 
bits of conversion plus one for overrange detection. No S/H function is 
required. Because the circuit complexity grows exponentially with the number 
of bits, these converters trade off cost, simplicity, and lower power for speed. 
Also with complexity comes a loss of precision because many parts must meet 
design tolerances. 

Parallel ADC power is reduced by CMOS implementation. Switched-
capacitor comparators designed from CMOS logic inverters (see Fig. 9.35) 
reduce power over BJT comparators and can be easily auto-zeroed. But for 
many applications, the optimum criteria are less complexity and more precision 
at somewhat reduced speed. This has led to conversion topologies that use 
m-bit parallel ADCs to digitize n > m bits by iteration. 

The multistage or subranging flash converter of Fig. 12.30 has two stages 
of flash ADCs. The first ADC converts m bits. These MSBs drive a DAC. Its 
output is subtracted from the input. This remainder or residue is a fraction of 
one VLSB of the first converter. It is the difference between vx and the m-bit 
quantized vx. The second ADC converts this remainder for the remaining 
n-m LSBs. If its input range is the same as ADC1, then each VLSB (each 
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MSBs 

► LSBs 

FIG. 12.30 Two-stage parallel ADC feedforward topology. 

step) of ADC1 spans the input range of ADC2, and the remainder must be 
multiplied by 2m for proper scaling. Consequently, ACD1 must have n-bit 
accuracy in the placement of its voltage levels or steps. Also, to avoid misalign
ment in time, or phase error, subtraction from vx requires that vx be delayed 
by the same amount as the path delay of ADC1 and the DAC. 

This idea can be taken further. To save on ADCs and DACs, the recursive 
subranging ADC has a feedback topology (Fig. 12.31) instead of the feedfor
ward topology of the multistage flash ADC. In effect, it is a parallel-feedback 
converter with an m-bit comparator (the ADC) instead of the usual one-bit 
comparator. It requires n/m iterations or cycles for n-bit conversion. For each 
iteration, beginning with the m MSBs, the ADC output is stored in m bits of 
an M-bit output register. The multiplexer (MUX) directs the bits. The PGA 
gain is increased by 2m each iteration. This ADC technique requires a hold 
circuit for vx. 

The multistage idea can be taken to its limits by converting one bit per 
stage (Fig. 12.32). In this n-stage flash ADC, each ADC is a comparator 
designed to have accurate output levels of 0 V and VR/2 V. Instead of iterating 
in time, this design iterates hardware stages. It needs no hold on vx since vx 

ripples through the stages, being processed as it goes, much like a distributed 
amplifier. Since it is a bitwise converter, it implements the SA algorithm in 

FIG. 12.31 Recursive subranging ADC, a feedback form of Fig. 12.30. 
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FIG. 12.32 An n-bit «-stage ADC with 1-bit ADCs (comparators) at each stage. 

space (hardware), instead of in time as the SA ADC does: 

(12.65) 

where vn = vx. 
This same idea has been used in John Fluke Co. DVMs, called the 

recirculating-remainder or cyclic converter (Fig. 12.33). It follows a similar 
recursive equation: 

Vi = 2\vi+l\-VR (12.66) 

where vn = vx. In the M-stage flash ADC, the remainder passed to the next 
stage is always positive. Here, the error is bipolar; its sign determines the bit. 
It is made positive by \v\, amplified by two and then subtracts VR. The block 
diagram in Fig. 12.33 can be repeated, like the «-stage flash, or a S/H can 
hold the output for recirculation n times. 

The serial bit output is ordered MSB first, but the encoding is in Gray 
code. This code is commonly used in mechanical shaft position encoders 

K i + 1 -

FIG. 12.33 One stage of a recirculating remainder ADC. 
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because only one bit changes between adjacent states. If the bit outputs are 
misaligned, an error of only ±1 LSB occurs. Gray-code encoders are used in 
fast flash converters for the same reason; any time-skew among output bits 
between two successive outputs results in at most 1 LSB of error. Gray code 
is converted to offset binary by the formula 

bi = bi+l®gi (12.67) 

where ò, are output offset-binary bits, g, are input Gray-code bits, and Θ is 
the exclusive-OR logic operation. 

12.8 Time-Domain Sampling Theory 

The explanation of A/D conversion assumes that a voltage at one point in 
time is converted. For a dynamic signal, some means of sampling a voltage 
at an instant and holding this voltage constant is essential to the conversion 
process. Even flash converters require that all comparators sense vx at the 
same instant. Delays in the latching clock and the input among comparators 
causes this time instant to be instead a time interval ia, called the aperture 
uncertainty or aperture jitter. Besides this, there is delay from the clock edge 
to when the input is actually sampled, or aperture delay. 

Aperture jitter limits the maximum sine frequency of vx that can be 
digitized. For a frequency f, all comparators must settle within one VLSB or 
2~nVfs for n bits. The sine slew-rate is 2nfVfs for worst-case. Then ra must be 
less than the time taken to slew 1 LSB, or VLSB; that is, 

maximum slew-rate 2nfVfs 2"+ιπ/ 

The maximum sine frequency for a given aperture jitter is thus 

maximum s ine / = —n (12.69) 
2 7TÌa 

An 8-bit converter with 100 ps aperture jitter has a maximum digitizing band
width of about 6 MHz. By its nature, aperture jitter is a statistical quantity, 
leading to rms values of the quantities calculated with it. 

ADCs that require their input to be held constant over their full conversion 
period must be preceded by a sampling circuit that then holds the sampled 
value constant. These are sample-and-hold (S/H) circuits. DACs are inherently 
digital hold circuits. They hold the sampled output constant and effect a 
zero-order hold (ZOH). A S/H variation is the track-and-hold (T/H) circuit. 
Its output follows the input in the tracking mode. S/H theory also applies to 
T/H circuits. 

S/H circuits are based on an underlying theory that has general application 
to discrete-signal (or sampled-data) systems. We begin its development in the 
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v(Oj u(t){ 

EL 
Δ-Μ) 

dv(t) 
dt 

1 
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(a) 

5(0 

4 

(b) 

FIG. 12.34 Unit step function (a) and impulse function (b) result from a limiting process. 

time domain with the step and impulse functions (Fig. 12.34). The step function 
is derived by taking the limit of v(t) in (a) as Δ-»0. Then for i < 0 , u(t) = 0, 
but at f = 0+, it is 1. Similarly, the impulse function (in a limiting sense) is 
derived in (b) as the derivative of v(t). As Δ->0, the width of the rectangular 
pulse goes to zero, but the amplitude goes to infinity. The area remains constant 
in the limiting process and is the "weight" or "strength" of the impulse. In 
the limit, 

im -dt = lim 
Δ 

(12.70) 

The unit impulse has unit strength at t = 0 and is zero elsewhere so that 

8{t)dt = \ (12.71) Γ 
Now multiply 8(t) by a continuous function v(t) in the integral. Since δ is 
nonzero only at zero, v(0) effectively weights δ(ί), and 

Γ v(t) 8(t) dt = v(0) (12.72) 

v(0 MO *(0-

i 

i 

I i ï i 
i K 

t 

y(0 

FIG. 12.35 A signal v{t) is impulse modulated or sampled by multiplying it by an impulse train. 
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■ v* (0 

*rs 

FIG. 12.36 Schematic representation of sampling switch. It closes momentarily every 7S and 
transforms continuous v(t) into discrete v*(t). 

i 
More generally, if δ is shifted in time by kT, then 

v(t)ô(t-kT)dî = v(kT) (12.73) 

This can also be expressed as an integral with t as upper bound: 

I v(r)ô(r-kT)dr=v(kT), t>kT (12.74) 

The impulse function is central to sampling theory. A periodic sequence 
(or "train") of impulses conveniently characterizes the sampling process. A 
repetitive 8(t) with period Ts is the sum of an infinite number of time-shifted 
impulses spaced Ts apart, or 

oo 

SP(/)= Σ 8(t-kTs) (12.75) 

When v(t) is multiplied by δΡ(0, a sampled form of v(t), or v*(t), results: 
OO 

v*(t) = v(t)8P(t)=Yiv(kT,)6(t-kTt) = v(kTs), fc = 0 , l , . . . (12.76) 
k=0 

The resulting function is nonzero only where the impulses occur, with strengths 
determined by v(t) (Fig. 12.35). The amplitudes of the impulses, though 
infinite, graphically represent their strengths, which are determined by v(t). 
This is the behavior of the ideal sampler, a switch that closes only for an instant 
(Fig. 12.36). 

Two equivalent graphic representations of v*(t) are shown in Fig. 12.37. 
According to (12.76), the discrete v(t) for t = kTs in (a) is equivalent to the 

v(kT) v*(0 

» - · - · - , y(t) 

T 3T 5T 

(a) 

ny-
T 3T 5T 

(b) 

FIG. 12.37 Equivalent representations of a sampled function: (a) v(kT) is discrete v(t), and (b) 
v*(t) is weighted impulse train. v(kT) = v*{t). 
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weighted-impulse representation of (b): 

sampled v(t) = v*(t) = v(kTs) 

Consequently, 8P(t) can also be interpreted as a sequence of unit samples. 

12.9 Frequency-Domain Sampling 
Theory 

In the frequency domain, sampling is impulse modulation; v(t) amplitude-
modulates the impulse train. The Laplace transform and Fourier series reveal 
another perspective on sampling and lead to important design criteria. 

To derive the Laplace transform of v*(t), we begin with 8(t) and adapt 
(12.72) to give 

Γ oo 

£{δ(ί)}= 8(t)e-stdt = e°=l (12.77) 
Jo 

Second, the Laplace transform of δΡ is found from (12.75) using (12.74): 
OO 

^ { M i ) } = Z e " s k T ' = Ap(j) (12.78) 
/c=0 

where Ts is the sampling period. One period of a function / i ( 0 , such as a 
single cycle of a sinusoid, can be made repetitive as the series 

oo 

/ (0=/ ι ( ί )+ / ι ( ' - :Γ , )+/ 1 ( / -2Γ, ) + · · · = £ / , ( * - « ; ) (12.79) 

Given Se{fx{t)} = F^s), then 
oo 

nf(t)} = F,(s) + F,(s) e-^+FM e-*2T>+- ■ ■= £ F,(s) e~skT> (12.80) 
k = 0 

Applying the formula, 
OO Λ 

k=0 

to (12.79) gives 

Λ , .z\<l 1 - z 

^ { / ( 0 } = 7 ^ % , | e _ l 7 ; l < i (12.81) 
1 — e 

This is now applied to δΡ: 
2{8P(t)} = ΔΡ(5) = γ - ^ , \e-T-\ < 1 (12.82) 

Finally, the Laplace transform of v*(t) is 
oo oo 

2{υ*0)} = V*(s) = Σ v(kTs) Ap(s) = Σ v(kTs) e~skT< (12.83) 
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This infinite series of exponentials in s makes V*(s) nonalgebraic and is 
unwieldy for systems analysis. It does, however, resemble the Laplace trans
form of v(t) for t = kTs. It is simplified by a change of variable, 

z=esT> (12.84) 

Solving for s, we get 

*=ψ lnz (12.85) 

and substituting for s in (12.83) yields 
oo 

V * ( s ) L u / r „ n Z
 = ^ M ' ) } = Σ v(kTt)z~k (12.86) 

fc=0 

The operator 2E is the Z transform. The Z transform of v(t) is written as V(z), 
with the understanding that this is not V(s) with z substituted for s. Note that 
z is a shifting variable; z~k shifts u(fcT) by /c periods. The Z transform is used 
in sampled-system analysis the way that the Laplace transform is used with 
continuous functions. The s-domain offers a continuous view of discrete signals 
and the z-domain a discrete view of continuous signals. 

We now express v*(t) using the Fourier series. Repetitive v(t) with 
frequency ωδ can be expressed as the sum of sinusoids at integer multiple 
frequencies (or harmonics) of ω8: 

îen 

an 

v(t)= 52 + 

Î 
dc 

term 

2 r>/2 

" 7 ; . 

2_, an cos «ω, 
/i = l 

Î 
even 

harmonics 

v(t) cos(na)j) dt, 
- T . . / 2 

f + 51 h sin ηω8ί = 51 <V. ^ηω"' (12.87) 
n = 1 n = —00 

î 
odd 

harmonics 

2 rjl 
bn=—\ v(t)sin(nü)st)dt (12.88) 

-'s J-T./2 

and for the complex Fourier series, 

_J_ TJ2 
v(t) e-Jnw''dt (12.89) 

-Ts/2 

The two representations are equivalent, and are related by 

\\cn\\=ya2
n + bl, ^ = t a n - { M (12.90) 

Even functions of time have no sine terms; odd functions have no cosine 
terms. Some v(t) can be made odd by subtracting a dc offset. The odd function 
is then transformed and the offset is added as a dc term. 

In actual samplers, the sampling signal is an approximation to an impulse 
train. It has finite amplitude and time duration. The effect this has on sampling 
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v(0 

A 

+ + ~T " 2 0 f T 

FIG. 12.38 Pulse train. As τ-*0, it approaches an impulse train. 

can be found by assuming the sampling signal to be a pulse train with amplitude 
A and pulse width r (Fig. 12.38). Let ω„ = nws. Since v(t) is centered around 
t = 0, it is an even function, and 

2 Λ Γ / 2 ,Λ, A SÌn("W2) 
a„ = —- \ cos cont dt = Ar —— 

's J-T/2 ω π τ / 2 

(12.91) 

where the discrete an have the continuous envelope of the form 

sin x 
sincx = 

shown in Fig. 12.39 for x = ωητ/2 = nn(r/Ts). Instead of an impulse, sine JC 
is the result of finite-width sampling pulses. 

As τ-»0, the pulse train approaches an impulse train. The separation of 
αη(ω) decreases in frequency. If instead we let Ts increase, then the effect is 
the same; harmonic frequency separation decreases. As Γ8^οο, the an merge 
into a continuous sine function with a continuous frequency spectrum: 

. /2ττ(η + 1) 2πη\ 2π 
hm Δω„= hm v ' - — )= lim — = 0 12.92) 

As T ^ o o , the function becomes aperiodic, and the Fourier series becomes 
the Fourier transform: 

r+oo 
^{»(0}=V(»= v(t)e-ju"dt (12.93) 

J - o o 

FIG. 12.39 Frequency spectrum of single pulse of Fig. 12.38 centered about origin is a s ine / 
[ ( s i n / ) / / ] function. As τ decreases, sine broadens to a constant. 
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In the limit, (12.87) undergoes these changes: 

Σ <*-* ν θ ω ) , kù)s^>ù), At->dt (12.94) 

Except for the lower limit of integration, the Fourier transform is a special 
case of the Laplace transform when s =jœ. The unit step and impulse functions 
have no Fourier series, but they have Fourier transforms. 

As Ts increases (or r decreases), the sine response broadens until, in the 
limit, it is constant over all frequencies. Thus, the frequency response of an 
impulse is independent of frequency, as (12.77) shows. 

The frequency spectrum for δΡ is 

T 

Γ / 2 / oo \ 

Σ S(t-kTs)) 
-TJ2 \/c = -oc / 

«(r-fcTJ je-'"""«'A = - (12.95) 

This spectrum is also flat for all frequencies with a constant amplitude of 1/ Ts. 
It differs from the spectrum for 8{t) in that it is discrete. The Fourier series 
of the impulse train is 

2TT oo 1 _°°. 

M O = Σ s(t-kT)=-- Σ e"""·', (12.96) 
[ s n = - o o 

The waveforms of δΡ in both the time and frequency domains are shown in 
Fig. 12.40. This representation of δΡ leads to a different expression for ^{δΡ( t)}, 
from that of (12.83): 

Λοο / 1 °° 
nsP(t)}= v(t)(- Σ 

J - oo \ - ' s n =-ex 

eJ s I e at (12.97) 

Since the index n is independent of t, the summation can be removed from 
the integral: 

Λ OO COO Λ OO fOO 

— Σ o(/)e>me-' -e~s' dt=— Σ v(t) e-i'-W dt (12.98) 

The resulting integral is the Laplace transform, V(s-jno)s). Thus 

1 °° 
V*(s)=- Σ V(s-jna>s) (12.99) 

This expression for V* has a geometric interpretation in the s-domain. The 

«p(0 

-3Γ5 3X 

Ι|ΔΡ(ω)|| 

* * 

- 2 û ) s - ω 5 0 cos 2CÛS 

FIG. 12.40 Time- and frequency-domain plots of impulse train. 



658 / 12. Digitizing and Sampling Circuits 

transform of V(s) is periodic in ω8 so that 

V*(s)=V*(s-j<os) 

V(s) repeats along the ja> axis at intervals ofja)s. 
In (12.96), 8p(t) is expressed as a series of complex sinusoids with ampli

tude 1/ Ts and frequencies of nws. The frequency spectrum of v(t) is convolved 
(or heterodyned) in the frequency domain with the spectrum of 8P(t) (Fig. 
12.41). (Multiplication in one domain corresponds to convolution in the other.) 
The sine and cosine terms in v(t) multiply by the terms of δΡ to produce sum 
and difference frequencies according to the trigonometric formulas: 

c o s a · cosß=^cos(a-ß) + \cos(a+ß) (12.100) 

cos a - sin ß =\ sin(a + ß)-\ sin(a -ß) (12.101) 

The frequency-domain plots are the magnitude envelopes of the complex 
Fourier coefficients, the amplitudes of the harmonics. For V*(a>), the spectrum 
of v(t) is centered around harmonics of cus. So the effect of sampling is to 
generate frequency-shifted copies (or bands) of V(co) centered around har
monics of cos. 

v(0 
Time domain Frequency domain 

k(v)|| = v(û))i 
| J Envelope of 

Fourier coefficients 

*p(0t 

1. 

ΔΡ(ω) 

-2û)s -cos 0 cos 2ω& 

ν*(ΐ) = ν (0 ·Μ0 

• · 

ν*(ω)= ν(ω)*ΔΡ(0 

1 w I 
-2ω5 -Û) S ° 
r\r\(t\r\r\ I w I 

FIG. 12.41 Time- and frequency-domain plots of sampled v(t). Discrete samples in / correspond 
to periodic spectra in ω, centered about harmonics of the sampling frequency. 
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12.10 The Sampling Theorem 
(Nyquist Criterion) 

The sampling theorem gives a criterion for recovery of v(t) from v*(t). If cos 

is not larger than twice the highest frequency in ν(ω) , then the frequency-
shifted bands of V((o) overlap (Fig. 12.42) and cannot be separated by filtering. 
The Nyquist criterion for recoverability of the original continuous signal is 

ωδ>2ωΗ (12.102) 

where ωΗ is the highest frequency component of ν(ω). The original signal is 
recoverable from its sampled form when the highest frequency component is 
less than the Nyquist frequency, o)J2. In Fig. 12.42, the band νχ(ω) is a replica 
of V(co) centered at ws. It has frequency components below (os that overlap 
with the positive frequency components of V((o). These are negative frequen
cies in ν(ω) shifted up in frequency by ω8. 

The significance of negative frequency components in V(co) is that they 
are inverted (180° phase-shifted) from their corresponding positive counter
parts. Since the frequency spectrum of V((o) is symmetric around ω = 0, it is 
an even function and ν(-ω) = V(co). The phase, however, is an odd function 
and is negative for ω < 0 ; for negative n, the angle of c„, from (12.89), is 
ϋ = -nœj. Then ΰ(-η) = -ϋ(η). 

In Fig. 12.42, ν(ω) and V}(w) are symmetrical around the Nyquist 
frequency. In effect, V has been folded over at ω8/2. The larger ωΗ is, the 
further back toward lower frequencies the folding extends. These folded 
frequency components from Vx are alias frequencies in v*(t) and have a 
frequency of ωΆ relative to ω§. 

The significance of an alias frequency in the time domain is that a sequence 
of samples has more than one frequency interpretation. In Fig. 12.43, V(co) 
has one frequency component at ω = |ωδ . The samples also fit a sinusoid of 
ω = —£ω5, an alias frequency within the band of ν(ω). The alias sinusoid is 
inverted relative to that of Vl because its frequency is negative. 

ν_ι(ω) ν<ω) 
\ V 

« I r \ CD« 

-2ω5 - ω 5
 ω ι Τ ωδ 

ν*(ω) 
νί(ω) ν2(ω) 

4 -
ω5 2ω8 

μ — ωΛ—| 
Alias frequency = û)a = (ύγ - (ûs 

FIG. 12.42 Overlapping spectra of V(CJ) due to undersampling. An alias frequency from ν,(ω) 
a>a, at ω, of ν(ω) is indicated. 
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FIG. 12.43 Aliasing in the time domain. The discrete samples fit sinusoids of two frequencies. 
The alias is inverted, being a negative frequency. 

More generally, if ω, of V((o) is sampled at ω8, then from Fig. 12.42, 

ω, = (os- (-ω-J = ws + ω.ά (12.103) 

and 

alias frequency = ω.Λ = ωχ - ω, (12.104) 

In Fig. 12.43, sinusoids of both ω, of V and coa of V, fit the sample points. 
The discrete samples of v(t) are too few per cycle to eliminate ω.Λ\ v(t) is 
undersampled. The sampling theorem requires more than two samples per cycle 
for recovery of v(t). Such a v(t) is oversampled. 

Recovery of V{œ) from ν*(ω) for oversampled signals is achieved by a 
low-pass filter (LPF) that passes only V(co). The ideal filter, Η(ω), is shown 
in Fig. 12.44a. It has an immediate cutoff just above wh. The ideal maximum-
bandwidth filter has a cutoff at the Nyquist frequency. 

Η{ω) 

2Ί3 
0)s 
2 

ω 

(a) 

v*(0i v(0 

(b) 

FIG. 12.44 The ideal low-pass antialiasing filter Η(ω) is a spectral "pulse" (a) corresponding 
to a sine-function convolver or interpolator in / (b), where * is the convolution operator. 
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In the time domain, this filter function transforms into a sine function 
(Fig. 12.44b). Since nonzero sine values extend to t = -oo, it is noncausal and 
can only be approximated by realizable circuits. The pulse shape of the ideal 
LPF transforms into a sine function in t just as a pulse in the time domain 
does in ω. Η(ω) is multiplied by ν*(ω) in ω to recover ν(ω) ; in i, h(t) is 
convolved with t>*(0 to produce v(t). For bandlimited v(t), 

v(t)= £ ( f e 7 s ) s i n c ( ^ ( i - k T s ) ) , γ < ω < ^ (12.105) 

The sine function acts as an interpolator, filling in the missing values of v(t). 
Our final derivation is the spectrum of a zero-order hold. This is the 

frequency response of a S/H. In the s-domain, a ZOH can be regarded as an 
integrator of weighted impulses, producing v(t) in Fig. 12.45a. This is the 
typical waveform from a S/H or DAC. This integrator signal is periodic at 
the sampling rate. An integrator in s is l/s. A periodic integrator is constructed 
by integrating for Ts, or 

ZOH H0(s)=---' 
s s 

1 

In the time domain, this is a unit step turned off Ts later, or 

ZOH u(t)-u(t-Ts) 

(12.106) 

(12.107) 

The Laplace transform of (12.107) is (12.106). The frequency response of H0 

is found by letting s =j(o. Then 
-ja>T 

H0(jco) = l-e 
}ω 

-= Tssinc (f) ■ e-w 
Then 

| H 0 ( » | | = TS s i n c ( ^ ) ^ H 0 ( » = -ωΓ , 

(12.108) 

(12.109) 

(b) 

FIG. 12.45 DACoutput (or ADC input), v{t) in (a) iszero-order hold response to v(t). Zero-order 
hold frequency-response magnitude Η()(ω) is |sinc| function (b). 
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Once again, the sine function appears. The magnitude plot of the frequency 
response is shown in Fig. 12.45b. The phase response is linear and only 
time-shifts the output. The phase delay can be seen in Fig. 12.45a by noting 
that a best-fit of v(t) to v(t) requires v(t) to be shifted to the right (delayed 
in time) by half a step, or by -TJ2, as (12.109) predicts. Ideal recovery of 
v(t) from v(t) requires an inverse sine filter, or sine compensator. This com
pensator can be implemented in either digital or analog form. It is digital if 
it precedes a DAC or follows an ADC and analog if it follows a DAC or 
precedes an ADC. 

12.11 Sampling Circuits 

Sample-and-hold (S/H) or track-and-hold (T/H) circuits are switched between 
the sample or track state and hold state by a digital control line. Ideally, the 
input voltage at the instant of switching to HOLD is retained as a constant at 
the output of the S/H. T/Hs are similar to S/Hs; in the nonheld state, the 
output follows the input. In a S/H this is not necessarily so, though most S/Hs 
are actually T/Hs. The sampling impulse of sampling theory corresponds to 
the active edge of the HOLD signal. 

The speed of a S/H is determined by the acquisition time, the time from 
when sampling or tracking of the input begins to when a settled, held output 
is available. This time has two terms. The first is from the time when tracking 
begins to the time when the hold capacitor follows the input signal. A large 
initial difference between υλ and vc requires slewing time before tracking is 
accurate. The second term is the setting time at vc when the hold state begins. 
In addition to acquisition time, aperture delay and jitter (as discussed in 
Section 12.8) also apply to S/H circuits. 

Several errors are associated with S/H circuits, and their design consider
ations are closely related to those of peak detectors. Errors occur in the 
sampling process or in the hold state. The first are dynamic sampling errors. 
Digital delay causes the effective sampling instant to be delayed. For a rising 
input signal, this translates into a voltage error of 

where the digital delay time td is multiplied by the signal slew-rate. The second 
cause of error is analog advance. If the input signal is delayed instead, an 
effective negative delay occurs in sampling since the signal lags behind where 
it should be when sampling occurs. A rising input signal is below where it 
should be and a negative error occurs. It is equivalent to sampling the signal 
in advance of the actual sampling instant. 

The dominant cause is a voltage lag on the hold capacitor; its charging 
always lags somewhat behind the source. This is largely due to charging-source 
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FIG. 12.46 Feedback S/H reduces charging time constant RC by K +1 . 

resistance R (Fig. 12.46). By closing the loop with an op-amp input, we reduce 
the charging time constant RC by K + 1 . The diodes around the op-amp keep 
its output from saturating when in the hold state. Signal advance is the major 
cause of delay error and is compensated by delaying the sampling command. 

A third dynamic error is due to stray capacitance Cs between, the hold 
capacitor C and the sampling command line (Fig. 12.47a). When this line 
switches, it causes charge to flow through Cs into C If the capacitor voltage 
vc is plotted against a range of dc inputs, the plot is linear. Its slope represents 
a hold gain. As the input voltage υλ increases, the step of extra voltage on C 
grows in size because the voltage between the hold line vH and vc varies 

Π7 
(a) 

■o*-*o- ± 9> 
m 

(b) 

FIG. 12.47 Parasitic capacitance Cs from sampling control line to hold capacitor node causes a 
hold-gain error (a). In (b) vc is at virtual ground and voltage variation across Cs due to i>, is 
eliminated. 
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FIG. 12.48 Leakage decoupling technique. R maintains zero voltage across switch in hold mode. 

linearly with u,. As the difference between the sample level, Vs, of fH, and 
vc increases, Cs is charged more, and this charge is transferred to C when vc 

changes to the hold state. The hold step, or pedestal, thus increases with vx. 
A circuit that avoids this problem is that of Fig. 12.47b. The hold capacitor 

is the feedback C of the op-amp. The op-amp isolates vc from the switch 
node by holding it at virtual ground. Then the voltage across Cs is independent 
of υλ and the same amount of charge is transferred to C on switching. The 
charge on Cs is Cs Vs. The hold gain varies somewhat as Cs varies with voltage 
as do semiconductor junctions. 

The hold capacitor dielectric absorption must be low to avoid recovery 
effects during the hold state. Its leakage causes static sampling error during 
the hold state. Any other leakage paths for capacitor charge contribute to 
leakage error. The buffer amplifier and sample switch must be low in leakage. 
A leakage compensator is shown in Fig. 12.48. The leakage decoupler R has 
the same function as in peak detectors (see Section 11.14). It keeps the voltage 
across the switch near zero, thus minimizing leakage through it. 

Another hold-step compensator (Fig. 12.49) places another switch similar 
to Qx in series with it. This additional switch is shorted, but its Cs (CGS for a 
MOSFET) connects to the same node. It is driven with an opposite polarity 
edge so that its stray charge cancels that of Q,. 

v l °\ 1 i 

< 

"L 
1 

> 

1 o 1 
1 i 

ί 1 

= csz 

n 7 

vc 

FIG. 12.49 Cs charge compensator uses equal and opposite Cs of Q2 to cancel charge from Q{. 
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FIG. 12.50 A JFET-switched S /H with op-amp bias-current compensat ion capaci tor C2=CX. 
C2 must be reset during track mode . 

In Fig. 12.50, a JFET switch Qx passes the signal through its source, 
connected to the buffer A. When the control line goes low, Qx cuts off. Dx 

conducts a small amount of current through RGS to keep the gate reverse-biased. 
At the same time, Q2 is also cut off by a similar circuit. The capacitor C2, 
equal to Cx, is a bias-current compensator for the op-amp (as with the peak 
detectors). As the hold capacitor Cx charges with IB, so does C2. The differential 
voltage is cancelled at the output. Of course, offset current is not compensated. 

Finally, very fast S/H have the additional error of signal leakage through 
shunt switch capacitance Cs during hold. In Fig. 12.51 is the well-used sampling 
bridge. The diode bridge has two Cs in series for each leg of the bridge, or an 
equivalent of one Cs from input to output. It is current-switched for speed. 
Sampling bridges of this kind have commonly been used in sampling oscillo
scopes. The practical limitation in their switching time is often the switching 
speed of their drivers. 

FIG. 12.51 
mode. 

Diode bridge sampler. Cs is minimized to keep signal from affecting vc during hold 
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FIG. 12.52 Switched-capacitor equivalent grounded resistor. 

12.12 Switched-Capacitor Circuits 

Switched-capacitor circuits replace resistors with capacitors and switches. In 
ICs, diffusion resistors, made by connecting to the ends of a diffused area, are 
not optimal since their values are hard to control, and they have large areas 
(their relative values are much better; they match well). Large-value resistors 
take up so much area that they are often impractical. When accuracy is not 
important, a kind of resistor made of a thin layer of, say, n material between 
two p layers—a pinch resistor—can be made large but with ±20% accuracy. 
NiCr (nichrome) resistors are very good but costly to make and trim. 

This limitation makes switched-capacitor resistors an attractive alternative. 
The equivalent resistance is shown in Fig. 12.52. It is a SPDT switch 5 and a 
capacitor. The SPDT switch is equivalent to two SPST switches, synchronized 
as shown. When S is switched to the input, it charges to the input voltage v 
with a charge of Cv. When it switches to an output held at ground, it delivers 
this charge. The output is typically the virtual ground of an op-amp (Fig. 
12.53). If the switching rate is / s , then the charge delivered per unit time, or 
current, is 

r cfs c i = Cfsv => r = — = ^ (12.111) 

The equivalent resistance follows directly and is subject to the Nyquist criterion 

rn 
FIG. 12.53 Switched-capacitor replacement of Rx of op-amp circuit. 
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FIG. 12.54 Inverting (a) and differential-input (b) switched-capacitor circuits. 

due to switching. The bandwidths of switched-capacitor circuits must be well 
within the Nyquist frequency for accurate equivalence. 

The switching scheme of Fig. 12.54a inverts υλ. Cx charges with switches 
in the position shown. When switched, charge flows out of the op-amp input 
to ground. In effect, the two-switch circuit is a negative R. If we drive the 
grounded side of Sx with an input instead, as in (b), the two terminal voltages 
of V\ subtract upon switching. The differential voltage υλ determines the charges. 

12.13 Closure 

The world of digital electronics merges with analog electronics in digitizing 
and sampling circuits, but the merged areas—mainly ADCs, DACs, and 
switched-capacitor and sampling circuits—do not involve logic design. Instead, 
the underlying theory is an extension of that for continuous functions. The 
mathematics is similar; difference equations replace differential equations. 
Since sampled-data circuits also include commutating and switched-capacitor 
filters and digital signal processing, the full story, including dithering, FFTs, 
DSP filters, and windowing are subjects for other books. 
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Attenuation 
current sources, 545 
shielded cable grounding, 395-396 
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Autolevel triggering, 581 
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(CE) amplifiers with, 107-111 
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impedance transformation, 293-297 
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μ transform, 96-99 
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programmable-gain amplifier, 519-520 
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T model, 8 
timing analysis, 568-569 
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Bipolar simulated resistance, 545-546 
Biquad filter, 556-557 
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phase margin, 238-239 
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411-414 
input stages, 500-502 
peak detection and, 613-614 
resistance multiplier, 576 
two-path buffer topology, 495-496 
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unipolar voltage-translating amplifiers, 
499-500 

Bootstrap ramp generator, 581-582 
Braided cable, shielded cable grounding, 396-397 
Break frequency, Bode plot and, 195 
Bridge network, 362-363 
Bridge-T coil circuit, wideband amplification, 

341-342 
Bridge-T filter, two-pole compensation, 275-276 
Bridge-T networks, 362-363 
Burst noise, 387 
Butterworth filters, 203-204 
Butterworth response, 202-203 
Bypassing 

damping oscillation through, 288 
power supply, 287, 399-401 

Capacitance 
low-level amplification, 416 
op-amp input, 245-248 

Capacitance multiplier, 574-576 
timing circuits, 575-576 

Capacitive output loading, phase-lag circuit, 
198-199,214-215 

Capacitors 
circuit precision, 417 
dielectric absorption, 418-419 

Cascade amplifier, 25-29 
stage interaction phenomenon, 27-28 

Cascaded RC integrators, 215-218 
Cascode amplifier, 27-29 

CB amplifier 
base inductance and, 310-311 
compensation, 353-357 

complementary variation of, 31 -32 
example, 29-31 
field effect transistor (FET), 104-105 
shunt-feedback analysis and, 151-152 

wideband amplification, 373-375 
thermal compensation, 446-447 

Cascomp amplifier, 482-484 
CB (common base) amplifier 

analysis, 13-15 
Cascode compensation, 353-357 
configuration of, 10-11 
example, 20-21 
feedback analysis 

BJT amplifier with/?CE, 122-123 
flow graph analysis, 118-121 

shunt-feedback analysis, 142-143 
withr„, 105-107 

CC (common collector) amplifier 
analysis, 13-15 
complementary emitter-follower buffer, 

447-448 
configuration, 10-11 
differential amplifier with, 41-42 
emitter-follower high-frequency equivalent 

circuit resonance, 302-303 
example, 17-19 
fast peak detectors, 611-612 
feedback analysis, 130-131 
harmonic distortion estimation, 427-428 
power amplifier output stage, 306-307 
reactance chart stability analysis, 299-300 
series R compensation, 304 
shunt /?C-loaded 

impedance transformation, 295 
stabilization using shunt base RC, 303-304 
withr0, 107-111 

CD (Common-drain) amplifier 
input buffer compensation, 346 
withr0, 103-104 

CE (common emitter) amplifier 
cascade amplifier and, 25-29 
cascode compensation, 356-357 
configuration of, 10-11 
emitter-network compensator, Miller effect, 350 
example, 15-17 
feedback analysis, 124-128 

with/?CE, 128-130 
withr0, 107-111 

harmonic distortion estimation, 426-427 
load and shunt-feedback capacitances, 376-378 
power dissipation and step response, 443-444 
thermal distortion, emitter resistance, 440-441 
transresistance model, 351-352 

CG (Common-gate) amplifier, 99-100 
Characteristic equation of circuit, 166 
Characteristic impedance, RLC circuit, 174 
Chebyshev filters, 203 
Chopping (chopper-stabilized) amplifiers, 424 
Circuit analysis, analysis of, 2-3 
Circuit-board transmission lines, 391-392 
Circuit inspection, pole determination, 

325-327 
Circuit resistance, feedback analysis, 146-149 
Circuits 

causal description of, 1 
components of, 1 

precision amplification, 414-420 
reactive, 163-165 

functional description of, 1 
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structural description of, l 
time-domain analysis of, 190-191 

Clamps 
Baker, 563-565 
bipolar diode, 562-563 
Murphy, 564-565 
precision diode, 565-566 
Schottky, 564 
signal-processing circuits, 560-566 

Clipping circuit, 561 
Clock generator circuits, defined, 566 
Closed-loop gain 

differential amplifier and, 404 
feedback circuits, 52-53 

response representation, 226-231 
parameter variation, 261 -264 
terminal resistance, Blackman's formula, 

148-149 
transadmittance, 258, 262-263 

Cochrun-Grabel method, pole determination 
bipolar junction transistor amplifier, 328-334 
op-amp circuit poles, 327-328 

Combined amplifiers, low-frequency and split-path 
topologies, 475-476 

Commercial function generator, triangle-wave 
generators, 594 

Common IC source current mirror, 43 , 45 
Common-mode biasing, current-feedback 

amplifier, 465 
Common-mode rejection (CMR) 

ferrite transformers, 397 
instrumentation amplifiers, 408-410 

guarding technique, 411-414 
precision amplification, 408 

Common-mode rejection ratio (CMRR), 
differential amplifier, 40-41 

Compandor circuits 
variable-gain circuits, 516 

Compensation 
cascode CB amplifier, 353-357 
CD input buffer, 346 
differential amplifier, 366-367 
dynamic response, 239-243 
emitter, 348-353 
emitter-follower 

with base series RC, 308-310 
high-frequency model, 304-305 

source-follower compensation, 344-346 
T-coil, 344 
two-pole compensation, 273-276 

Compensation network synthesis, 360-363 

Compensator design, 243-245 
dc loop gain reduction, 255-256 
pole separation and parameter variation, 

256-264 
Complementary CE buffer 

crossover distortions, 455-457 
shunt emitter diodes, 455-456 

Complementary diff-amp, cross-quad circuit, 433 
Complementary emitter-follower output amplifier 

high-performance amplification, 447-457 
two-stage, 492 

Complementary PNP, matched transistor buffers, 
49-50 

Complex frequency domain 
complex poles and, 167-169 
forced response, 174-176 
Laplace transform, 178-179 

Complex poles 
compensation, 284-286 
complex frequency domain and, 167-169 
geometric derivation, 550 

Complex pole-zero cancellation, 286 
Composite amplifiers, 468-478 
Composite-feedback amplifier, 502-507 
Compound (Darlington) amplifier, 32-35 
Compress gain characteristics, feedforward 

topology, 480-481 
Conditional stability, feedback circuits, 232 
Conductive interference, 393-402 
Contact resistance variation (CRV), 416 
Continued-fraction synthesis, 363-365 
Controlled cascode multiplier cell, 511-513 
Corner frequency, Bode plot and, 195 
Crest factor, 386 
Critical frequencies 

output load isolation, 278-280 
in transfer function, 175-176 

Crossover distortion, complementary emitter-
follower output amplifier, 447-448 

Cross-quad circuit, BJT differential amplifier, 
432-433 

Crosstalk 
ac power-supply currents and, 398-399 
capacitive and inductive, 389-390 
estimation of, 389-392 
extrinsic noise, 387-393 

Crowding effect, BJT base, 563 
Crystal equivalent circuit, 183 
CS (common-source) amplifier 

buffer thermal compensation, 441-442 
wi thr , , 100-103 
source-shifting transformations, 114-115 

670 / Index 



Index / 673 

source-follower compensation, 344-346 
Current-feedback amplifier 

gain-bandwidth product, 487-491 
high-performance amplification, 460-468 
op-amp topology, 461-462 
topology and flow graph, 461-462 

Current-input amplifiers, 460-468 
Current inverter, DAC output node, 543-544 
Current mirror, 42 -48 

as current-driven current sources, 547 
current-feedback amplifier, 465 
differential, see Translinear cell 
digital-to-analog converter, 629-630 
minimum component form of, 45 -46 
output buffer stage, 493 
Schlotzhaur gain cell, 487 
triangle-wave generators, 596-597 
unipolar voltage-translating amplifiers, 

498-499 
Current-mode comparison, analog-to-digital 

converters, 634 
Current sensing, voltage supply, 403-404 
Current source 

digital-to-analog converter, current mirrors, 
629-630 

signal-processing circuits, 537-547 
bipolar simulated resistance, 545-546 
Howland current source, 540-545 
inverting Howland source, 546 
VBF multiplier source, 540 

thermally balanced Wilson, 547-548 
triangle-wave generators, 595-596 

Current-source ramp generator, 583-584 
Current source-shifting transform, 112-113 
Current squarer 

compensated, 591 
translinear, 591 

Current-switching, resistive ladder (R-2R) 
networks, 622-623 

Cyclic converter, 650 

Damped frequency, second-order circuit, 172-173 
Damped sinusoidal response, second-order circuit, 

171-172 
Damping factor, complex poles, 169 
Damping oscillation, through bypassing, 288 
Damping ratio, complex poles, 169 
Darlington amplifier, 32-35 

example of, 34-35 
output amplifier, 496-498 
shunt-feedback amplifier, wideband 

amplification, 377-378 
Darlington buffer, bandgap reference, 532-533 
DC loop gain reduction, 242 
Decoupling, power-supply distribution, 400-401 
Degradation of precision, 380-381 
Design, aspects of, 3 -4 
Design completion, 4 
Dielectric absorption 

capacitor model, 418-419 
sample-and-hold circuits, hold capacitor, 664 

Dielectric constant, reactive circuit elements, 164 
Differential amplifier (diff-amp) 

bipolar junction transistor (BJT) 

transconductance linearity, 429-433 
with CC output, 41 -42 
compensation, 366-367 
emitter-coupled amplifier, 36-41 
high-performance amplification, 460-461 
precision amplification, 402-408 

voltage supply current sensing, 403-404 
shunt-feedback analysis and, 151-152 

example, 153-154 
thermal distortion, 445-446 

symmetry and, 39-40 
thermal noise, 443 

triangle-wave generators, current switching, 
598-599 

Differential bandgap reference, signal-processing 
circuits, 528-532 

Differential linearity error (DLE), digital-to-
analog converters, 620 

Differential-mode transformers, EMI power-line 
filter, 397 

Differential nonlinearity, digital-to-analog 
converters, 620 

Differentiator, wideband, 365-366 
Diffusion resistors, switched-capacitor circuits, 

666-667 
Digital, defined, 617 
Digital delay, sample-and-hold circuits, 662-663 
Digital panel meter (DPM), dual-slope ADCs, 641 
Digital-to-analog converters (DACs), 617-628 

high-performance amplification, 460 
reverse configuration, 630 

Digital voltmeters (DVMs), dual-slope ADCs, 
637,641 

Digitizing and sampling circuits 
analog-to-digital converters, 631-643 

integration of, 636-643 
parallel feedback, 631-636 

digital-to-analog converters, 617-628 
circuits, 628-631 
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Digitizing and sampling circuits (continued) 
electric quantities, 616-617 
frequency-domain sampling theory, 654-658 
Nyquist criterion sampling theorem, 659-662 
parallel and recursive conversion, 648-651 
time-domain sampling theory, 651-654 
voltage-to-frequency converters, 643-648 

Diode bridge sampler, sample-and-hold circuits, 
665 

Direct (Truxal) compensation, 286-287 
Discrete diodes, programmable-gain amplifier, 

518-520 
Discrete logic circuits, 560-561 

four-transistor, 561-562 
Dissipation factor, low-level amplification, 417 
Distortion 

defined,380 
large-signal effects and, 346 
precision amplification, 424-429 

CC harmonic distortion, 427-428 
CE harmonic distortion, 426-427 

Distributed amplifier, 490-491 
Dominant-pole compensation, 242 

compensator design, 256-257 
Dual D flip-flop trigger generator, 577 
Dual-slope analog-to-digital converters, 636-637 

modified version, 638-640 
dvldt signals, shielded cable grounding, 396-397 
Dynamic analysis, 2 
Dynamic response compensation 

cascode amplifier, 357-360 
compensator design, 243-245 

pole separation and parameter variation, 
256-264 

reducing dc loop gain, 255-256 
two-pole compensation, 273-276 

complex pole-zero cancellation, 286 
damping oscillation through bypassing, 288 
direct (TruxaFs) method, 286-287 
feedback circuits 

response representation, 226-231 
stability, 231-234 

load capacitance compensation, 280-283 
op-amp 

input capacitance compensation, 245-248 
phase-lead compensation, 248-251 
transfer from reactance charts, 222-226 

output load isolation, 277-280 
passive compensation, voltage divider, 219-221 
phase-lag compensation, 252-254 
power supply bypassing, 287 

techniques for, 239-243 
dc loop gain, 242 
dominant-pole compensation, 242 
lag-lead compensation, 242 
phase-lag compensation, 242 
phase-lead compensation, 240, 242 
pole separation, 242 
pole-zero cancellation, 240-241 

transimpedance amplifier 
with input capacitance, 235-239 
with phase-lead compensation, 254-255 
pole-splitting, 264 

two-pole compensation, 264-273 
two-pole feedback amplifier stability, 234-235 

Electromagnetic interference (EMI) 
conductive interference, 393-402 
intrinsic noise, 381-387 
radiation and crosstalk, 387-393 

Electronics, organization of, 1-2 
Emitter compensation, 348-353 
Emitter-coupled feedback amplifier, 154-156 
Emitter-follower compensation 

with base series RC, 308-310 
equivalent circuits, impedance transformation, 

293-294 
high-frequency circuit, 304-305 

resonance analysis, 302-303 
precision amplification, 447-457 
reactance plot, stability analysis, 300-302 
resonance analysis, from base circuit, 307-308 

Emitter node equivalent circuit, impedance 
transformation, 296 

Emitter peaking, 343 
Engineering release, 4 
Envelope delay 

defined,203 
second-order time-domain response, 170-174 

Equivalent circuit 
differential shunt-feedback and, 152-153 
shunt-feedback analysis, 140-141 

Equivalent series resistance (ESR), capacitor, 417 
Error amplifier 

cascomp topology, 482-484 
gain scaling, 481-482 

Error current 
current-feedback amplifier, 467-468 
feedback circuits, input and output loading, 

72-73 
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Even harmonics, 428-429 
Excess noise, 386 
Exponential amplifiers, 584-591 
Exponential decay, first-order response, 167 
Extrinsic noise 

conductive interference, 393-402 
defined, 380 
radiation and crosstalk, 387-393 

Falltime, circuit analysis, 190 
Faraday shield, isolation amplifiers, 422 
Fast-amplifier gain curve, 476 
Feedback amplifier 

emitter-coupled, 154-156 
output impedance, 314-315 
output resonance, 315 

Feedback analysis 
asymptotic gain method, 150-151 
circuit resistance, 146-149 
common-base (CB) amplifier, 118-121 
common-collector (CC) amplifier, 130-131 
common-emitter (CE) amplifier, 124-126 
multipath transistor amplifiers, 114-118 
op-amp inversion with output resistance, 

131-134 
shunt-feedback amplifier, 134-138 

Feedback circuits, 52-93 
dynamic response compensation, 226-231 
field-effect transistor buffer amplifier, 91 -92 
forward and feedback paths, 53-58 
input and output loading, 70-77 
input and output resistance, 63-65 
inverting feedback voltage amplifier, 68-70 

example, 77-79 
Miller's theorem, 66-68 
noise rejection, 65-66 
noninverting feedback amplifier, 79-84 

BJT example, 85-87 
example, 84-85 
voltage feedback with output block, 87-91 

nonlinearity reduction, 66 
operational amplifier configurations, 58-62 
stability, 231-234, 237-239 
topology, 52-53 

Feedback-compensated op-amp, 505-506 
Feedback paths, feedback circuits, 53-58 
Feedback topology, analog-to-digital converters, 

649 
Feedbeside amplifiers, 476-478 

Feedforward amplifier, 478-484 
diff-amp, 481-482 
multipath transistor amplifiers, 115-118 
op-amp configuration, 479-480 

Feedforward topology, analog-to-digital 
converters, 649 

Fidelity, defined, 380 
Field-effect transistors (FETs) 

buffer amplifier, 91-92 
cascode amplifier 

withro, 104-105 
common drain (CD), 10 
common gate (CG), 10 
common source (CS), 10 
current sources, voltage-to-current converter, 

547 
diff-amp temperature characteristics, 433-447 

bipolar junction transistor and, 433-447 
CS buffer thermal compensation, 441-442 

high-frequency analysis, 313 
low-frequency input feedback input buffer, 

474-475 
μ transform of, 96-99 
reduction theorem, 97-98 
T model, 98-99 

Field testing, 4 
Filter circuits, 203-204 
Filters, signal-processing circuits, 547-557 
First-order response, 165-167 

exponential decay, 167 
Flash conversion, analog-to-digital converters, 

648-649 
Flat frequency response 

in frequency domain, 202 
low-frequency feedback amplifier, 471-473, 

475-476 
split-path amplifier, 468-470 

Flicker noise, 386 
Flow graph analysis 

common-base (CB) amplifier, 118-121 
feedback circuits, 52-53 
multipath transistor amplifiers, 117-118 
output load isolation, 279 

Flow graph reduction, feedback circuits, 55-56 
Flying capacitor isolation technique, 421 
Foldback current limit, 565-566 
Forced response, complex-frequency domain, 

174-176 
Forward paths, feedback circuits, 53-58 
Fourier transform, frequency-domain sampling, 

654-658 
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Frequency analysis, defined, 163 
Frequency-domain analysis, optimization of, 

202-209 
Frequency-domain sampling theory, digitizing and 

sampling circuits, 654-658 
Frequency generation, voltage current frequency, 

602-603 
Frequency-related impedance transformations, 

290-315 
active device behavior above bandwidth, 

290-291 
bipolar-junction transistor 

base inductance, 310-312 
transistor high-frequency model, 291-292 

CC amplifier 

output stage, 306-307 
series R compensation, 304 
stabilization using shunt base RC, 303-304 

emitter-follower compensation 
with base series RC, 308-310 
high-frequency compensation, 304-305 
equivalent circuit, resonance analysis, 

302-303 
reactance plot stability analysis, 300-302 
resonance analysis from the base circuit, 

307-308 
feedback amplifier output resonance, 315 
field-effect transistor high-frequency analysis, 

313 
output impedance of feedback amplifier, 

314-315 
rb' and stability, 312 
reactance chart representation 

ß-gyrated circuits, 297-299 
stability criteria for resonances, 299-300 

shunt flC-loaded CC amplifier, 295-297 
Frequency response 

graphic representation of, 194-195 
transfer functions, 192-194 

Full-power bandwidth, wideband amplification, 
319 

Function-generating circuits, 587-594 

Gain-bandwidth product, 291 
current-feedback amplifier, 462-463 , 487-491 
differential block diagram, 488-489 
/T-doubler amplifiers, 488 

single-ended/T-doubler, 489-490 
voltage inputs, 489-490 
wideband amplification, 322-324 

Gain cell 
a-compensated, 484-486 
Gilbert, 507-517 

Gain margin, defined, 233 
Gain-phase plane, frequency response 

characterization with, 194 
Gain-switched amplifiers, 517-518 
Galvanic paths, isolation amplifiers, 421 
Gaussian (probability) function, 323-324 
Gilbert four-quadrant transconductance multiplier, 

510 -511 ,513 -514 
Gilbert gain cell, 507-517 

triangle-to-sine converter, 604 
Glass epoxy capacitors, 420 
Gray code encoder, 650-651 
Ground loops, conductive interference, 394 
Group delay, defined, 203 

Half-wave rectification, 605-606 
Hall chart, frequency response characterization 

with, 194 
Harmonic distortion 

CC harmonic distortion estimation, 427-428 
CE harmonic distortion estimation, 426-427 
defined, 425-429 
frequency-domain sampling, 654-656 

High-frequency analysis 
bipolar-junction transistor derivation, 291 -292 
field-effect transistor (FET), 313 
impedance transformations, 293-297 
emitter-follower, equivalent circuit resonance 

analysis, 302-303 
High-performance amplification, 460-520 

a-compensated gain cells, 484-487 
bootstrapped input stages, 500-502 
buffer amplifiers, 491 -496 
cascode amplifiers, 479-484 
composite feedback, 502-507 
current-input and current-feedback amplifiers, 

460-468 
feedbeside amplifiers, 476-478 
feedforward amplifiers, 478-484 

op-amp feedforward amplifier, 479-480 
gain-bandwidth product, 487-491 
Gilbert gain cell and multiplier, 507-517 
large-signal dynamic compensation, 502-507 
low-frequency feedback topology, 471 -474 
programmable-gain amplifiers, 517-520 
split-path composite trigger amplifier, 470-471 
unipolar voltage-translating amplifiers, 496-500 
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High-performance buffer amplifiers, 491 -496 
High-performance oscilloscope trigger generator, 

577-579 
Hold-step compensator, sample-and-hold circuits, 

664 
Howland current source, 540-545 

differential input voltage, 541 
inverting, 546 
precision source, 542-543 

Hybrid-TT BJT model, 8-9 
derivation of, 291-292 

Hyperbolic tangent, BJT differential amplifier, 
431-432 

Hysteresis 
defined,558 
triangle-wave generators, 598-599 
trigger generators, 578-579 

Hysteresis window, defined, 558-559 
Hysteretic comparator circuit, 558 
Hysteretic switches, signal-processing circuits, 

557-560 

Ideal sampler behavior, time-domain sampling, 
653 

Impedance transformations, in high-frequency 
region, 293-297 

Impulse function, time-domain sampling, 652 
Impulse modulation, 654-656 
Incremental analysis, 2 
Incremental model, 6 
Inductance, low-level amplification, 416 
Inductive peaking, 334-344 

series, 334-338 
shunt, 338-340 
T-coil, 340-344 

Input impedance, source-follower compensation in 

CS circuits, 344-346 
Input loading, feedback circuits, 70-77 
Input resistance 

amplifier circuits, 14 
of common-emitter (CE) amplifier, 110-111 
feedback circuits, 63-65 

Insertion loss, see Attenuation 
Instrumentation amplifier 

feedback buffer loop realization, 411 
guarding technique, 411-414 
input stage 

linearizing and speed-enhancing local 
feedback, 410-411 

noise rejection, 409-410 

precision amplification, 408-414 
Instrument system risetime, wideband 

amplification, 321 
Integrating analog-to-digital converters, 636-643 

harmonic filtering, 642-643 
Interface circuits, digital-to-analog converter, 

628-631 
Intermodulation distortion (IM), 429 
Interstage coupling 

inductive peaking and, 334-337 
pole estimation, 332-333 

Intrinsic noise 
defined,380 
precision amplification, 381-387 

Inverted feedback amplifier, 157-158 
feedback circuits example, 77-79 
output block, 89-90 
voltage amplifier, 68 -70 

Inverting op-amp, programmable-gain amplifier, 
519-520 

Isolation amplifiers 
autocalibration, 423-424 
precision amplification, 420-421 

Isothermal effects, low-level amplification, 415 

Junction field-effect transistors (JFETs) 
diff-amps, drift mechanisms, 434 
feedback circuits, buffer amplifier, 91 -92 
matched buffers and complementary 

combinations, 48 -50 
switch, sample-and-hold circuits, 665 

Junction voltage, temperature coefficients, 
523-524 

Kirchhoff s current law (KCL) 
feedback analysis of multipath transistor 

amplifiers, 117-118 
feedback circuits, 54 

resistances, 146-147 
Kirchhoff's voltage law (KVL) 

feedback analysis of multipath transistor 
amplifiers, 117-118 

feedback circuits, 54 
Kirk effect, BJT base, 563 

Lag-lead compensation, 242 
compensator design, 243-244 
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Laplace transform 
frequency-domain sampling, 654-658 
transient and frequency response, 177-179 

Large-signal analysis, 3 
current-feedback amplifier, 465 

Large-signal dynamic compensation, 502-507 
Large-signal (total-variable) model, 6 
Lattice network, 362-363 
LC parallel-resonant ("tank") circuit, 551-552 
Leakage decoupling 

peak detection and, 613-614 
sample-and-hold circuits, 664 

Least-integer function, defined, 619 
Limiters 

Baker clamp circuits, 564-565 
foldback current, 565-566 
precision diode clamps, 565-566 

"Linearizing diodes," Gilbert gain cell and 
multiplier, 515-516 

Load capacitances 
CE amplifiers, 375-378 
compensation, 280-283 

Loci of quadratic poles, 199-201 
Log-antilog multiplier, 587-588 
Logarithmic amplifier, 584-591 

design, 586 
frequency and bias-current compensation, 588 

Log-ratio amplifier, 585-586 
Loop gain 

Blackman's resistance formula, 148-149 
dc and compensator design, 255-256 
feedback circuits, 52-53 

response representation, 226-231 
unity-gain axis, 229-230 

Loss angle, capacitor, 417 
Low-frequency analysis, 2 
Low-frequency feedback amplifier, 471 -473 

composite amplifier, 473-474 
input amplifier, 474-475 

Low-frequency feedback topology 
high-performance amplification, 471-474 

composite amplifier, 473-474 
input buffer, 474-475 

Low-level amplification, 414-420 

Magnetic deflection yoke coil circuit, 188-189 
Manufacturing acceptance, 4 
Maximally flat envelope delay (MFED), 202-203 
MFA response, cascode dynamic response 

compensation, 357-360 

MFED 
complex pole compensation, 285-286 
two-pole compensation, 273-276 
wideband amplification, series peaking, 

337-343 
Microstrip transmission line, 391-392 
Miller effect 

capacitance multiplier, 574-575 
compensator design, 258-261 
emitter-network compensator, CE circuit, 350 
high-performance amplification 

current-input and current-feedback 
amplifiers, 460 

Miller ramp generator, 582-584 
Miller's theorem 

feedback analysis of shunt-feedback amplifier, 
136-137 

feedback circuits, 66-68 
resistances, 146-147 

Minimum-phase circuits, 231 
Model-reference adaptive control, triangle-wave 

generation, 601 -602 
Modulation index, Gilbert gain cell, 509-510 
Modules, 325-327 
Monostable multivibrators (MMV) 

defined, 566 
voltage-to-frequency converters, 643-645 

Monotonicity, digital-to-analog converter, 625 
Most-significant bit (MSB), digital-to-analog 

converters, 620 
Multiple-feedback LP and BP filters, 552-554 
Multiple-path amplifiers, 94-162 

asymptotic gain method, 150-151 
audiotape playback amplifier, 159-160 

with noninverting feedback, 161 -162 
cascode amplifier, 151-152 
circuit transformations, 111-114 
common-base amplifier with r0, 105-107 
common-collector amplifier with r0, 107-111 
common-drain amplifier with r0, 103-104 
common-emitter amplifier with r0, 107-111 
common-gate amplifier with r0, 99-100 
common-source amplifier with r0, 100-103 
differential shunt-feedback amplifier, 151-152 

example, 153-154 
feedback analysis, 114-118 

common-base amplifier, 118-121 
BJT amplifier with RCB, 122-123 
inverting, 121-122 
shunt-feedback amplifier, 142-143 

common-collector (CC) amplifier, 130-131 
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common-emitter (CE) amplifier, 124-128 
with/?CE, 128-130 

shunt-feedback amplifier, 134-138 
BJT model, 138-139 
substitution theorem, 139-142 

feedback circuit resistances, 146-149 
idealized shunt-feedback amplifier, 143-146 
inverting feedback amplifier, example, 157-158 
inverting op-amp without resistance, 131 -134 
reduction theorem, 94-96 
transconductance amplifier, 146 

Multiple signal paths, power-supply distribution, 
401 

Multiple-stage response characteristics, 318-322 
Multistage flash converter, analog-to-digital 

converters, 648-649 
Multivibrators 

astable topology, 566-570 
signal-processing circuits, 566-573 

Murphy clamp, 564-565 
μ transform 

bipolar junction transistor model, 96-99 
CG amplifier and, 99-100 
common-base (CB) amplifier with, 105-107 
common-collector (CC) amplifier with, 

107-111 
common-drain (CD) amplifier and, 103-104 
common-emitter amplifier with, 107-111 
common-source (CS) amplifier and, 100-102 
field-effect transistor model, 96-99 

cascode amplifier and, 104-105 
reduction theorem, 94-96 

Narrowband approximations, 548-549 
Natural frequency, complex poles, 169 
Natural response, of circuit, 166 
Near-field interference, 388-390 
Nested feedback amplifier, 504 
Network synthesis 

compensation, 360-363 
continued-fraction, 363-365 
partial-fraction, 363 

New product introduction, 3 
Nichols chart, frequency response characterization 

with, 194 
Noise 

equivalent bandwidth, 382-383 
intrinsic, 381-387 
power distribution and, 398-403 
rejection in feedback circuits, 65-66 

voltage versus source resistance, 385-386 
Noninverting feedback amplifier 

feedback circuits, 79-87 
BJT model, 85-87 
example, 84-85 

voltage feedback amplifier, with output block, 
87-91 

Nonlinear dynamic compensation, 506-507 
Nonlinearity, feedback circuits, 66 
Nonminimum-phase circuits, 232 
Normal-mode rejection (NMR), dual-slope ADCs, 

642-643 
Norton amplifier, high-performance amplification, 

460-461 
Norton equivalent circuit 

BJT pole determination, 329-330 
feedback circuits 

input and output loading, 71-72 
inverting op-amp configuration, 61-62 
two-port model, 76-77 

for loaded dividers, 111-114 
Nulling schemes, feedbeside amplifier, 477-478 
Nyquist criterion, feedback circuit stability, 231 
Nyquist diagram (complex polar plot), 194 
Nyquist frequency, defined, 659 
Nyquist plots, feedback circuit response 

representation, 227-231 
Nyquist sampling theorem, 659-662 

Odd harmonics, 428-429 
Offset error, 380 
Offset-voltage compensation, 500-502 
Ohm's law, feedback analysis of multipath 

transistor amplifiers, 117-118 
One-op-amp differential amplifier, 402-404 
Operating point, for nonlinear device models, 6-9 
Operational amplifier (op-amp) configurations 

circuit poles, from Cochrun-Grabel method, 
327-328 

fast peak detectors ,611-612 
feedback circuits, 58-62 

inverting configuration, 59-61 
noninverting configuration, 59-60 

input capacitance compensation, 245-248 
input noise, 385 
inversion of, with output resistance, 131 -134 
phase-lead compensation, 248-251 
state-variable filter topology, 555-556 
summing 

inverting, 405 
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Operational amplifier (op-amp) configurations 
(continued) 

noninverting, 405-406 
transfer functions, 222-226 

Oscilloscope display, trigger jitter, 580-581 
Oscilloscope vertical amplifier, 324 
Output block 

inverted feedback amplifier, 89-90 
noninverting voltage feedback amplifier, 87-91 

Output impedance 
digital-to-analog converters, 623 
feedback amplifier, 314-315 
impedance compensation, 361 
output buffer stage, 493-494 

Output loading 
feedback circuits, 70-77 
isolation, 277-280 

high-frequency and low-frequency paths, 
279-280 

phase-lag circuit, 214-215 
Output resistance 

amplifier circuits, 14 
bipolar junction transistor, 20-22 
of common-emitter (CE) amplifier, 110-111 
feedback circuits, 63-65 
inversion of op-amp with, 131-134 

Output resonance, feedback amplifier, 315 
Oversampling, 660 
Overshoot, circuit analysis, 190 

Pade approximation, triangle-wave generation, 
601-602 

Parallel conversion, analog-to-digital converters, 
648-651 

Parallel feedback, analog-to-digital converters, 
631-636 

Parallel resonance, 205-207 
RLC circuit, 174 

Partial-fraction network synthesis, 363 
Passive compensation, voltage divider, 219-221 
Passive first-order compensators, 243-244 
Peak detectors 

feedback and output buffering, 611-612 
Peaking, in frequency domain, 202 
Peak-to-peak auto triggering, 581 
Phase-angle plot, asymptotic approximation, 

196-199 
Phase-lag circuit, capacitive output loading, 

198-199,214-215 
Phase-lag compensation, 242 

compensator design, 243-244 

example of, 252-254 
op-amp, 251-252 

Phase-lead compensation, 240, 242 
compensator design, 243-244 
op-amp, 248-251 
transimpedance amplifier, 254-255 

Phase-locked loop, triangle-wave generators, 594 
Phase margin 

Bode plot of, 238-239 
defined, 233 

Phase-shift filter, 557 
Pilot run, 4 
Pinch resistor, 666 
Pink noise, 386 
Pitch, transmission line, 391-392 
Polar plot, feedback circuit stability, 231 -232 
Pole compensation, cascode compensation, 356 
Pole determination 

by circuit inspection, 325-327 
Cochrun-Grabel method 

BJT amplifier poles, 328-334 
op-amp circuit poles, 327-328 

interstage coupling, 332-333 
shunt-feedback amplifier, 370-371 
in transfer function, 175-176 

Pole separation, 242 
compensator design and, 256-264 

Pole-splitting, 242 
compensator design, 257-258 
transimpedance amplifier, 264 

Pole-zero configurations 
cancellation, 240-241 
feedback circuit response representation, 

229-231,230-231 
Polycarbonate capacitors, 419-420 
Polyester capacitors, 419-420 
Polypropylene capacitors, 419 
Polystyrene capacitors, 419 
Polytetrafìuoroethylene (PTFE) capacitors, 

419-420 
Popcorn noise, 387 
Power amplifier CC output stage, 306-307 
Power distribution 

CE diff-amp, 443-444 
model, 398-399 
noise and, 398-403 
thermal distortion, 439-440 

Power factor, low-level amplification, 417 
Power supply bypassing, 287 
Power-supply rejection (PSR) 

ratio (PSRR), 534-535 
voltage references, 533-535 
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Precision, defined, 380 
Precision amplification, 380-458 

autocalibration, 423-424 
bipolar junction transistor diff-amp 

temperature characteristics, 433-447 
transconductance linearity, 429-433 

CC harmonic distribution estimation, 427-429 
CE harmonic distribution estimation, 426-427 
complementary emitter-follower output 

amplifier, 447-457 
CS buffer thermal compensation, 441-442 
degradation of precision and, 380-381 
differential amplifiers, 402-408 
distortion, 424-429 
extrinsic noise 

conductive interference, 393-402 
radiation and crosstalk, 387-393 

field-effect transistor, 429-433 
instrumentation amplifiers, 408-414 
intrinsic noise, 381-387 
isolation amplifiers, 420-422 
low-level amplification and component 

characteristics, 414-420 
op-amp input noise, 385 
shielded cable grounding with attenuator, 

395-396 
voltage supply current sensing, 403-404 

Precision current divider, 545 
Precision current shunt, as amplifier output-

current booster, 544-545 
Precision diode clamps, 565-566 
Precision generator 

integer power, 592 
integer root, 592 

Precision op-amp current source, 538-539 
Precision rectifiers, signal-processing circuits, 

605-610 
Precision voltage-to-current converter, 547 
Preproduction run, 4 
Preshoot phenomenon 

emitter compensation, 352-353 
inversion of op-amp with output resistance and, 

134 
Product approval, 3 
Programmable gain amplifier (PGA) 

digital-to-analog converters, 630-631 
high-performance amplification, 460, 517-520 
precision amplification, 407-408 

Project approval, 3 
Proportional integral differential (PID) control, 

504-505 
Prototype release, 4 

Pseudoderivative feedback (PDF) control, 
504-505 

Pulse amplitude modulation (PAM), 421-422 
Pulse train, frequency-domain sampling, 654 
Pulse-width modulation (PWM) 

isolation amplifiers, 422 
triangle-wave generation, 603 

Quadratic poles, loci of, 199-201 
Quality factor, low-level amplification, 417 
Quantization noise, defined, 619-620 
Quantizing analog-to-digital converters, 641 
Quarter-square multiplier, 516-517 
Quasistatic analysis, 2 

Radiation, extrinsic noise, 387-393 
Ramp generators, 581 -584 
RC circuit, shunt-series, 182-183 
RC differentiator 

time-domain analysis, unit step function, 
185-186 

transfer function, 176 
RC integrator 

cascaded, 215-218 
time-domain analysis, unit step function, 

185-186 
Reactance chart (plot) 

ß-gyrated circuits, 297-299 
emitter-follower, stability analysis, 300-302 
frequency response characterization with, 194 
op-amp transfer functions from, 222-226 
stability criteria for resonances, 299-300 
transfer functions of passive circuits, 209-218 
Wien-bridge filter, 213-214 

Reactive circuit elements, transient and frequency 
analysis of, 163-165 

Reciprocal impedances, 362-363 
Recirculating-remainder converter, 650 
Recursive conversion, analog-to-digital 

converters, 648-651 
Recursive subranging analog-to-digital converter, 

649 
Reduction theorem 

multiple-path amplifiers, 94 -96 
resistance preservation with, 147 

Resistance multipliers, 574-576 
Resistive input networks, 360-361 
Resistive ladder (R-2R) networks 

bipolar digital-to-analog converter, 624 
current-switching, 622-623 
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Resistive ladder (R-2R) networks (continued) 
digital-to-analog converters, 620-621 
voltage-switching, 621-623 

Resistors, circuit precision, 416-417 
Resonance analysis 

base inductance and, 310-311 
emitter-follower 

from base circuit, 307-308 
high-frequency circuit, 302-303 

RLC circuit, 174 
Resonant frequency, filter circuits, 548-549 
Resonant point, reactance chart stability criteria, 

299-300 
RHP zero, preshoot phenomenon and, 352-353 
Risetime, 190 
RLC circuit 

complex pole compensation, 284-285 
second-order time-domain response, 170-174 
series peaking, 341-342 

Root-contour plot, 261 
Root-locus plot 

complex pole compensation, 284-286 
frequency response characterization with, 194, 

227-231 
pole-zero configurations, 230-231 

phase-lag compensation, 252-253 
quadratic poles, 199-201 
shunt-feedback amplifier, 370-372 

Root sum of squares circuit (RSS) 
function generation, 592-593 
op-amp realization, 593-594 

Rosenstark table, wideband amplification, 
326-327 

Sallen-Key filter, 552-553 
Sample-and-hold (S/H) circuit, 662-666 

time-domain sampling, 651 -653 
Sampled-data systems, 424 
Sampled signals, defined, 617 
Sampling circuits, 662-666 
Sampling point, feedback circuits, 54 
Sampling rate, 424 
Scaled-emitter technique, digital-to-analog 

converter, 625-626 
Schlotzhaur gain cell, 484-486 

current-mirror variation, 487 
Schmitt trigger 

astable multivibrator and, 569-570 
emitter-coupled, 559-560 
noninverting, 559 
triangle-wave generators, 597-598 

trigger generators, 557-560 
Schottky clamp, 564 
Second-order time-domain response, RLC circuit, 

170-174 
Segmented digital-to-analog converter, 625-626 
Serial input, digital-to-analog converter, 627 
Series feedback, feedback circuits, 54 
Series peaking 

inductive peaking, 335-338, 342-343 
Series RC circuits 

base compensation, 308-310 
cascode compensation, 355-356 
CC amplifier, 304 
transfer function, 179-181 

Series resonance, RLC circuit, 174 
Series sampling, feedback circuits, 54-56 
Series-shunt all-pass circuit, 221 
Settling time, circuit analysis, 191 
Shield cutoff frequency, conductive interference, 

394 
Shielded cable grounding 

with attenuator, 395-396 
external field environments, 396-397 

Shot noise 
precision amplification, 382 
wideband amplification, 386 

Shunt base RC, CC stabilization with, 303-304 
Shunt emitter diodes, complementary CE buffer, 

455-456 
Shunt-feedback amplifier 

cascode amplifiers and, 151-152 
wideband amplification, 373-375 

common-base (CB) model, 142-143 
differential amplifiers and, 151-152 
feedback analysis, 134-138 

BJT model, 138-139 
substitution theorem, 139-142 

feedback circuits, 54 
ideal transconductance amplifier, 143-146 
voltage amplifier example, 159-160 
voltage reference, 533-537 
wideband amplification, 367-373 

Shunt-feed capacitances, CE amplifier, 375-378 
Shunt peaking, 338-340 
Shunt RC 

cascode CB compensation, 354-355 
loaded CC amplifier, 295 

Shunt sampling, feedback circuits, 54-56 
Shunt-series all-pass circuit, 221 
Shunt-series RC circuit, 182-183 
Signal, defined, 616 
Signal leakage, sample-and-hold circuits, 665 
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Signal-processing circuits, 522-614 
capacitance and resistance multipliers, 574-576 

timer with, 575-576 
clamps and limiters, 560-566 
current sources, 537-547 

bipolar simulated resistance, 545-546 
Howland current source, 540-545 
inverting Howland current source, 546 
Vjjg-multiplier current source, 540 

discrete logic circuits, 560-561 
filters, 547-557 
function generation, 591-594 
hysteretic switches (Schmitt triggers), 557-560 
logarithmic and exponential amplifiers, 

584-591 
log-amp design, 586 

multivibrators and timing circuits, 566-573 
peak detectors, 611-614 
precision rectifiers or absolute-value circuits, 

605-610 
ramp and sweep generators, 581 -584 
triangle-wave generation, 594-605 
trigger generators, 576-581 
voltage references, 522-537 

bandgap reference design, 526 
differential bandgap reference, 530-532 
shunt-feedback, 533-537 
Widlar bandgap reference, 528 

Signal-to-noise ratio (SNR) 
digital-to-analog converters, 618-620 
feedback circuits, 65-66 

Silicon-controlled rectifier (SCR), 49-50 
Sine compensator, 662 
Single-ended amplifiers, defined, 36 
Single-point ground, conductive interference, 394 
Single-pole feedback amplifier, output impedance, 

314-315 
Skin depth, 387-393 
Slew rate limits 

analog-to-digital converters, 633 
current-feedback amplifier, 465-466 
defined,319 
trigger jitter, 580-581 
unipolar voltage-translating amplifiers, 

496-500 
Small-signal analysis, 2-3, 6 

cascade amplifier, 25-26 
FETmodel,9 

Source-follower compensation, 344-346 
Source-shifting transformations, 113-114 
Spectral density, 381 
Split-path amplifier, 468-470 

composite trigger amplifier, 470-471 
Split-path response, current-feedback amplifier, 

464-465 
Square-root circuits, logarithmic amplifiers, 590 
Stability 

base resistance and, 312 
of CC, using shunt base RC, 303-304 
emitter-follower, 299-300 
for resonances, reactance chart criteria, 

299-300 
Stage gain optimization, wideband amplification, 

322-324 
State-variable control theory, 505 
State-variable filter, 554-555 
Static analysis, 2 
Steady-state response, see Forced response 
Step response 

CE diff-amp, 443-444 
power dissipation, 440 

Stray capacitance, sample-and-hold circuits, 663 
Stripline transmission lines, 391-392 
Subranging flash converters, 648-649 
Substitution theorem, 114 

shunt-feedback analysis, 139-142 
Subsurface Zener diodes, voltage references, 523 
Subsystems, in circuit organization, 1 
Successive approximation analog-to-digital 

converter, 633-635 
Successive approximation register (SAR), 635 
Sweep generators, 581 -584 
Sweep-rate constant, triangle-wave generation, 

603 
Switched-capacitor circuit, 666-667 

digital-to-analog converter, 627 
Switched-capacitor comparator, inverter 

threshold, 424 
Synchronization, trigger generators, 576-577 
Synchronous rectification, 606-607 
Synchronous tuning, 551 
Synchronous voltage-to-frequency converters, 

647-648 

Taylor gain cell, 484-486 
Taylor-series expansion, triangle-to-sine converter, 

604-605 
Tcoi l 

compensation, 344 
series peaking, 340-343 

Temperature coefficient (TC) 
dielectric absorption, 420 
FET diff-amp temperature characteristics, 434 



Temperature coefficient (TC) (continued) 
junction voltage, 523-524 
low-level amplification, 414-415 
voltage references, 522-523 

Temperature drift, amplifier configurations, 10-11 
Thermal drift, precision degradation, 381 
Thermal gradients, low-level amplification, 

414-415 
Thermal-model electrical analog, 438 
Thermal noise 

precision amplification, 381-382, 386 
Thermal runaway, 449-450 
Thermals, defined, 381 
Thermocouples, low-level amplification, 

416-417 
Thermoelectric effects, low-level amplification, 

414-415 
Thévenin equivalent circuits 

BJT pole determination, 329-330 
common-base (CB) amplifier, with r0, 105-106 
differential amplifier and, 38-39 
feedback circuits, 62 

input and output loading, 71 -72 
noninverting feedback amplifier, 81 -82 
output resistance, 64 

for loaded dividers, 111-114 
power-supply distribution, 398-399 
reduction theorem, 98-99 

Three-op-amp diff-amp 
current-feedback amplifier, 463-464 
instrumentation amplifier topology, 408-409 

Time constant, first-order circuits, 167 
Time-domain analysis 

circuit characterization in, 190-191 
defined, 163 
first-order response, 165 -167 
frequency response of transfer functions, 

192-194 
Nyquist criterion, 660-661 
optimization of, 202-209 
second-order response, RLC circuit, 170-174 
unit step function, 184-188 

Time-domain sampling theory, digitizing and 
sampling circuits, 651 -654 

Timing circuits 
block diagrams, 570-571 

astable multivibrators, 571-572 
monostable multivibrators, 572-573 

capacitance multiplier, 575-576 
signal-processing, 566-573 
synchronous voltage-to-frequency converters, 

648 

T model, 8-9 
Total-variable analysis, 3 

complementary emitter-fol lower output 
amplifier, 453-45 

Track-and-hold (T/H) circuit, 662-666 
time-domain sampling, 651-653 
tracking analog-to-digital converters, 

634-635 
Tracking converter, analog-to-digital converters, 

632-634 
Transconductance amplifier, shunt-feedback 

analysis, 144-146 
Transconductance linearity, BJT differential 

amplifier, 429-433 
"Transconductance spoiler," 465 
Transfer function 

canonical form of, 175-176 
complementary emitter-follower output 

amplifier, 448-449 
linearized model of, 450-451 

feedback circuits, 53 
forced response in complex frequency domain, 

174-176 
op-amp, 222-226 
of passive circuit, reactance chart, 209-218 
responses of, 204-205 
series RC circuits, 179-181 
source-follower compensation, 346 
time-domain analysis, 192-194 
Wien-bridge filter, 181-182 

Transient response, defined, 167 
Transimpedance amplifier 

compensator design, 258-261 
with input capacitance, 235-239 
phase-lead compensation, 254-255 
pole-splitting, 264 

Transistor temperature, thermal distortion, 
438-439 

Translinear cell, 507-508 
inverting, 508-509 
LM13600 input stage, 514-515 
single-ended configuration, 515-516 
triangle-to-sine converter, 604-605 

Transmittance, 53 
Transresistance approach, 12, 350-351 
Triangle-to-sine conversion, 603-604 
Triangle-wave generators, 594-605 

amplitude versus frequency, 599-600 
Trigger generators, 576-581 
Trigger jitter, 577 

trigger path delay, 579-580 
Triple-slope analog-to-digital converters, 368 
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Two-op-amp differential amplifier 
feedback loop, 407-408 
precision amplification, 404-406 

Two-path buffer topology, LT1010, 494-495 
Two-pole compensation, 264-270 

design criteria, 273-276 
example, 270-273 
feedback amplifier stability, 234-235 
roll-off, 268-269 

Two-port circuit 
CE amplifier, feedback analysis of, 126-128 
feedback circuits, 74-77 
noninverting feedback amplifier, 83-84 
shunt-feedback amplifier, 136-137 

Two-term sine power-series, translinearcell, 605 

Undersampling, 660 
Unipolar voltage-translating amplifiers, 496-500 
Unit step function 

time-domain analysis, 184-188 
time-domain sampling, 652 

VBF multipliers 
current sources, 538-540 

BJT realization, 539-540 
voltage references, 536-537 

Vector magnitude, logarithmic amplifiers, 590 
Voltage-controlled amplifiers (VCAs), 511-512 
Voltage-controlled current source, 114 
Voltage-controlled frequency (VCF), 594 
Voltage-controlled oscillators (VCOs), 594 
Voltage-controlled symmetry (VCS), 603 
Voltage divider 

passive compensation, 219-221 
series-shunt all-pass circuit, 221-222 
shunt-series all-pass circuit, 221 

Voltage gain, complementary emitter-follower 
output amplifier, 451 -452 

Voltage lag, sample-and-hold circuits, 662-663 
Voltage references, 522-537 

bandgap reference design, 526 
differential bandgap reference, 528-532 
shunt-feedback voltage source, 533-537 
VBE multipliers, 536-537 
Widlar bandgap references, 527-532 

Voltage source-shifting transformation, 112-113 
Voltage supply current sensing, precision 

amplification, 403-404 
Voltage-switching, resistive ladder (R-2R) 

networks, 621-623 
Voltage-to-current ( VII) converter (VIC), 466 

Voltage-to-frequency converter, 643-648 
asynchronous, 643-645 
isolation amplifiers, 422 
LM331,645-646 

White noise, 386 
Wideband amplification, 319-378 

amplifier stage gain optimization, 322-324 
BJT amplifier poles from Cochrun-Grabel 

method, 328-334 
cascode dynamic response compensation, 

357-360 
of common base stage, 353-357 

CD input buffer compensation, 346-347 
CE with load and shunt-feedback capacitances, 

375-378 
compensation network synthesis, 360-363 
continued-fraction network synthesis, 364-365 
differential amplifier compensation, 366-367 
differentiator, 365-366 
emitter compensation, 348-353 
inductive peaking, 334-337 
instrument system risetime, 321 
multiple-stage characteristics, 318-322 
op-amp circuit poles from Cochrun-Grabel 

method, 327-328 
oscilloscope vertical amplifier, 324 
partial-fraction network synthesis, 363 
pole determination by circuit inspection, 

325-327 
series peaking, 337-343 
shunt-feedback amplifier design, 367-373 
shunt-feedback cascode amplifier, 373-375 
source-follower compensation, 344-348 
T-coil compensation, 344 

Widlar bandgap reference, 527-532 
Widlar current mirror, 42-44 
Wien-bridge filter 

inverse of, 182,214 
reactance chart, 213-214 
transfer function, 181-182 

Wilson current mirror, 43-45, 547-548 

Zener diode, voltage references, 522-523 
Zero-bias output resistance, 452-453 
Zero-order hold (ZOH) 

Nyquist criterion, 661-662 
time-domain sampling, 651 -653 

Zeros in transfer function, 175-176 
Z transform, frequency-domain sampling, 

654-656 
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